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ABSTRACT 22 

The ability to discern variations in talkers’ voice quality is important for effective talker 23 

identification and robust speech processing; yet, little is known about how faithfully acoustic 24 

information relevant to variations in talkers’ voice quality is transmitted through cochlear implant 25 

(CI) speech processing. This study analyzed unprocessed and CI-simulated versions of sustained 26 

vowel sounds /a/ from two groups of individuals with normal and disordered voice qualities to 27 

investigate the effects of CI speech processing on acoustic information relevant to the talkers’ 28 

voice quality distinction. The CI-simulated stimuli were created by processing the vowel sounds 29 

using 4-, 8-, 12-, 16-, 22-, and 32-channel noise-vocoders. The voice quality for each stimulus was 30 

characterized by calculating mel-frequency cepstral coefficients (MFCCs). Then, the effects of CI 31 

speech processing on the acoustic distinctiveness between normal and disordered voices was 32 

measured by calculating the Mahalanobis distance and classification accuracy of support vector 33 

machines (SVMs) on their MFCC features. The results showed that CI noise vocoding is 34 

substantially detrimental to acoustic information involved in voice quality distinction, suggesting 35 

that CI listeners likely experience difficulties in perceiving voice quality variations. The results 36 

underscore challenges CI users may face for effective recognition of talkers and processing their 37 

speech. 38 
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I. INTRODUCTION 44 

The abundant spectro-temporal cues in speech serve as rich sources of information for listeners to 45 

learn and retrieve a variety of linguistic and indexical cues important for robust speech 46 

comprehension and language development. Talkers’ voice quality is one such aspect that listeners 47 

with normal hearing (NH) have access for capturing several indexical and sociolinguistics 48 

information and, thus establish successful spoken communication. Variations in talkers’ voice 49 

quality facilitate human spoken communication in multiple ways. These variations may provide 50 

perceptually salient grammatical and phonological cues for language comprehension (Cameron, 51 

2001; Dicanio, 2009; Dolar, 2006; Garellek & Keating, 2011; Gordon, 2001; Gordon & 52 

Ladefoged, 2001; Henton, 1986; Ogden, 2001). Furthermore, listeners use acoustic information 53 

relevant to talkers’ voice quality to encode and discern various indexical information related to 54 

talkers’ identity such as gender, age, and race (Abberton & Fourcin, 1978; Eidsheim, 2012; Laver, 55 

1968). This encoded information is actively incorporated by listeners to identify and recognize 56 

talkers (Gussenhoven & Rietveld, 1998; Latinus & Belin, 2011; Van Dommelen, 1987) and 57 

understand their speech (e.g., Creel & Tumlin, 2011). Talkers’ voice quality also contributes to 58 

speech understanding through constructing stance in communicative interaction, particularly by 59 

conveying talkers’ affective states during communication (e.g., happiness, anger, etc.; Aubergé & 60 

Cathiard, 2003; Guzman, Correa, Muñoz, & Mayerhoff, 2013; Podesva, 2007; Sicoli, 2010; Tsai 61 

et al., 2010; Zimman, 2012). In addition, listeners use talkers’ voice quality to infer their medical 62 

conditions (i.e., physical, psychological, and mental status; e.g., Kreiman, Gerratt, Kempster, 63 

Erman, & Berke, 1993; Laver, 1968). While listeners with normal hearing (NH) can often readily 64 

infer this information from talkers’ voice, little is known about how CI speech processing may 65 

impact faithful transmission of acoustic information relevant to talkers’ voice quality distinction. 66 
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The present study examined unprocessed and CI-simulated sustained vowel sound /a/ uttered by 67 

two groups of individuals with normal and disordered voice qualities to examine the effect of CI 68 

speech processing on voice quality distinction. 69 

A. Talkers’ voice quality and robust speech comprehension 70 

Acoustic information relevant to talkers’ voice quality signals a range of attributes, which together 71 

facilitates robust perception of speech. In facts, variations in talkers’ voice translate into perceptual 72 

attributes of voice quality such as breathiness, roughness, creakiness, and nasality (Childers & Lee, 73 

1991; Eskenazi, Childers, & Hicks, 1990; Klatt & Klatt, 1990), which can directly provide 74 

linguistic cues for speech sound contrast (Dicanio, 2009; Garellek & Keating, 2011; Gordon, 2001; 75 

Gordon & Ladefoged, 2001). For instance, speakers of English and Finish modify their voicing 76 

behaviors and use creaky voice to signal phrase-final position (Henton, 1986; Ogden, 2001) and 77 

convey linguistic information at segmental and prosodic levels (Dilley, Shattuck-Hufnagel, & 78 

Ostendorf, 1996; Dilley, Arjmandi, Ireland, Heffner, & Pitt, 2016; Redi & Shattuck-Hufnagel, 79 

2001). Spectral measures such as H1-H2, H1-A2, and cepstral peak prominence (CPP) are acoustic 80 

correlates of talkers’ voice quality that were shown to be able to reflect these variations and 81 

distinguish between phonation types (Dicanio, 2009; Garellek & Keating, 2011). Furthermore, 82 

access to acoustic information related to talkers’ voice quality is crucial for effective speech 83 

comprehension because learning talker-specific information is essential for dealing with talker 84 

variability and, thus robust perception of speech (Johnson, 2005; Kleinschmidt & Jaeger, 2015; 85 

Pisoni, 1992). These findings highlight the importance of having access to voice quality-related 86 

acoustic information in talkers’ voice for robust speech comprehension. 87 
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B. Talkers’ voice quality and talker identification 88 

Robust speech comprehension is also indirectly facilitated through talker identification and 89 

recognition. Listeners actively attend to variations in the talkers’ voice quality to index variability 90 

across talkers in their identity. Several studies have demonstrated the connection between talkers’ 91 

voice quality and their gender (e.g., Gussenhoven, 2004; Ohala, 1983; Puts, Hodges, Cárdenas, & 92 

Gaulin, 2007), race (Alim, 2004; Irwin, 1977; Moisik, 2013; Thomas & Reaser, 2004), ethnicity 93 

(Purnell, Idsardi, & Baugh, 1999), social group  (Esling, 1978; Sicoli, 2007; Stuart-Smith, 1999), 94 

and cultural status (Rilliard, Shochi, Martin, Erickson, & Aubergé, 2009; Stross, 2013), which are 95 

all indices of talkers’ identity (Eidsheim, 2012; Podesva & Callier, 2015). Perceptual and acoustic 96 

correlates of voice quality such as pitch, phonation (e.g., breathiness, harshness, and creakiness), 97 

formant frequencies, and difference between amplitude of the first and second harmonics (H1-H2) 98 

have been shown to reflect talkers anatomical differences in the size of their larynx and vocal 99 

tracts, and thus are incorporated by listeners to identify talkers’ voice (Henton & Bladon, 1985; 100 

Ohala, 1983; Simpson, 2009). Therefore, preserving the integrity of spectro-temporal information 101 

in talkers’ voice is important for robust understanding of their speech by listeners. 102 

Listeners are able to determine talkers’ gender from listening to isolated vowels (Coleman, 103 

1971), as well as to continuous speech (Gelfer & Bennett, 2013). In addition, studies on African 104 

