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Abstract

Ascertaining the state of coronavirus outbreaks is crucial for pub-

lic health decision-making. Absent repeated representative viral test

samples in the population, public health officials and researchers alike

have relied on lagging indicators of infection to make inferences about

the direction of the outbreak and attendant policy decisions. Recently

researchers have shown that SARS-CoV-2 RNA can be detected in mu-

nicipal sewage sludge with measured RNA concentrations rising and

falling suggestively in the shape of an epidemic curve while provid-

ing an earlier signal of infection than hospital admissions data. The
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present paper presents a SARS-CoV-2 epidemic model to serve as a

basis for estimating the incidence of infection, and shows mathemati-

cally how modeled transmission dynamics translate into infection indi-

cators by incorporating probability distributions for indicator-specific

time lags from infection. Hospital admissions and SARS-CoV-2 RNA

in municipal sewage sludge are simultaneously modeled via maximum

likelihood scaling to the underlying transmission model. The results

demonstrate that both data series plausibly follow from the transmis-

sion model specified and provide a 95% confidence interval estimate of

the reproductive number 0 ≈ 24 ±02. Sensitivity analysis account-
ing for alternative lag distributions from infection until hospitalization

and sludge RNA concentration respectively suggests that the detection

of viral RNA in sewage sludge leads hospital admissions by 3 to 5 days

on average. The analysis suggests that stay-at-home restrictions plau-

sibly removed 89% of the population from the risk of infection with

the remaining 11% exposed to an unmitigated outbreak that infected

9.3% of the total population.

Keywords: SARS-CoV-2, COVID-19, epidemic indicators, waste-

water epidemiology, sewage sludge viral RNA concentration, COVID-

19 hospital admissions, probability model

Highlights

•A maximum likelihood method for aligning observed lagged

epidemic indicators via an underlying transmission model is de-

rived and illustrated using observed COVID-19 hospital admissions

and SARS-CoV-2 RNA concentrations measured in sewage sludge

to model a local SARS-CoV-2 outbreak

•The method enables direct estimation of the reproductive num-
ber 0 from the observed indicators along with the initial preva-

lence of SARS-CoV-2 infection in the population at risk

•The analysis suggests tracking SARS-CoV-2 RNA concentra-

tion in sewage sludge provides a 3 to 5 day lead time over tracking

hospital admissions, consistent with purely statistical time series

analysis previously reported

•The model enables estimation of the fraction of the popula-
tion compliant with government-mandated stay-at-home restric-

tions, the size of the exposed population, and the fraction of the

population infected with SARS-CoV-2 over the outbreak

2

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.06.27.20141739doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141739


1 Introduction

Ascertaining the state of coronavirus outbreaks is crucial for public health

decision-making. Absent repeated representative viral test samples in the

population (Kaplan and Forman 2020), public health officials and researchers

alike have relied on lagging indicators of infection to make inferences about

the direction of the outbreak and attendant policy decisions. How useful

these indicators are depends upon their typical lags behind the incidence of

infection. Some indicator lags, such as time from infection to hospitalization,

have been studied empirically (Lewnard et al 2020, CDC 2020, MIDAS 2020).

Other indicators have been proposed with the hope that they would greatly

reduce the lag time from infection. One such promising indicator is measured

SARS-CoV-2 RNA concentration in municipal wastewater (Foladori et al

2020, Hart and Halden 2020, Peccia et al 2020). How much earlier might

such a signal inform officials of changes in the state of the outbreak?

This paper tackles this question by using an epidemic transmission model

to create model-scale versions of whatever indicator is of interest, and then

scales these model quantities to match observed indicator values in the real

world. This approach clarifies the time lags that should be expected from

SARS-CoV-2 incidence to whichever indicator is of interest, and by doing so

makes it possible to compare the relative timing of one indicator to another,

providing the model fit to the data is sufficiently close.

