Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting the Trajectory of Any COVID19 Epidemic From the Best Straight Line

View ORCID ProfileMichael Levitt, Andrea Scaiewicz, Francesco Zonta
doi: https://doi.org/10.1101/2020.06.26.20140814
Michael Levitt
1Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael Levitt
  • For correspondence: michael.levitt@stanford.edu
Andrea Scaiewicz
1Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francesco Zonta
2Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

A pipeline involving data acquisition, curation, carefully chosen graphs and mathematical models, allows analysis of COVID-19 outbreaks at 3,546 locations world-wide (all countries plus smaller administrative divisions with data available). Comparison of locations with over 50 deaths shows all outbreaks have a common feature: H(t) defined as loge(X(t)/X(t-1)) decreases linearly on a log scale, where X(t) is the total number of Cases or Deaths on day, t (we use ln for loge). The downward slopes vary by about a factor of three with time constants (1/slope) of between 1 and 3 weeks; this suggests it may be possible to predict when an outbreak will end. Is it possible to go beyond this and perform early prediction of the outcome in terms of the eventual plateau number of total confirmed cases or deaths?

We test this hypothesis by showing that the trajectory of cases or deaths in any outbreak can be converted into a straight line. Specifically Y (t) ≡ −ln(ln(N / X (t)), is a straight line for the correct plateau value N, which is determined by a new method, Best-Line Fitting (BLF). BLF involves a straight-line facilitation extrapolation needed for prediction; it is blindingly fast and amenable to optimization. We find that in some locations that entire trajectory can be predicted early, whereas others take longer to follow this simple functional form. Fortunately, BLF distinguishes predictions that are likely to be correct in that they show a stable plateau of total cases or death (N value). We apply BLF to locations that seem close to a stable predicted N value and then forecast the outcome at some locations that are still growing wildly. Our accompanying web-site will be updated frequently and provide all graphs and data described here.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by a US National Institutes of Health award R35GM122543 to M.L. and by a National Natural Science Foundation of China Grant No. 31770776 to F.Z. Michael Levitt is the Robert W. and Vivian K. Cahill Professor of Cancer Research.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

None needed

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data is to be made available

http://levitt.herokuapp.com/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted June 28, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting the Trajectory of Any COVID19 Epidemic From the Best Straight Line
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting the Trajectory of Any COVID19 Epidemic From the Best Straight Line
Michael Levitt, Andrea Scaiewicz, Francesco Zonta
medRxiv 2020.06.26.20140814; doi: https://doi.org/10.1101/2020.06.26.20140814
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predicting the Trajectory of Any COVID19 Epidemic From the Best Straight Line
Michael Levitt, Andrea Scaiewicz, Francesco Zonta
medRxiv 2020.06.26.20140814; doi: https://doi.org/10.1101/2020.06.26.20140814

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (228)
  • Allergy and Immunology (504)
  • Anesthesia (110)
  • Cardiovascular Medicine (1238)
  • Dentistry and Oral Medicine (206)
  • Dermatology (147)
  • Emergency Medicine (282)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (531)
  • Epidemiology (10021)
  • Forensic Medicine (5)
  • Gastroenterology (499)
  • Genetic and Genomic Medicine (2453)
  • Geriatric Medicine (238)
  • Health Economics (479)
  • Health Informatics (1643)
  • Health Policy (752)
  • Health Systems and Quality Improvement (636)
  • Hematology (248)
  • HIV/AIDS (533)
  • Infectious Diseases (except HIV/AIDS) (11864)
  • Intensive Care and Critical Care Medicine (626)
  • Medical Education (252)
  • Medical Ethics (75)
  • Nephrology (268)
  • Neurology (2280)
  • Nursing (139)
  • Nutrition (352)
  • Obstetrics and Gynecology (454)
  • Occupational and Environmental Health (536)
  • Oncology (1245)
  • Ophthalmology (377)
  • Orthopedics (134)
  • Otolaryngology (226)
  • Pain Medicine (157)
  • Palliative Medicine (50)
  • Pathology (324)
  • Pediatrics (730)
  • Pharmacology and Therapeutics (313)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2280)
  • Public and Global Health (4833)
  • Radiology and Imaging (837)
  • Rehabilitation Medicine and Physical Therapy (491)
  • Respiratory Medicine (651)
  • Rheumatology (285)
  • Sexual and Reproductive Health (238)
  • Sports Medicine (227)
  • Surgery (267)
  • Toxicology (44)
  • Transplantation (125)
  • Urology (99)