American English demonstrated a connection between talkers’ voice quality and their race (Irwin, 105 

1977; Thomas & Reaser, 2004). For example, non-modal voice qualities were found to be 106 

frequently used by African American talkers, leading to a relatively harsh voice quality (Alim, 107 

2004; Britt, 2011). Purnell et al., (1999) showed that landlords use acoustic information from a 108 

short segment of speech in the word “hello” to identify tenants with African American racial 109 

background and inappropriately discriminate against them. Acoustic analysis of African American 110 
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vowels showed that this racial judgment is likely facilitated through acoustic features relevant to 111 

talkers’ phonatory and articulatory behaviors (Arjmandi, Dilley, & Wagner, 2018; Thomas, 2007). 112 

Recognition of talkers’ social class is another dimension whereby voice quality contributes to the 113 

recognition of talkers’ identity  (Esling, 1978; Henton, 1986; Stuart-Smith, 1999). For example, 114 

the level of harshness and pharyngealization in talkers’ voice were found to be associated with 115 

talkers’ social class. It is therefore important for listeners to have access to acoustic information 116 

relevant to talkers’ voice quality variations for talker identification and recognition, and thus 117 

effective speech understanding. 118 

C. The role of talkers’ voice quality in language development 119 

Learning talker’s voice quality also plays an important role in spoken language development. 120 

Children and adults incorporate acoustic information relevant to talkers’ voice quality to develop 121 

and construct talker-specific identity. The ability to map talker-specific acoustic information to 122 

talker identity is fundamental to children’s successful language development. Infants use talker-123 

specific information for word recognition and language learning (Houston & Jusczyk, 2000, 2003; 124 

Ramírez-Esparza, García-Sierra, & Kuhl, 2017), suggesting that they likely develop mental 125 

representations specific to talkers’ voice information. Time-course of attending to talker-specific 126 

cues in speech begins very early before birth where infants recognize their mother’s voice 127 

(Kisilevsky et al., 2003) and was also shown in newborn infants who preferred listening to their 128 

mothers voice over that of a stranger (DeCasper & Fifer, 1980). Models of long-term memory for 129 

voice quality perception suggest that listeners encode and use patterns of voice quality variations 130 

in talkers’ speech for perception of voice quality (Papcun, Kreiman, & Davis, 2005). Talkers’ 131 

voice quality contributes to learning several other information about talkers such as their physical 132 

status (e.g., body size; Podesva & Callier, 2015), behavioral traits (e.g., smoking behaviors), and 133 
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their physical, psychological and mental health (e.g., vocal folds disorders, anxiety level, mood; 134 

e.g., Kreiman, Vanlancker-Sidtis, & Gerratt, 2005). One example of relying on voice quality for 135 

medical diagnosis is the auditory perceptual assessment of individuals’ voice by speech-language 136 

pathologists (SLPs) for differential diagnosis of disordered voices (Kreiman & Gerratt, 1996; 137 

Kreiman, Gerratt, & Ito, 2007). Although some of this information is partially retrievable in the 138 

absence of voice quality cues (e.g., Fellowes, Remez, & Rubin, 1997), the significant contribution 139 

of these cues in multiple aspects from establishing robust and effective spoken communications to 140 

differential diagnosis of individuals with disordered voice quality is indisputable. 141 

D. Talkers’ voice quality through CIs 142 

While listeners with NH have access to acoustic information related to talkers’ voice quality, it is 143 

yet unknown how users of cochlear implants may be at disadvantage in receiving this information 144 

due to limited spectral resolution in CI speech processing. Cochlear implants device has enabled 145 

many individuals with severe-to-profound sensorineural hearing loss to experience a partially 146 

restored hearing and develop language. However, due to the limited spectral bands in the vocoding 147 

process imposed by CI speech processing, listeners with CIs have partial access to fine-grained 148 

acoustic information in speech (Cleary, Pisoni, & Kirk, 2005; Houston, Pisoni, Kirk, Ying, & 149 

Miyamoto, 2003; Houston et al., 2012; Svirsky, 2017). Lack of access to these fine-grained 150 

acoustic cues such as pitch and low-frequency voice harmonics (Chatterjee & Peng, 2008; 151 

Deroche, Kulkarni, Christensen, Limb, & Chatterjee, 2016; Fu, Chinchilla, & Galvin, 2004; 152 

Gaudrain & Baskent, 2018; McDermott, 2004), as well as temporal fine structure cues from 153 

individual harmonics (Carlyon, Deeks, & McKay, 2010) may disrupt the ability of listeners with 154 

CIs to receive information contributing to signaling variations in talkers’ voice quality. 155 
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Listeners utilize acoustic information in snippets of talker’s voice during vowel phonation 156 

to draw inferences about talkers’ voice quality (e.g., Gerratt, J. Kreiman, 2016) and identity 157 

(Adams, 2009; Ladefoged & Broadbent, 1957; Purnell et al., 1999; Thomas, 2007). Acoustic 158 

information derived from sustained phonation of a vowel sound may reflect structural and 159 

functional properties of vocal folds vibrations (static and/or dynamic) and carries important 160 

information about identity and quality of talkers’ voice (Ladefoged & Broadbent, 1957; Morrison 161 

& Assmann, 2012; Winn, Chatterjee, & Idsardi, 2012). For example, fundamental frequency (F0) 162 

and low-frequency harmonic components (e.g., H1-H2, H1-A1) are acoustic cues that reflect 163 

changes in the quality of talkers’ voice (e.g., breathy, strained, rough, etc.), and thus contribute to 164 

recognition of talkers’ identity (Chatterjee & Peng, 2008; Deroche et al., 2016; Fu et al., 2004; 165 

Gaudrain & Baskent, 2018; Gelfer & Bennett, 2013; McDermott, 2004; Van Dommelen, 1987). A 166 

similar role in talker recognition was shown for pitch dynamics (i.e., intonational patterns; 167 

Abberton & Fourcin, 1978). Chang et al., (2006) showed that the voice pitch cue in the low-168 

frequency spectrum and the temporal envelop cues are important for segregation of the target voice 169 

from the competing voice and performing a robust recognition of speech. These acoustic cues, 170 

however, are poorly perceived by CI users due to the vocoding process in CI speech processing 171 

that involves a limited number of frequency channels (Carlyon et al., 2010; Laneau, Wouters, & 172 

Moonen, 2004). This was observed in prelingually deafened children with CIs who showed poorer 173 

performance compared to their NH peers in distinguishing between talkers with similar voices 174 

(Cleary & Pisoni, 2002). Low-numbered resolved harmonics are not faithfully transmitted via CI 175 

device, which negatively affects the performance of CI users in speaker identification and 176 

recognition (Gaudrain & Baskent, 2018), perception of prosodic information (Davidson, Geers, 177 

Uchanski, & Firszt, 2019; Deroche et al., 2016), and speech understanding in multi-talker 178 
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conditions (Rosen, Souza, Ekelund, & Majeed, 2013; Stickney, Zeng, Litovsky, & Assmann, 179 