Our study takes advantage of recently conducted research tracking the

3

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.06.27.20141739doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141739


local SARS-CoV-2 outbreak in the New Haven, Connecticut, USA metropol-

itan area. As reported by Peccia et al (2020), daily SARS-CoV-2 RNA

concentrations were obtained by sampling sewage sludge from the local waste-

water treatment plant and conducting PCR tests to determine virus RNA

concentration. Daily COVID-19 admissions to the Yale New Haven Hospi-

tal restricted to residents of the same four towns served by this wastewater

treatment plant were also recorded over the same time period. An epidemic

model developed by Kaplan (2020b) was taken as the basis for calibrating

these two lagging indicators while simultaneously estimating the initial con-

dition and reproductive number 0 of this outbreak. This paper details the

methodology employed and results obtained from doing so.

The next section presents a quick description of the transmission model

reported in Kaplan (2020b). In Section 3, a simple method is described for

linking model-scale lagging epidemic indicators to SARS-CoV-2 incidence

based on the model and appropriately defined lag probability density func-

tions, which enables a model-scale comparison of different indicators to see

how they should appear over the course of an outbreak (Figure 1). Section 4

presents a simple statistical approach to analyzing real-world indicator data

by scaling modeled indicators up to observed values based on maximum like-

lihood estimation while also estimating the initial condition and reproductive

number of the epidemic wave from the underlying transmission model. We

simultaneously scale hospital admissions and the RNA virus concentration

observed in the sewage sludge to the epidemic model (Table 1, Figure 2 and
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3). The results show that accounting for the inherent noise in the data, both

the virus RNA concentration in the sewage sludge and hospital admissions

match the model expectations reasonably well, and provides a 95% confi-

dence interval for the reproductive number 0 ≈ 24± 02. Section 5 reports
a sensitivity analysis to allow for different probability distributions for the

lags from infection to hospital admissions and sludge RNA concentration re-

spectively. The analysis verifies that there is a 3 to 5 day separation between

the sludge RNA concentration and hospital admissions curve, consistent with

earlier analysis based on statistical time-series analysis (Peccia et al 2020).

Section 6 uses the preceding analysis to provide epidemic insights suggesting

that stay-at-home restrictions effectively bifurcated the local population by

plausibly removing 89% of the population from the risk of infection with the

remaining 11% exposed to an unmitigated outbreak that infected 9.3% of

the total population. Section 7 provides a summary of the key points of the

paper.

2 Transmission Model

Data detailing person-to-person SARS-CoV-2 transmission in Wuhan were

reported by Li et al (2020). These data enabled an early model-based as-

sessment of prospects for containing coronavirus via isolation and quarantine

(Kaplan 2020a), while that analysis was extended to a dynamic transmission

model for SARS-CoV-2 transmission in Connecticut (Kaplan 2020b). This
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latter model incorporates infection-age-dependent transmission, and thus

falls into the class of renewal equation epidemic models (Heesterbeek and

Dietz 1996, Champredon and Dushoff 2015). The key model element is the

age-of-infection dependent transmission rate (), which can be thought of

as the instantaneous transmission intensity of an individual who has been in-

fected for  time units. At the beginning of an outbreak when an infectious

person is embedded in an otherwise susceptible population, the expected

number of infections transmitted per infectious person equals the reproduc-

tive number 0, which is given by

0 =

Z ∞

0

() (1)

as is well known. Li et al (2020) reported estimates of both the exponential

growth rate  and backwards generation time probability density function

(), enabling () to be written as

() = (),   0 (2)

(Kaplan 2020a, 2020b; Britton and Tomba 2019; Champredon and Dushoff

2015; Wallinga and Lipsitch 2007), which together imply a point estimate of

0 = 226 (Kaplan 2020a), consistent with values widely reported elsewhere

(Ferguson et al 2020, Kissler et al 2020, MIDAS 2020, Park et al 2020).
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An alternative representation of () is

() = 0() (3)

where () is the forward generation time density that dictates the timing

of transmission (Britton and Tomba 2019; Champredon and Dushoff 2015;

Wallinga and Lipsitch 2007). We adopt this representation in the present

analysis, as it enables estimation of the underlying reproductive number 0

directly from the data at our disposal.