2004). Taken together, these prior findings indicate that some aspects of voice quality cues may 180 

be degraded through CI processing. Such findings may represent a combination of altered input at 181 

peripheral and central auditory pathways for sound and language processing. We currently have 182 

limited evidence about how CI speech processing may be detrimental to acoustic information 183 

relevant to talkers’ voice quality variations. Degradation of this information potentially disrupts 184 

the bridge between recognizing talkers’ voice and effective processing of their speech. 185 

E. Present study 186 

The present study analyzed voices from two groups of talkers with normal and disordered voice 187 

qualities to investigate the effect of simulated cochlear-implant speech processing and the number 188 

of spectral channels on the acoustic information involved in distinguishing between these two 189 

classes of voice qualities. Noise-vocoder was used to simulate the limited resolution of CIs in 190 

representation of acoustic information relevant to voice quality distinction. Voices spoken by 191 

individuals with voice disorders (e.g., vocal fold polyps, nodules, etc.) represent an instance where 192 

voice quality is abnormally altered compared to the voice of individuals with healthy vocal folds 193 

function (Arjmandi & Pooyan, 2012; Arjmandi, Pooyan, Mikaili, Vali, & Moqarehzadeh, 2011; 194 

Ghasemzadeh & Arjmandi, 2019; Umapathy, Krishnan, Parsa, & Jamieson, 2005). Abnormal 195 

physiological, neurological, and/or functional changes in vocal folds affect talkers’ voice quality, 196 

which in turn would be reflected as certain variations in the properties of talkers’ voice spectrum 197 

(Arjmandi & Pooyan, 2012; Behroozmand & Almasganj, 2007; Eskenazi et al., 1990; Fukazawa, 198 

el-Assuooty, & Honjo, 1988; Hammarberg, Fritzell, Gaufin, Sundberg & Wedin, 1980; Hanson, 199 

1997; Klatt & Klatt, 1990; Kreiman, Gerratt, & Berke, 1994; Kreiman, Gerratt, & Precoda, 1990; 200 

Krom, 1995; O’Leidhin & Murphy, 2005; Sasaki & Okamura, 1984; Yumoto, Gould, & Baer, 201 
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1982). These abnormalities, that signal the distinction between disordered and normal voice 202 

qualities, generally appear as time-varying noise-like patterns in different ranges of low-, mid- and 203 

high-frequency bands of voiced signals (e.g., Arjmandi & Pooyan, 2012; Behroozmand & 204 

Almasganj, 2007; Fukazawa, el-Assuooty, & Honjo, 1988; Hammarberg, Fritzell, Gaufin, 205 

Sundberg, & Wedin, 1980; Hanson, 1997; Klatt & Klatt, 1990; O’Leidhin & Murphy, 2005; Sasaki 206 

& Okamura, 1984; Yumoto, Gould, & Baer, 1982). Spectral changes in the vowel spectrum have 207 

shown to be important in monitoring variations in talkers’ voice quality such as breathiness, 208 

laryngealization, harshness, and nasality (Gerratt, Kreiman, 2016; Coleman, 1971; Klatt & Klatt, 209 

1990; Park et al., 2016). In the present study, we investigated the variations in the magnitude 210 

spectrum of normal and disordered voices to understand how CI speech processing may impact 211 

the distinctive patterns of the voice quality. We further quantified the acoustic distance between 212 

normal and disordered voices as a function of the number of spectral channels to study the effect 213 

of the number of spectral channels on the degradation of voice quality information. 214 

II. MATERIALS 215 

A. Voice samples 216 

The voice samples in this study were sustained vowel sounds /a/ from the voice disorders database 217 

model 4337, version 1.03 (Kay Elemetrics Corporation, Lincoln Park, NJ), developed by 218 

Massachusetts Eye and Ear Infirmary (MEEI), Voice and Speech Lab. Two groups of participants 219 

who were diagnosed as having either normal or disordered voices, were asked to sustain the vowel 220 

/a/ while their voices were recorded at a sampling frequency of 44.1 kHz with 16-bit resolution. 221 

All the analyzed voice segments were 1-second long, extracted from the middle of each excerpt to 222 

deal with the length difference between normal and disordered voice samples, as well as the 223 

transient patterns during the onset and offset of phonations. The vowel sounds from 293 224 
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individuals were analyzed where 53 talkers had normal voice quality (21 Males) and the remaining 225 

240 talkers (96 Males) were diagnosed with one or multiple voice disorders. The voice disorders 226 

were the result of abnormal physiological, neurological, and/or functional changes that affected 227 

the regular function of talkers’ vocal folds. 228 

B. Creation of noise-vocoded voice samples 229 

The CI-simulated versions of the unprocessed voice stimuli were created using a noise-excited 230 

envelope vocoder in AngelSimTM Cochlear Implant and Hearing Loss Simulator (Fu, 2019; Emily 231 

Shannon Fu Foundation, www.tigerspeech.com), which follows the CI-simulated vocoding 232 

process in prior studies (Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995). The process 233 

involved dividing each voice spectrum into a variable number of logarithmically-spaced frequency 234 

bands between absolute lower and higher-frequency of 200 Hz and 7000 Hz (24 dB/Octave 235 

analysis filter slopes), corresponding to the frequency-place map simulated by Greenwood 236 

function (Greenwood, 1990). These frequency limits approximate the corner frequencies in the 237 

Cochlear Nucleus speech processors (Crew & Galvin, 2012; Winn & Litovsky, 2015). The 238 

amplitude envelope of each signal, obtained from filtering the voice spectrum under each sub-239 

band, was captured using half-wave rectification and a low-pass filter with a cut-off frequency of 240 

160 Hz and filter slope of 24 dB/oct to simulate the performance of the average CI listeners in 241 

envelope discrimination (Chatterjee & Oberzut, 2011; Chatterjee & Peng, 2008). The extracted 242 

amplitude envelopes were then used to modulate band-pass filtered white-noise carrier signals, 243 

which were filtered using a similar analysis filter. The final noise-vocoded version of each voice 244 

stimulus was created by summing amplitude-modulated signals. This process replaces fine 245 

spectro-temporal structures in voice signal with noise while preserving most of the course-grained 246 

temporal structures. The quality of CI-simulated voice is a function of the number of spectral 247 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.06.29.20142885doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.29.20142885


Running title: Talkers’ voice quality through cochlear implant 

channels in the vocoder (e.g., Friesen, Shannon, Baskent, & Wang, 2001; Xu, Thompson, & 248 

Pfingst, 2005). The noise-excited envelope vocoder was used in AngelSim software to process 249 

unprocessed/natural voices and create their noise-vocoded versions with 4-, 8-, 12-, 16-, 22-, and 250 

32-channel. Therefore, the simulated cochlear implant voices were created with seven levels of 251 

spectral degradation (unprocessed, 4-, 8-, 12-, 16-, 22-, and 32-channels). The choice of the 252 

number of spectral channels was made to simulate a wide range of spectral degradation and their 253 

corresponding perceived difficulty in speech processed through CIs (Shannon, Fu, & Galvin, 254 

2004), as well as to cover the current set-up of between 12-24 active channels in cochlear implant 255 

devices. Considering the assumption made about the relationship between electrical spread in the 256 

cochlea and acoustical filter slope (Bingabr, Espinoza-Varas, & Loizou, 2008; Oxenham & Kreft, 257 

2014), the selected filter slope of 24 dB/Oct is in the highest range of steepness provided by current 258 

CI technology (filter slope varies between 8 and 24 dB/oct), corresponding to the minimum 259 

channel interaction available in the current CI devices. 260 

III.  METHODS 261 

A. Analysis of voice spectra 262 

We first explored the average spectra of two groups of normal and disordered voice quality to 263 

understand how noise-vocoder and the number of spectral channels affect the distinctive features 264 

of two classes of voice qualities within different frequency regions. The average spectrum of voice 265 

signals derived over the spectrum of all voice samples from each class of voice quality (i.e., normal 266 

or disordered) were estimated using linear predictive coding (LPC) with 12th order (Rabiner & 267 

Schafer, 1978). These average spectra were comparatively used to investigate how the distribution 268 

of energy of the voice signal is changed over various frequency regions due to CI noise vocoding 269 

process. In fact, the variations in the characteristics of the average voice spectra were investigated 270 
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under seven levels of spectral degradations (unprocessed, 32, 22, 16, 12, 8, and 4-channels noise 271 

vocoder) to identify how CI filtering process affects the acoustic information signaling distinction 272 

between two classes of normal and disordered voice quality. 273 

B. Using MFCC features to characterize acoustic information relevant to voice quality 274 

variation 275 

We used mel-frequency cepstral coefficients (MFCCs) to characterize variations in voice quality 276 

for normal and disordered voices and their corresponding CI-simulated versions. The CI-simulated 277 

voices were created at 6 levels of spectral degradations (i.e., number of spectral channels). These 278 

features were inspired by human auditory processing and were originally developed to 279 

approximate the filtering structure and frequency resolution of the human auditory system (Fant, 280 

1973; Hunt, Lennig, & Mermeletein, 1980; Davis and Mermelstein, 1980; Shaneh & Taheri, 2009; 281 

Stevens, Volkmann, & Newman, 1937). These acoustic features have been effective in 282 

representation of the variations in voice quality, particularly in discrimination between normal and 283 

disordered voices (Ali, Alsulaiman, Muhammad, Elamvazuthi, & Mesallam, 2013; Dibazar, 284 

Narayanad, & Berger, 2002; Firdos & Umarani, 2016; Godino-Llorente, Gomez-Vilda, & Blanco-285 

Velasco, 2006; Panek, Skalski, Gajda, & Tadeusiewicz, 2015). Furthermore, features that are 286 

developed based on speech production behaviors such as F0 and the first and second harmonics 287 

(H1 and H2) are either heavily degraded or even absent in the CI-simulated voices. Using MFCC 288 

features, we were able to deal with such methodological challenges. 289 

Fig. 1A shows the schematic of the approach for calculating MFCCs for samples of normal 290 

and disordered voices. To calculate MFCCs, each vowel stimulus /a/ (i.e., Sn𝑖
 or Sdj

) was first 291 

segmented into frames of 30 ms with a frame shift of 15 ms. Here the i and j indicate the index of 292 

voice stimuli for normal and disordered voices, respectively (i = {1,2,3, …,53} and j = {1,2,3, 293 
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…,240}). A Hamming window was then applied to each frame to decrease the effect of sidelobes 294 

for better frequency-selective analysis (Rabiner & Schafer, 1978). The power spectrum of each 295 

frame was calculated based on Fast Fourier transform (FFT) analysis. Then, the mel-filterbank 296 

were generated and applied to the voice power spectrum. MFCCs were eventually derived by 297 

calculating the DCT of the logarithm of all filterbank energies (Rabiner & Schafer, 1978). 298 

Eventually, the first twelve components were preserved as MFCC features for each frame of a 299 

voice stimulus (i.e., MFCCsn𝑖
 or MFCCsdj

). Each voice stimulus was eventually represented by an 300 

MFCC matrix with the size of F×12, where F indicates the number of frames in each voice 301 

stimulus. The same procedure was performed to calculate MFCC matrices for CI-simulated 302 

versions of natural/unprocessed normal and disordered voices, as shown by dashed lines in Fig. 303 

1A. 304 

>>>>>>>>Fig. 1 about here <<<<<<<< 305 

C. Acoustic distance quantification using Mahalanobis distance measure 306 

To examine the acoustic distance between two classes of normal and disordered voices as a 307 

function of the level of spectral degradation (imposed by the variable number of spectral channels 308 

in the CI-simulated voices), we calculated Mahalanobis distance (MD) on MFCC features. MD is 309 

a distance measure, which calculates the distance between two or more classes at a 310 

multidimensional feature space (Arjmandi et al., 2018; Maesschalck & Massart, 2000; Masnan et 311 

al., 2015; Xiang, Nie, & Zhang, 2008). This multivariate statistical approach uses two feature 312 

matrices (or vectors) from two separate classes to evaluate the extent that the two classes are 313 

distinguished, after sphering the distance matrix between two classes using the average covariance 314 

matrix of the per-class centered data (Maesschalck & Massart, 2000; Masnan et al., 2015). Hence, 315 

a relatively greater MD value for a condition (e.g., unprocessed) means a relatively larger distance 316 
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between two classes of normal and disordered voice qualities with a relatively lower between-class 317 

overlap for that condition compared to other conditions (e.g., 32-channel noise-vocoded voice). A 318 

relatively larger distance indicates the presence of more discriminative acoustic information 319 

relevant to the distinction between two classes of voice qualities for a condition compared to other 320 

conditions.        321 

As shown in Fig. 1B, the acoustic properties of each voice stimulus (i.e., Sn𝑖
 or Sdj

) were 322 

characterized by a single, time-averaged MFCC vector (i.e., μ
MFCCsni

or μ
MFCCsdj

), derived by 323 

averaging MFCCs across frames of each voice stimulus. These time-averaged MFCC features have 324 

been shown to successfully represent the unique spectral characteristics of a sound (Mckinney & 325 

Breebaart, 2003; Davis and Mermelstein, 1980; Terasawa, Slaney, & Berger, 2005). Therefore, 53 326 

normal voices were presented by 53 12-dimensional average MFCC vectors, constructing a 53×12 327 

feature matrix. Likewise, 240 disordered voices were characterized by 240 12-dimensional average 328 

MFCC vectors, leading to a 240×12 feature matrix. The acoustic distance between normal and 329 

disordered voices was eventually measured by calculating MD between these two matrices of 330 

MFCCs (Fig. 1B). The same procedure was followed for simulated versions of the unprocessed 331 

normal and the unprocessed disordered voice stimuli (dashed lines in Fig. 1B), leading to seven 332 

values of MD corresponding to seven levels of spectral degradation from the unprocessed to 4-333 

channel noise-vocoded voices. The calculated MDs of seven levels of spectral degradation were 334 

comparatively examined to identify the extent to which the spectral information involved in 335 

distinguishing voices with normal and disordered qualities were affected by CI noise vocoding, as 336 

well as the number of channels in the CI noise-vocoding process. 337 
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D. Acoustic distance quantification based on the classification accuracy of support vector 338 

machines (SVMs) 339 

SVMs have been frequently used as a successful classification method for various classification 340 

purposes, including classification of normal and disordered voice qualities (Akbari & Arjmandi, 341 