The transmission model developed in Kaplan (2020b) that will be used

to anchor our infection indicators analysis follows. Let

() ≡ transmission potential (or force of infection) at chronological time
;

() ≡ fraction of the population that is susceptible to infection at chrono-
logical time ;

( ) ≡ density of the population that has been infected for duration 

at time ;

(0 ) = incidence of infection at time .

Given the initial condition ( 0) which implies (0) = 1− R∞
0

( 0),

the model equations are:

() =

Z ∞

0

()( )   0 (4)

7
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(0 ) = ()()   0 (5)

()


= −(0 )   0 (6)

( ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−  0) 0   ≤ 

(0 − ) 0   ≤ 

(7)

Equation (4) defines the transmission potential at time , which is infection-

age-dependent transmission () weighted by the infection-age-dependent

prevalence of infection in the population ( ); equation (5) equates SARS-

CoV-2 incidence to the product of the fraction of the population that is

susceptible and the transmission potential; equation (6) depletes suscepti-

bles with the incidence of infection; and equation (7) aligns the fraction of

the population infected for duration  at time  with the incidence of infec-

tion at time − , adjusting for the initial conditions at time zero. There is

no additional accounting for the duration of infectiousness because the time

course of infection is already built into ().

The final size , defined as the fraction of the population that is infected

over the duration of an outbreak described by this model, follows (Kaplan

8
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2020b)

 =

Z ∞

0

(0 ) = 1− −0 (8)

We will make use of this relationship below.

The transmission function employed in our base case analysis is given by

equation (3) using the forward generation time density () implied by Li et

al (2020), which is a gamma density with mean (standard deviation) equal

to 8.86 (4.02) days (see Figure 4b). The reproductive number 0 and initial

conditions ( 0) and hence (0) are estimated from the data as described

below.

3 Model-Scale Infection Indicators and Time

Lags

In the absence of repeated representative viral testing in a population, offi-

cials and researchers alike have turned to lagging indicators of infection such

as diagnosed COVID-19 cases, hospitalizations, and deaths to monitor the

state of the outbreak. How useful such indicators are depends upon their lag

time from infection. Let () be the value of a model-scale infection indicator

that represents a distributionally lagged signal of the incidence of infection.

Specifically, denote  as the time lag from infection, and define  ()

as the probability density function governing the lag   The model-scale

9
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infection indicator () is then defined as

() =

Z ∞

0

 ()( ) (9)

=

Z ∞

0

 ()(0 − )

=  [(0 −  )]

where  [·] denotes mathematical expectation with respect to random vari-
able . A first-order Taylor approximation yields the approximation

() ≈ (0 −( )) (10)

which suggests that the model-scale indicator value can be approximated by

incidence evaluated ( ) time units earlier. The model-scale indicator at

time  is just the expected value of SARS-CoV-2 incidence  time units

into the past. Note from equation (8) that

Z ∞

0

() =

Z ∞

0

 ()

µZ ∞

0

(0 − )

¶
 =  (11)

which shows that the model-scale indicator solely reflects the timing at which

SARS-CoV-2 incidence is experienced for whatever indicator is of interest

while conserving the total incidence of infection. The units for all model-

scale indicators thus equal infections per person per unit time, regardless of

which real-world indicator is being considered.
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3.1 Example: Hospital Admissions

Hospital admissions have been used as an indicator for the coronavirus out-

break under the presumption that the fraction of new infections that require

hospitalization remains constant over time. Define  as the time from in-

fection to hospitalization for those infected persons that do require hospital

treatment. A review of several published studies by Lewnard et al (2020) es-

timated that the time from infection until hospitalization averages 13.5 days

with 95% probability coverage ranging from 4.8 to 27.9 days. We approxi-

mate this finding by employing a gamma distribution with  = 4954 and

 = 2725 to represent the probability density of  ,  (). This distribu-

tion also has a mean of 13.5 days with 95% probability coverage ranging from

4.4 to 27.7 days (see Figure 4a). Similar times from infection to hospital-

ization are implied by the Centers for Disease Control COVID-19 pandemic

planning scenarios (CDC 2020) and also MIDAS (2020). We employ this den-

sity in our base case analysis, but will consider distributions with shorter and

longer times from infection to hospital admissions in the sensitivity analyses

of Section 5.