2015; Arjmandi et al., 2011; Ghasemzadeh, Khass, Arjmandi, & Pooyan, 2015; Ghasemzadeh & 342 

Arjmandi, 2019; Arjmandi, Pooyan, Mohammadnejad, & Vali, 2010; Umapathy, Rachel, & 343 

Thulasi, 2018). An application of SVM classifier is the evaluation of features in distinguishing 344 

between two classes, where the classification accuracy of SVMs classifier is used as a criterion for 345 

feature evaluation (Heijden, Ferdinand, Ridder, & Tax, 2005). We took advantage of this property 346 

of SVM to examine the effect of CI speech processing and the number of channels on the acoustic 347 

distinctiveness between two classes of normal and disordered voices as a complementary analysis 348 

to MD. Higher classification accuracy between two classes indicates that there was more 349 

distinctive acoustic information with respect to class separation. 350 

As illustrated in Figure 1C, a 5-fold cross-validation analysis was performed to train and 351 

then test an SVM classifier on its classification accuracy in distinguishing between normal and 352 

disordered voice qualities at seven levels of spectral degradation (unprocessed, 32-, 22-, 16-, 12-, 353 

8-, and 4-channel). Two feature matrices of 53x12 and 240x12 MFCC features from normal and 354 

disordered classes were entered into the SVM classifier to be used in training and testing phases 355 

as executed through the 5-fold cross-validation procedure (Kohavi, 1995; Reilly, Moran, & Lacy, 356 

2004). The output of the SVM classifier was the mean SVM classification accuracy over 357 

classification accuracies, obtained from five repetitions of cross-validation. The average 358 

classification accuracies at six levels of spectral degradation were examined with reference to that 359 

of the unprocessed condition (as baseline performance) to understand the extent of degradation 360 
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imposed by CI noise vocoding on acoustic information involved in voice quality distinction. The 361 

radial basis function (RBF) kernel was used in SVM classifier. The parameters of RBF kernel and 362 

the regularization parameter (ξ) of SVM were set to their default values in Matlab. Compared to 363 

MD, the training phase in SVM allowed us to simulate the effect of exposure to voice samples 364 

from two classes of voice qualities in their acoustic distinction in a computational fashion. The 365 

training phase in SVM is expected to benefit from seen data in a supervised fashion to associate 366 

degraded patterns in CI-simulated voices to their corresponding class of voice quality (i.e., normal 367 

or disordered). This effect is basically very important in listeners with CIs as studies have shown 368 

that the central auditory system plays a significant role in decoding the degraded acoustic patterns 369 

at the outputs of CI electrodes in CI users (Basura, Hu, Juan, Tessier, & Kovelman, 2018; Fallon, 370 

Irvine, & Shepherd, 2008; Houston et al., 2012).     371 

IV. RESULTS 372 

A. Effects of CI noise vocoding on spectral information relevant to voice quality distinction 373 

We first examined the vowel /a/ spectra from normal and disordered voices under seven spectral 374 

degradation conditions. Fig. 2 shows the average magnitude spectra of the two groups of voices 375 

with normal (blue or dark gray) and disordered (orange or light gray) qualities across all voice 376 

samples. The standard deviations of magnitude spectra are also shown as a shaded area across the 377 

average lines. The average voice spectra are selectively shown for unprocessed/natural (panel A) 378 

and simulated cochlear implant voices with 16- (panel B) and 4-channel (panel C) spectral 379 

resolution. These spectra are computed by averaging individual frequency spectrum over all voice 380 

samples from a class of voice quality. Overall, these plots demonstrate the detrimental effect of CI 381 

noise vocoding process on spectral information that could signal differences in talkers’ voice 382 

quality. The patterns of variation in average spectral energy of disordered voices compared to 383 
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normal voices at different frequency sub-bands reflect voice quality variations, caused by a wide 384 

range of physiological, neurological, and/or functional voice disorders. 385 

 The difference between the average magnitude spectrum for normal voices (the blue or 386 

dark gray line) and that of disordered voices (the orange or light gray line) in Fig. 1A reveals 387 

distinctive patterns of spectral energy within low-, mid-, and high-frequency regions. For 388 

unprocessed/natural condition, a peak in the frequency regions between 1 and 2 kHz distinguishes 389 

average spectrum of voices with normal quality from the average spectrum of disordered voices. 390 

These degraded low-frequency patterns in the disordered voice spectrum may be signs of partial 391 

closure of vocal folds. These differences in the spectral level in frequency bands covering the first 392 

formant (e.g., breakdown in formant structure) can be associated with breathy voice quality 393 

reported in some voice disorders (Kitzing & Åkerlund, 1993; Krom, 1995; Rontal, Rontal, & 394 

Rolnick, 1975; Thomas, 2008; Wolfe & Bacon, 1971). The relative reduction in low-numbered 395 

harmonic components is also visible in low-frequency regions which is due probably to irregular 396 

vibratory patterns of vocal folds and hoarse voices in disordered voice quality (Fex, Fex, 397 

Shiromoto, & Hirano, 1994; Roy & Leeper, 1993; Thomas, 2008; Yanagihara, 1967). A relatively 398 

higher level of energy in mid-frequency bands (~4.7 KHz-12.4 kHz) is evident in the average 399 

spectrum of disordered voice qualities compared to that of the normal group, which potentially 400 

signals the presence of high degree of breathiness in disordered voice samples and an increase in 401 

the level of the turbulence noise components in the vocal excitation signal (Askenfelt & 402 

Hammarberg, 1986; Fukazawa et al., 1988; Hanson, 1997; O’Leidhin & Murphy, 2005). The 403 

presence of a wide-band noise in this frequency region (i.e., between ~ 5 kHz and ~12 kHz) in the 404 

average spectrum of disordered voices may be attributed to a rough voice quality in disordered 405 

voices (Krom, 1995). Finally, the higher degree of variability in voice spectrum across the average 406 
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spectrum in disordered class (the wider orange (light gray) shaded area) compared to the one for 407 

normal voice quality (blue (dark gray) shaded area) can be attributed to variable levels of 408 

abnormality in vocal folds vibrations in disordered voices, as well as the variety of the analyzed 409 

voice disorders. 410 

More importantly, comparing the average spectrum of two groups of voices with normal 411 

and disordered qualities among three levels of spectral degradation in Fig. 2 (unprocessed in panel 412 

(A), 16-channel in panel (B), and 22-channel in panel (C)) demonstrates that CI noise vocoding 413 

substantially degrades acoustic information involved in voice quality distinction. In general, the 414 

noise vocoding process in CI speech processing caused major loss of acoustic information 415 

distinctive of talkers’ voice quality at low-, mid-, and high-frequency ranges of their voice spectra. 416 

The detrimental effect of CI noise-vocoder increases as the number of channels decreases to the 417 

extent that spectra of two classes of voice qualities become almost visually indistinguishable at 4-418 

channel CI-simulated voices, highlighting the substantially detrimental effect of low spectral 419 

resolution in CI speech processing on discarding voice quality-related acoustic information. As the 420 

spectra of normal and disordered voices for 16- and 4-channel noise-vocoded voices suggest, a 421 

large portion of spectral information at low frequency regions is discarded due to the filtering 422 

process in CI. This spectral region is particularly important for the perception of voice quality 423 

variations as it is where the low-numbered harmonics are located. CI listeners do not have access 424 

to low-numbered resolved harmonics, which are important for robust pitch perception (Bernstein 425 

& Oxenham, 2003; Smurzynski, 1990). The noise level elevated in the mid-frequency band as the 426 

number of spectral channels decreases in the CI-simulated voices, likely leading to lack of access 427 

to acoustic cues relevant to variations in talkers’ voice quality in listeners with CIs. 428 

>>>>>>>>Fig. 2 about here <<<<<<<< 429 
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B. Effects of CI noise vocoding on acoustic information distinctive of talkers’ voice quality 430 

As discussed in the Method section, MFCCs for each voice stimulus were calculated to 431 

characterize talkers’ voice quality and measure the effect of CI noise-vocoding on acoustic 432 

information relevant to voice quality distinction. Fig. 3 illustrates an example of the filterbank of 433 

mel-spaced triangular filters through which voice spectrum of each normal or disordered voice 434 

was passed to characterize the energy variations at different frequency sub-bands.  435 

>>>>>>>>Fig. 3 about here <<<<<<<< 436 

Fig. 4 shows the calculated Mahalanobis distance between MFCCs of normal and 437 

disordered voices as a function of different levels of spectral degradation, corresponding to change 438 

in the number of spectral channels in CI-simulated voices. This figure illustrates that the acoustic 439 

distance between voices with normal and disordered qualities decreased due to the CI noise 440 

vocoding process, suggesting that CI speech processing is detrimental to voice quality-related 441 

acoustic information. On average, there was an approximately 33% decline in MD due to CI noise-442 

vocoding process when comparing the MD at unprocessed condition (the top dashed line in Fig. 443 

4) with the average MD derived across six levels of spectral degradation (the middle dotted line in 444 

Fig. 4). This large decline in acoustic distance between normal and disordered voice qualities 445 

suggests that the CI noise-vocoder potentially discards an important portion of acoustic 446 

information responsible for signaling variation in talkers’ voice qualities. An unexpected pattern 447 

was the increase in MD as the number of spectral channels decreased from 32 channels to 22, 16, 448 

and 12 channels. Our visual investigation of normal and disordered voice spectra showed that noise 449 

vocoding interestingly resulted in more distinctive patterns of spectral energy between normal and 450 

disordered voice qualities as the number of spectral channels changed from 32 to 12 channels. This 451 

pattern was particularly noticeable in low frequency regions where mel-filterbank is more sensitive 452 
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to variations in voice spectrum because of its narrower filters, as compared with high-frequency 453 

regions with wider filters (see Fig. 3). This unexpected pattern suggests that increasing spectral 454 

channels in CI noise-vocoder does not necessarily mitigate the information loss relevant to voice 455 

quality distinction. The range of decrease in acoustic distance (i.e., MD) due to noise vocoding 456 

relative to acoustic distance in the unprocessed condition was between ~64% for 4-channel CI-457 

simulated voices and ~19% for 12-channel CI-simulated voice, which was still relatively high.    458 

>>>>>>>>Fig. 4 about here <<<<<<<< 459 

Fig. 5 shows the results of normal-vs-disordered SVM classification accuracy for seven 460 

levels of spectral resolution from the unprocessed condition to the highly spectrally-degraded CI-461 

simulated voices created by 4-channel noise-vocoder. Results from SVM classification supports 462 

the general trend displayed by MD on the effect of cochlear implant speech processing on acoustic 463 

information involved in normal-vs-disordered voice distinction. However, there was an 464 

approximately 8% decline in the accuracy of SVM in classification of normal and disordered voice 465 

qualities between the unprocessed condition and the average accuracy obtained across six levels 466 

of spectral degradation. This decline is much smaller than the ~33% decline measured by MD, 467 

which potentially highlights the key role of classifier exposure to seen data during training phase. 468 

Classification accuracy in Fig. 5 shows three categories of performance between 80-85%, 85-90%, 469 

and 90-95%. These simulated results suggest that the current CI technology falls within the second 470 

category in terms of the number of spectral channels (12 channels in MED-EL devices, 16 channels 471 

in Advanced Bionics devices, and 22 channels in Cochlear), where the classification accuracy is 472 

still at least 5% below the one for the unprocessed condition. It is notable that classification 473 

accuracies for CI-simulated conditions fall within a good performance range (80% to 90%), even 474 

for a highly degraded CI-simulated voice with 4 spectral channels. We speculate that this 475 
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difference between SVM and Mahalanobis distance in measuring voice quality-related acoustic 476 

distinction is because of the exposure phenomenon simulated by SVM as being trained on a subset 477 

of data in a supervised fashion. Another explanation could be related to the calculation of MD, 478 

which assumes that features have multivariate normal distribution, which might not be necessarily 479 

valid for the MFCC features in this study.  480 

>>>>>>>>Fig. 5 about here <<<<<<<< 481 

V. DISCUSSION 482 

This study investigated how CI speech processing affects acoustic information involved in 483 

signaling variations in talkers’ voice quality. We analyzed vowel sounds /a/ spoken by 53 talkers 484 

with normal voice and 240 talkers with disordered voice qualities at seven levels of spectral 485 

degradation, simulated by CI noise-excited envelope vocoder, to examine the effect of CI speech 486 

processing on acoustic information that distinguishes talkers’ voice quality. To our knowledge, 487 

this is the first study that examines the effect of CI speech processing on acoustic information 488 

involved in conveying variations in talkers’ voice qualities. Overall, the results of the current study 489 

highlighted the detrimental effect of CI noise vocoding process on acoustic information that signals 490 

voice quality contrast. This unfaithful transmission of acoustic information relevant to voice 491 

quality distinction through CIs may negatively impact the performance of CI listeners in 492 

identification and recognition of talkers’ voice and, thus comprehension of their speech. 493 

 Our investigation of vowel /a/ spectra within different frequency sub-bands across two 494 

groups of normal and disordered voice qualities showed that simulated CI processing, based on a 495 

noise-vocoder, has a detrimental impact on acoustic information signaling changes in talkers’ 496 

voice quality. The CI noise-vocoder processing substantially degraded spectral information in low- 497 

(<2 kHz), mid- (~4-12 kHz), and high-frequency ranges (>12 kHz) that could contribute to voice 498 
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quality distinction. The discriminative spectral information under these frequency regions signals 499 

various degrees of distinctive acoustic information that listeners may utilize to perceive fine 500 

variations in talkers’ voice quality (Eskenazi et al., 1990; Hillenbrand, Cleveland, & Erickson, 501 