Conditional upon the transmission model described in equations (4-7), the

11
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model-scale hospitalization indicator () is, following equation (9), given by

() =

Z ∞

0

 ()(0 − ) (12)

=  [(0 − )]

≈ (0 −())

Figure 1 plots both the model-scale SARS-CoV-2 incidence (0 ) and hos-

pitalization indicator () assuming () as defined in equation (3) with

0 = 238 as will be estimated subsequently; the gamma distribution for

 () described above; (0) = 1− 00161 reflecting the initial prevalence of
infection as estimated below (with time 0 taken as February 19, 2020); and

( 0) = 0016130 for 0   ≤ 30 as explained below. The model-scale

hospitalization indicator lags incidence by about two weeks, as one would

expect given that () = 135 days by design.

3.2 Example: SARS-CoV-2 RNA inMunicipal Sewage

Sludge

Peccia et al (2020) reported daily SARS-CoV-2 RNA concentrations based

on sampling sludge from a municipal wastewater treatment plant serving

the combined 200,000 population of the towns of New Haven, East Haven,

Hamden, and Woodbridge in the state of Connecticut, USA. Virus RNA

concentrations in sludge should reflect the amount of virus shed in feces by

12
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infected persons in the population served by the treatment plant, resulting in

a fecal estimate of community virus RNA concentration. Though virus RNA

concentrations in feces degrade exponentially with the time from excretion

to sample collection (Foladori et al 2020, Hart and Halden, 2020), virus RNA

concentrations obtained from sludge sampled daily should be discounted by

approximately the same degradation factor, rendering the resulting signal a

plausible surrogate tracking community virus RNA concentration over time.

Referring back to the epidemic model, the appropriate measure of virus

RNA concentration is the transmission potential (), as the amount of virus

shed in feces should reflect the average infectiousness of the population. How-

ever, to use the indicator framework developed above, the age-of-infection

transmission rate () must be normalized to the scale of a probability den-

sity function. This is easily achieved by defining

 () =
()

0
,   0 (13)

which is immediately recognized as the forward generation time probability

density () introduced earlier. This density enables the definition of the

model-scale virus RNA indicator () as

() =

Z ∞

0

 ()(0 − ) (14)

=  [(0 −  )]

≈ (0 −( ))

13
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For () as defined in equation (3) using the forward generation time

density () corresponding to Li et al (2020), the expected lag ( ) is given

by 8.9 days, or 4.6 days shorter than the lag from infection to hospitalization

(we consider an alternative generation time distribution in Section 5). Figure

1 reports the model-scale virus RNA indicator () under the same epidemic

modeling assumptions described for the hospitalization indicator (). Given

the transmission model, the timing of both the virus RNA concentration and

hospitalization indicators is clear, and provides a clue as to what might be

expected when examining the timing of observed hospital admissions and

SARS-CoV-2 data in sewage sludge. We turn to such an empirical analysis

in the next section.

14
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4 Scaling Indicators to Transmission: Hospi-

tal Admissions and SARS-CoV-2 RNA in

Sewage Sludge

Consider a model-scale infection indicator () as earlier described, and let

 () be the random variable denoting the real-world-scale observable value

of this indicator at time . For example, corresponding to the model-scale

hospitalization indicator (), the real-world number of hospital admissions

observed on day  is the random variable (). Similarly, random variable

 () denotes the actual concentration of RNA observed in sewage sludge on

day , corresponding with the model-scale virus RNA concentration indicator

().

The observable indicator  () is modeled as a random variable with mean

proportional to (), that is,

( ()) =  ()    (15)

for some indicator-specific constant  . We thus scale observable indicators

to their model-scale values in expectation. Note from equation (11) that

Y ≡
Z ∞

0

( ()) = 

Z ∞

0

() =   (16)

a result we will exploit in Section 6 below.

15
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We also allow the indicator variance 2 () to depend upon (). Given the

transmission model, we treat  () as conditionally independent of  (0) for

all  6= 0, for correlation in observed values across time would almost entirely

be due to the underlying epidemic. The specific probability law presumed

for  () given () can differ by infection indicator, as will become clear by

example. Given observed indicator values at different points in time and an

underlying epidemic model, one can estimate the scaling constants  (and

variance parameters if needed) via maximum likelihood or other methods.

The Peccia et al (2020) study of sewage sludge obtained daily COVID-19

admissions data to the Yale New Haven Hospital restricted to residents of

the same four Connecticut towns served by the local wastewater treatment

plant. The data record the first such admission as occurring on March 14,

2020, 24 days following our February 19 starting date ( = 0). We focus here

on daily admissions data recorded through May 1, 2020 ( = 72).

Daily hospital admissions data  are modeled as realizations of a Poisson

random variable () with mean proportional to the model-scale indicator

() developed earlier, that is,

[()] = (),   0 (17)

The Poisson log likelihood corresponding to the hospital admissions data
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covering March 14 ( = 24) to May 1 ( = 72), lnL , is thus given by

lnL =

72X
=24

{ ln(())− ()}  (18)

Also as reported in Peccia et al (2020), sludge samples from the local

wastewater treatment plant were tested for SARS-CoV-2 RNA concentra-

tions with two different primers applied to two sample replications daily.

These values were adjusted to control for day to day variations in treatment

plant flow, sludge solids content, and RNA extraction efficiency (Peccia et

al 2020). The data we employ here are , the day  average of these four

adjusted values with measurement units 105 SARS-CoV-2 RNA copies / ml

sludge. We again focus on data collected from March 19 through May 1

( = 29  72) for a total of 44 daily observations. We model  as realiza-

tions of a Normal random variable  () with mean [ ()] =  () and

variance 2 () =  () to allow for over- or under-dispersion relative to the

mean1. The Normal log likelihood corresponding to the sludge data, lnL ,

thus equals

lnL = −1
2

72X
=29

½
ln( ()) +

( −  ())
2

 ()

¾
 (19)

We estimate five parameters from the hospital admissions and sludge data

via maximum likelihood, conditional upon the epidemic model (which implies

1We also considered a model with constant variance but the model did not fit the data

as well.
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the forward generation lag density  () = () based on Li et al (2020),

and hospital lag density  () based on Lewnard et al (2020)). Three of the

parameters estimated are the hospitalization scaling constant  , the sludge

RNA scaling constant  , and the sludge RNA variance scaling constant

 . The fourth parameter estimated is 0 which scales the strength of the

outbreak and enables direct comparison to SARS-CoV-2 epidemics elsewhere.

The final parameter estimated is (0), which sets the initial condition of the

model via the relation

( 0) = (0)30, 0   ≤ 30 (20)

This modeling choice reflects the random arrival of imported infections to the

area of study in the thirty days preceding the onset of community transmis-

sion, in effect determining the placement of the main epidemic wave without

changing its shape. A larger value of (0) would pull the epidemic earlier

in time, while a smaller value would push the epidemic later. In this way,

the hospital admissions and sludge virus RNA concentration data jointly

determine the size and the placement of the epidemic wave while impact-

ing the transmission dynamics via the model described in equations (4-7).

Consequently, population susceptibility at time 0 is given by (0) = 1−(0)
Table 1 reports the maximum likelihood estimates and standard errors

computed by inverting the Hessian matrix of the log likelihood function (Cox

and Hinkley 1974) following maximization of lnL + lnL , while the fit of
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the observed data to the scaled model indicators is illustrated in Figures

2 and 3, which plot 95% prediction intervals about the expected indicator

values in addition to the data. The hospital admissions data are plotted in

Figure 2. Though noisy, the admissions data correspond to the modeled pace

of the epidemic, with most values falling within the 95% prediction intervals.