1994; Moisik, 2013; Park et al., 2016; Podesva, 2007; Sicoli, 2010). Our results suggest that CI 502 

speech processing substantially degrades this distinctive spectral information, likely leading to a 503 

degraded perception of talkers’ voice quality variations. These patterns of loss in voice quality-504 

related information due to CI voice processing suggest that listeners with CIs potentially do not 505 

receive a large portion of acoustic information signaling changes in talkers’ voice quality due to 506 

the partial transformation of fine-grained spectral structures. 507 

 We further measured the spectral distance between voices with normal and disordered 508 

qualities by first characterizing their vowels’ spectral variations using MFCC features and then 509 

calculating the distance between MFCC features using MD. The MDs between normal and 510 

disordered vowel sounds were examined at different levels of spectral degradation (i.e., 511 

unprocessed, 32, 22, 16, 12, 8, and 4-channel CI noise-vocoder processing) to identify how 512 

simulated CI speech processing affects the acoustic distance between voices with normal and 513 

disordered qualities. We further examined this effect as a function of the number of spectral 514 

channels in the noise-vocoder. The results showed a large decrease in acoustic distance between 515 

normal and disordered voice qualities because of CI speech processing, highlighting the loss of 516 

acoustic information related to talkers’ voice quality through CI. Therefore, listeners with CIs 517 

potentially face difficulties compared to listeners with NH in incorporating talkers’ voice quality 518 

information to construct the corresponding mental representation for identification and recognition 519 

of talkers’ voice and processing their speech. 520 
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 The results of SVM accuracy in classification between normal and disordered voice 521 

qualities corroborated the detrimental effect of CI noise vocoding on acoustic information involved 522 

in voice quality distinction. However, the CI noise-vocoder processing and the number of channels 523 

in the CI noise-vocoder resulted in lower degrees of drop based on SVM classification compared 524 

to the amount of decline quantified by MD. These results also simulated the effect of 525 

exposure/learning in making sense of the degraded voice signals for voice quality distinction. The 526 

results of SVM classification, as executed through 5-fold cross-validation procedure, suggested a 527 

good performance of higher than 80%, even in the highly degraded condition of 4 spectral 528 

channels. The average drop of ~ 7% in normal-vs-disordered voice classification between 529 

unprocessed and CI-simulated conditions highlights the detrimental effect of CI speech processing 530 

to acoustic information relevant to recognition of talkers’ voice. 531 

These results can be interpreted in the context of perception of voice cues involved in talker 532 

recognition, as well as speech processing. The observed lack of faithful transmission of acoustic 533 

information, that is more or less related to various perceptual attributes of voice quality (e.g., 534 

breathiness, harshness, creakiness, and nasality), suggests that CI listeners may perform poorer 535 

than their peers with NH in processing segmental and suprasegmental information for speech 536 

comprehension (Dicanio, 2009; Dilley et al., 1996; Dilley et al., 2016; Garellek & Keating, 2011; 537 

Gordon, 2001; Gordon & Ladefoged, 2001; Henton, 1986; Ogden, 2001; Redi & Shattuck-538 

Hufnagel, 2001), as well as in recognition of talkers’ gender (Gussenhoven, 2004; Ohala, 1983; 539 

Puts, Hodges, Cárdenas, & Gaulin, 2007), race (Alim, 2004; Irwin, 1977; Moisik, 2013; Thomas 540 

& Reaser, 2004) and social and cultural class (Esling, 1978; Rilliard et al., 2009; Sicoli, 2007; 541 

Stross, 2013; Stuart-Smith, 1999). Our investigation of normal and disordered voice qualities 542 

suggests that CI noise vocoding substantially degrades spectral properties signaling voice quality 543 
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variations (Dicanio, 2009; Garellek & Keating, 2011), which probably negatively impact CI 544 

listeners’ access and learning talker-specific information as an important skill for robust speech 545 

recognition (Johnson, 2005; Kleinschmidt & Jaeger, 2015; Pisoni, 1992).  Results from prior 546 

studies demonstrated that listeners with CIs do not have access to low-numbered harmonics for 547 

robust perception of F0, leading to poor performance in talker identification and discrimination 548 

(Gaudrain & Baskent, 2018), prosody perception elicited by dynamic pitch (Deroche et al., 2016), 549 

and speech recognition in complex listening conditions such as multi-talker situations (Rosen et 550 

al., 2013; Stickney, Assmann, Chang, & Zeng, 2007; Stickney et al., 2004). In addition, listeners 551 

with NH may incorporate other cues such as vocal-tract length (VTL) and formant frequencies in 552 

constructing talkers’ voice quality to distinguish between talkers, cues that are poorly perceived 553 

by listeners with CIs (Gaudrain & Baskent, 2018). Our results provide further evidence in 554 

explaining the poor performance of listeners with CIs in perception and effective use of talkers’ 555 

voice cues (Başkent, Luckmann, Ceha, Gaudrain, & Tamati, 2018; Gaudrain & Baskent, 2018; 556 

Mehta, Lu, & Oxenham, 2020; Mehta & Oxenham, 2017; Moore & Carlyon, 2005; Stickney et al., 557 

2007) by showing that an important portion of this acoustic information is discarded by cochlear 558 

implant speech processing.          559 

There are multiple limitations in the current CI devices including the number of channels 560 

in the vocoder, which restricts spectral and temporal resolution of CI devices in representation of 561 

speech. Our results highlight the need for improving CI speech processing strategies to assure that 562 

acoustic cues related to voice quality are faithfully transferred through CIs. Developing more 563 

effective strategies requires researchers to evaluate the mechanisms underlying encoding spectral 564 

and temporal cues responsible for representing voice quality measures. Therefore, further studies 565 

are required to understand how listeners with CIs perceive acoustic cues related to voice quality 566 
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variations and how possible loss of information at this level may impact their ability to identify 567 

talkers and process their speech. Tamati et al., (2017) found that listeners with CIs perform poorer 568 

than their NH peers in speech recognition when there is large talker variability. They also showed 569 

that CI users experience difficulties in the recognition of talkers’ voices and accents while their 570 

performance were also largely variable compared to listeners with NH. Results from the present 571 

study provide further evidence that listeners with CIs may not have access to voice quality cues 572 

for robust identification of talkers. This lack of access to the voice quality cues may negatively 573 

impact CI listeners’ ability to overcome talker variability for successful speech perception.   574 

Despite the limitations of CI in robust and reliable transformation of speech, Vongpaisal et 575 

al. (2010)  showed that children with CIs are able to develop models of talker identity, which may 576 

reflect the important role of neural plasticity and more powerful speech processing at higher 577 

cortical levels for auditory processing and language development. As simulated by SVM, there 578 

might be a large effect of exposure or training that can improve the performance of CI listeners in 579 

distinction between various voice qualities. In fact, this phenomenon can be logically expanded to 580 

how CI listeners may use the information in the voice delivered through CI at higher levels of 581 

speech processing and language learning to compensate for the lack of various acoustic cues such 582 

as those related to the perception of talkers’ voice quality (Moore & Shannon, 2009). Speech 583 

recognition of children with CIs significantly improved as they had more experience in listening 584 

to speech through a CI device (Brown et al., 2004; Fryauf-Bertschy, Tyler, Kelsay, Gantz, & 585 

Woodworth, 1997; Miyamoto, Osberger, & Kessler, 1996; Tyler et al., 2000). Another factor that 586 

is not modeled in our study is the effect of linguistic and contextual cues in continuous speech that 587 

listeners with CIs can incorporate to infer talkers’ voice quality for talker recognition and language 588 

processing. The significant effect of these cues on sentence recognition was shown in listeners 589 
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with CIs (Geers, 2002; Meyer & Svirsky, 2000). Despite these contextual effects, having access 590 

to acoustic information relevant to talkers’ voice quality is still critical for speech processing and 591 

language development (Başkent et al., 2018; Gaudrain & Baskent, 2018), particularly in complex 592 

listening conditions such as speech recognition in multi-talker scenarios  (Rosen et al., 2013; 593 