Parameter Maximum Likelihood Estimate Standard Error

(0) 00161 00032

 1006603 56847

 57589 4867

 12890 2951

0 2383 0100

Table 1

Figure 3 reports the observed and modeled SARS-CoV-2 RNA concen-
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trations (in 105 RNA copies / ml sludge) from the sewage study along with

conservative 95% prediction intervals. While peak RNA virus concentrations

are higher than what would be expected based on the model, the data again

match the estimated pace of the epidemic, suggesting that community virus

RNA concentration in sewage sludge can indeed be represented by the trans-

mission potential in an epidemic model. The data rise and fall as expected,

albeit with much random noise to be sure.

Note that the estimated reproductive number is 2.38 with a 95% confi-

dence interval ranging from 2.18 to 2.58. This places the local SARS-CoV-2

outbreak in New Haven squarely in the middle of reproductive numbers esti-

mated elsewhere (for examples see CDC (2020) and MIDAS (2020)). What

is noteworthy is that this reproductive number was estimated from a model

linking transmission to hospital admissions and SARS-CoV-2 RNA concen-

trations measured in sewage sludge. The data, not the model, determined
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the magnitude of 0, supporting the plausibility of the hospitalization and

generation time lag distributions employed to match the observed data to an

underlying transmission model.

Together with the epidemic model, these data help explain one of the

findings in the Peccia et al (2020) study, which is that the SARS-CoV-2

RNA signal from the sewage sludge led hospital admissions by only 4 days,

when many were expecting a much earlier signal. The model shows that the

natural time lag for virus RNA concentration is governed by the mean forward

generation time, estimated at 8.9 days in this model. Given an average 13.5

day lag from infection to hospitalization documented elsewhere (Lewnard et

al 2020), tracking the outbreak by relying on the sewage sludge RNA signal

leads similar tracking by hospital admissions by 4.6 days on average, which

is very close to the purely statistical time series results reported by Peccia et

al (2020).

5 Sensitivity Analyses

The analysis of Section 4 relies on two particular lag distributions: the for-

ward generation time based on Li et al (2020) and the hospital admissions

density based on Lewnard et al (2020). Different lag distributions could gen-

erate different results yet also appear reasonably consistent with the data.

In this section we will summarize maximum likelihood scalings as in the

previous section but using alternative lag density combinations.
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Starting with the forward generation time density that is used to both

drive the epidemic model and provide a model-scale indicator for SARS-CoV-

2 RNA in sewage sludge, we turn to the meta-analysis of several published

studies reported by Park et al (2020). The consensus distribution from that

analysis is also a gamma density but with a mean (standard deviation) of

8.5 (6.1) days. Figure 4a plots both the Li et al (2020) and Park et al

(2020) generation time densities, from which one can see that the timing of

transmission is relatively early under the Park et al (2020) model relative

to our base case of Li et al (2020). Regarding the distribution of the time

from infection until hospital admission for those requiring hospitalization,

CDC (2020) recommends a mean of 12 days based upon 6 day mean times

from infection until the onset of symptoms, and from the onset of symptoms

until hospitalization. We model this “short” hospitalization lag as a gamma

distribution with a mean (standard deviation) of 12 (6) days. To explore

the possibility that sludge RNA provides a longer lead time over COVID-19

hospitalizations, we also consider a “long” hospitalization gamma-distributed

lag with a mean (standard deviation) of 15 (6.7) days. Figure 4b plots the

short, base case (following Lewnard et al 2020), and long hospitalization lag

densities.
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Table 2 reports the mean lead time (given by the difference between the

mean hospitalization and forward generation/sludge RNA lags), log likeli-

hood function, estimated reproductive number 0 and estimated initial frac-

tion infected 0 for all six combinations of the hospitalization and forward

generation lags. While all the maximized log likelihood values are compara-

ble, the late transmission Li et al (2020) generation time density fits slightly

better than the early transmission Park et al (2020) generation time density

for all three hospital lags, while the hospitalization lag densities fit best from

short to Lewnard et al (2020) to long for both generation time densities.

The point estimates for 0 range from 2.2 (early transmission and long hos-

pitalization lag) to 2.43 (late transmission and short hospitalization lag), and

are all within the 95% confidence interval provided by our earlier base case

analysis in Section 4. The point estimates for the initial fraction infected

0 range from 0.010 to 0.019, and are also all within the 95% confidence

interval estimated in our base case. Examining the log likelihood values,
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there is slightly more evidence favoring shorter RNA sludge lead times. The

best fitting model (late transmission and short hospital lag) estimates that

sludge RNA provides an expected lead time of only 3.1 days over hospital

admissions data, while the worst fitting model (early transmission and long

hospital lag) has an expected lead time of 6.5 days. Together these results

suggest that the sludge RNA signal provides a 3 to 5 day lead time over hos-

pital admissions, consistent with what was found based on statistical time

series analysis in Peccia et al (2020).

Generation Time Hospital Lag Lead Time Log Likelihood 0 0

Late Short 3.1 1332.8 2.43 0.013

Early Short 3.5 1332.3 2.26 0.010

Late Base Case 4.6 1331.1 2.38 0.016

Early Base Case 5.0 1330.2 2.22 0.013

Late Long 6.1 1329.5 2.36 0.019

Early Long 6.5 1328.4 2.20 0.015

Table 2

6 Epidemic Insights

The epidemic model developed describes an unmitigated outbreak among a

population at risk for SARS-CoV-2 infection, but in Connecticut where this

study took place, social distancing and lockdown-like stay-at-home orders

were imposed onMarch 22 (Lamont 2020a) and extended past the duration of
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our study period (Lamont 2020b). An unmitigated outbreak with 0 = 238

would leave 87.5% of the population infected, but clearly that did not occur

in the greater New Haven urban area.

Nonetheless, the timing of the sludge and hospital admissions data are

consistent with an unmitigated outbreak. Models reflecting the effect of lock-

downs and social distancing applied uniformly to large populations show that

transmission is both delayed and slowed, resulting in the oft-cited flattening

of the epidemic curve (Ferguson et al 2020, Kissler et al 2020, Kaplan 2020b).

The epidemic models we have shown to be consistent with the observed data

do not behave this way, suggesting that the effect of the stay-at-home or-

ders was not experienced uniformly. A different possibility is that stay-at-

home restrictions essentially bifurcated the population into two groups: a

large group of citizens whose compliance with stay-at-home restrictions re-

moved them from potentially infectious interactions, and a smaller group of

essential workers, other vulnerable persons such as nursing home residents,

or non-compliant individuals that, due to necessity or choice, continued to

experience exposures via interactions with others, enabling continued trans-

mission. Were that the case, then members of the “exposed” population

could have experienced an unmitigated outbreak while compliant individuals

escaped unscathed. The epidemic model of this paper might only portray

transmission among the exposed population, yet all infections and hence

hospitalizations and SARS-CoV-2 RNA in the sewage sludge would have

emanated from this group.
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To investigate this possibility, we will use our model results to produce

a back-of-the-envelope estimate of the fraction of the population that was

exposed, and consequentially the fraction of the entire population that com-

plied with the stay-at-home restrictions. We will also estimate the implied

number of infections that must have occurred under this bifurcation hypoth-

esis, including the initial number of infected persons circa February 19, 2020

(which recall is clock time 0).