Stickney et al., 2007, 2004). 594 

 The present study had some limitations that should be considered while interpreting the 595 

findings. Although studies based on CI-simulated speech are advantageous in general, these 596 

findings should be viewed as the general trend rather than the actual performance of CI listeners 597 

in perception of talkers’ voice quality. Furthermore, characterization of voice quality based on 598 

MFCCs features might not completely reflect the normal hearing system in perception of voice 599 

quality variations as shown by recent studies (Anand, Kopf, Shrivastav, & Eddins, 2019; Eddins, 600 

Anand, Lang, & Shrivastav, 2020). It is also worth mentioning that listeners may incorporate 601 

segmental and suprasegmental cues at word and/or sentence levels for recognition of talkers’ voice 602 

quality rather than merely relying on spectral variations of vowel sounds. Regardless of these 603 

limitations, the present study provided new evidence showing that acoustic information involved 604 

in distinguishing talkers’ voice quality is substantially degraded in CI-simulated voices. Our results 605 

suggest that listeners who use CIs may have great difficulties incorporating voice quality cues for 606 

talkers’ voice recognition. The poor spectral resolution provided by cochlear implant device to CI 607 

listeners negatively impacts acoustic cues involved in voice quality transmission, leading to 608 

subsequent poor perception of talkers’ voice quality in listeners with CIs. This degraded 609 

transmission of acoustic cues relevant to talkers’ voice quality is particularly detrimental for 610 

speech processing and auditory scene analysis in prelingually deaf children who heavily rely on 611 

the bottom-up sensory information in speech to develop mental representations specific to talkers’ 612 
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voice. Future perceptual studies will determine which specific acoustic cues relevant to talkers’ 613 

voice quality are not faithfully transmitted through cochlear implants. The findings from the 614 

current study underscore the need in two directions: (a) the need for examining the current signal 615 

processing strategies in CIs for their fidelity in passing voice quality cues and developing more 616 

advanced speech processing strategies in CI device to assure faithful transmission of these cues, 617 

and (b) the need for active use of multimodal (i.e., gesture, tactile, and visual) communicative 618 

behaviors to provide supportive cues for listeners with CIs in recognition of talkers’ voice, 619 

especially in pediatric CI users. 620 
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Fig. 1. (Color online) Schematic diagram of the approach used in the current study to (A) 1077 

characterize acoustic properties of normal and disordered voice stimuli based on MFCCs features, 1078 

(B) evaluate the acoustic distance between voices with normal and disordered qualities at seven 1079 

levels of spectral degradation from no degradation (unprocessed vowel sound) to CI-simulated 1080 

voices with 4 channels based on calculating Mahalanobis distance between MFCCs matrices of 1081 

the two classes, (C) evaluate the acoustic distance between two classes of normal and disordered 1082 

voice qualities as a function of levels of spectral degradation based on the classification accuracy 1083 

derived from applying 5-fold validation to SVM classifier. The SVM classifiers were trained and 1084 

tested on MFCCs features obtained from voice stimuli from two classes of normal and disordered 1085 

voice qualities. The dashed lines refer to the process for creating and analyzing the CI-simulated 1086 

versions of the unprocessed voice stimuli. N in the “N-channel Simulator” block stands for the 1087 

number of spectral channels in the CI-simulated noise vocoder. Components, blocks, and lines 1088 

with blue (dark gray) color show the paths for processing voices with normal quality, whereas the 1089 

components with orange (light gray) color show the paths for processing voices with disordered 1090 

quality. Sn𝑖
 or Sdj

 in panel (A) represent normal and disordered voice stimuli for subject number i 1091 

(i={1,2,…, 53}) and subject number j (j={1,2,…, 240}), respectively. MFCCs𝑛𝑖 and MFCCs𝑑𝑗  1092 

are MFCC matrices extracted from frames of 𝑆𝑛𝑖
 and  𝑆𝑑𝑗 signals. μ

MFCCsni

and μ
MFCCsdj

in panel 1093 

(B) and (C) are average 12-dimensional MFCCs obtained over frames of MFCCsn𝑖
 and MFCCsdj

 1094 

matrices. MD in panel (B) is the Mahalanobis distance calculated on average MFCCs matrices 1095 

derived from voice stimuli, belonging to two classes of normal and disordered voice qualities. 1096 

Panel (C) shows the procedure of 5-fold cross-validation in 5 iterations applied to SVM to evaluate 1097 

the effect of spectral degradation in CI-simulated voices on the acoustic separation between two 1098 

classes of normal and disordered voices. F1 to F5 stand for Fold 1 to Fold 5 where the entire feature 1099 
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data (i.e., MFCCs features) was split into 5 folds; 4 folds for training the SVM classifier and the 1100 

remaining fold for testing the SVM. Dashed rectangles indicate the folds for testing the classifier 1101 

and solid rectangles refer to those for training.                               1102 

Fig. 2. (Color online) Average magnitude spectra of voice stimuli with normal (blue or dark gray 1103 

lines) and disordered (orange or light gray lines) qualities for (A) unprocessed voices, (B) 1104 

simulated cochlear implant voices with 16-channel, and (C) 4-channel in the CI noise-vocoder. 1105 

The standard deviations of the magnitude spectra are also shown as the blue (dark gray) shaded 1106 

area across the average blue line (dark gray) for the group of normal voices and as the orange (light 1107 

gray) shaded area across the average orange line (light gray) for the group of disordered voices. 1108 

Fig. 3. (Color online) The filterbank of mel-spaced triangular filters (green or dark gray dotted 1109 

lines) superimposed on average magnitude spectra of voices with normal (blue or dark gray line) 1110 

and disordered (orange or light gray line) qualities. In this example, mel-filterbak contains 12 1111 

filters, which starts at 0 Hz and expands to 22.05 kHz, corresponding to half of the sampling 1112 

frequency (44.1 kHz). The actual filterbank in the calculation of MFCC features was comprised of 1113 

32 mel filters. 1114 

Fig. 4. (Color online) Mahalanobis distance between two groups of voices with normal and 1115 

disordered qualities as a function of spectral degradation in CI-simulated voices (i.e., number of 1116 

spectral channels). The top, horizontal dashed line shows the MD derived from unprocessed voices 1117 

and the dotted line in the middle shows the average of MDs across six levels of spectral 1118 

degradation. The unprocessed condition is labeled as “NT”, which stands for natural/unprocessed 1119 

stimuli. 1120 
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Fig. 5. (Color online) The accuracy of SVM in classification between two groups of normal and 1121 

disordered voices at seven levels of spectral degradation, corresponding to change in the number 1122 

of noise-vocoder frequency channels (i.e., unprocessed, 32-, 22-, 16-, 12-, 8-, and 4-channels 1123 

noise-vocoder). The unprocessed condition is labeled as “NT”, which stands for 1124 

natural/unprocessed stimuli. 1125 
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