First, we apply equation (16) to the expected total number of hospital

admissions over all time from this outbreak which yields

H =  (21)

Next, define N and C as the number of persons in the exposed population

and the total number of diagnosed COVID-19 cases that occurred in that

population respectively over all time. A second equation for H is given by

H = N× C

N
× H
C
 (22)

Equating equations (21) and (22) yields

N =


C
N
× H

C

(23)

as our estimate for the size of the exposed population. Focusing on the

denominator, the ratio CN is the ratio of diagnosed COVID-19 cases to
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infections in the exposed population, also known as the case ascertainment

ratio. Under the bifurcation hypothesis, this will be the same as the ra-

tio of diagnosed COVID-19 cases to infections in the overall population, as

infections and cases only accrue in the exposed group. A direct estimate

of the reciprocal of the case ascertainment ratio (that is, the number of in-

fections per diagnosed COVID-19 case) was reported by Havers et al (2020)

for Connecticut covering March 23 - May 12 of 2020 via a population-based

seroprevalence survey. Havers et al (2020) estimated an average of 6.0 in-

fections per case (95% confidence interval 4.3−7.8). The ratio HC can

be estimated directly from Peccia et al (2020) who reported that there were

2,674 diagnosed cases and 734 hospital admissions emanating from the four

towns served by the local wastewater treatment plant. The constant  was

estimated in our base case analysis of Section 4 to equal 1006.6 (see Table

1).

Substituting the values above into equation (23) we obtain

N ≈ 10066
1
6
× 734

2674

= 22 000 (24)

Recalling that 200,000 persons are served by the local wastewater treatment

plant, we estimate that 22 000200 000 = 11% of the population were ex-

posed to infection while the stay-at-home restrictions protected the remaining

89% of the population from infection, indicating a high level of compliance

with the public health regulations. Further insight can be gained using equa-
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tion (8) and our base case estimate of 0 = 238 to estimate that the fraction

of the exposed population infected over all time in this outbreak is given by

 = 0875. However, as of May 1 (day 72) when this study concluded,

the epidemic model suggests that only
R 72
0

(0 ) = 84.7% of the exposed

population had been infected, which means that 22 000 × 0847 ≈ 18 600
persons were infected by May 1 in the New Haven metropolitan area (or 9.3%

of the total population). As an independent check, Havers et al’s (2020) sero-

logical estimate for the ratio of infections to cases suggests that given 2,674

diagnosed cases, a 95% confidence interval estimate for the number infected

runs from 11,500 to 20,900 persons, in agreement with our model-based re-

sult. Finally, given our estimate that 1.6% of the exposed population was

already infected as of February 19, 2020 (0; see Table 1), we estimate that

22 000× 0016 ≈ 350 persons were already infected at that early date.

7 Summary

This paper has focused on modeling lagging epidemic indicators and how they

relate to each other. The approach has been to utilize an epidemic model as

a basis for scaling indicators like hospital admissions or SARS-CoV-2 RNA

observed in sewage sludge. After characterizing how indicators lag incidence,

we showed how one could use an epidemic model to simultaneously estimate

the placement of an epidemic wave (via estimating the initial condition),

the strength of an outbreak (via estimating 0), and situate lagging indica-
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tors appropriately, allowing one to view the data in a more epidemiologically

meaningful way. Using data from a recently published study of SARS-CoV-2

RNA concentrations observed in municipal sewage sludge, we showed why

the RNA data were only able to shorten the time from infection to signal

by 3 to 5 days relative to hospital admissions. The RNA and hospitaliza-

tion data jointly implied an epidemic with 0 of approximately 238, well

within the range implied by numerous studies. To reconcile this finding with

the fact that Connecticut was under strict lockdown-like stay-at-home orders

throughout most of the study period, we postulated that the stay-at-home

restrictions effectively bifurcated the population, resulting in an unmitigated

outbreak among an estimated 11% of the population who remained exposed

to infections while sparing the remaining 89% who complied with the re-

strictions. Overall we estimated that about 9.3% of the total population

became infected. To our knowledge, ours is the first study to develop such

population-level findings based on exploiting the infection signal contained

in SARS-CoV-2 RNA in sewage sludge and COVID-19 hospital admissions

data.
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