












 

 

Figure 3. Deep learning model architecture (Modular network), including its constituting subnetworks (Context subnetwork, 

Clinical subnetwork, Text subnetwork and Ensemble subnetwork). Arrows indicate the forward propagation direction, for 

each one of the subnetworks, as well as the global network, colored according to the particular neural network they refer. 
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Parameter tuning 

Subnetworks were trained in a constructive modularized manner,[47] so they were independently 

trained and assembled later as loosely coupled models. The optimizer selected for that was ADAM,[61] given 

its learning adaptability, noisy gradients management and learning process stability. [62-63]. A term of weight 

decay [64] was included in the parameters upgrading rule expression, to promote regularization. Likewise, it 

was followed a mini-batch upgrading approach,[65] computing gradients with backpropagation [66] and 

backpropagation through time.[67] The objective function was a cross-entropy [68] loss (CEL). For each 

subnetwork, three CEL were calculated (one per label) averaged afterwards and finally backpropagated to carry 

out the parameter tuning process. Layers with leaky ReLU activation functions were initialized with Kaiming 

initialization,[69] while softmax activation function layers were initialized with Xavier’s initialization.[70]  

Hyperparameter tuning 

The influence of hyperparameters over subnetworks performance was carefully considered in this work, 

in order to maximize the attainable outcomes. The hyperparameters studied were related with subnetworks 

architecture and optimizer settings (check Supplementary material Appendix 4 for details).  

Hyperparameters were tuned following a multi-step strategy (Figure 4): 

The first step involved an automatic active learning [71] hyperparameter optimization process (Figure 4 

top): four surrogate models (one per subnetwork), based on tree-structured parzen estimators,[72] learned the 

conditional probability distribution of subnetworks hyperparameters given their associated CEL. Aiming to 

maximize the Expected Improvement [73] of the CEL, new hyperparameter configurations were iteratively 

sampled from the surrogate models, being upgraded after each training loop. Thereby, 280 different 

subnetworks (70 hyperparameter configurations times four subnetworks) were trained and evaluated in the 

training and validation samples, respectively. 

Next, the best hyperparameter configurations proposed by the surrogate models were selected (Figure 

4 middle). To prevent overfitting, the best five hyperparameter configurations for each subnetwork were taken 

to retrain and validate the subnetworks, in the training and the validation set, respectively, obtaining a total of 

20 models trained in this step. Then, the CEL was obtained for each of them and those hyperparameter 

configurations with the best value, i.e., lowest validation CEL, were considered as the optimal hyperparameter 

configuration. 

Finally, the optimal hyperparameters were used to retrain the four subnetworks using the whole design 

set, to ensure a proper exploitation of the data (Figure 4 bottom). Once trained, its integration into a single 

architecture defined the global network (ModNet), evaluated later in the test set. 
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Figure 4. Multi-step hyperparameter tuning strategy. Yellow arrows imply unidirectionality, while blue arrows stand for a 

feedback loop, both inside a hyperparameter optimization step. Green arrows denote unidirectionality across 

hyperparameter optimization steps.  Abbreviations: HP, hyperparameter; TR, training; VAL, validation; DSG, design TS, 

test.  

Evaluation  

The performance of the ModNet, as well as ConNet, CliNet and TextNet subnetworks (EnsNet outputs are the 

same as the ModNet), were evaluated in the test set (144 454 independent EMCI) for each label prediction task. 

Likewise, performance metrics were also obtained for the current triage protocol of the Valencian emergency 

medical dispatch service, as a comparative baseline. The evaluation metrics included recall, specificity, 

precision, negative predictive value (NPV) and the F1 score. For binary labels (life-threatening, jurisdiction), 

recall, specificity, precision and NPV were referencing the interest class, i.e., life-thread and emergency system 

jurisdiction. Regarding the multiclass label (response delay), recall, specificity, precision and NPV were 

calculated for each class and then averaged following a macro approach. Likewise, micro F1 score was 

computed for both the binary and multiclass labels, to dispose of an overall performance descriptor, not 

restricted to a single label class while taking into account the total number of true positives, true negatives, false 

positives and false negatives across all the classes. Finally, for all metrics, 95% confidence intervals were 

calculated by 1000 bootstrap samples [74] extracted from the test set. 
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RESULTS 

Tables 1, 2 and 3 show the classification performance results for the life-threatening, response delay 

and jurisdiction labels. Metrics are calculated in the test set, for the protocol, the ConNet, the CliNet, the TextNet 

and the ModNet. Percentage differences (∆) between the ModNet (final deep learning model) and the protocol 

are also reported.  

 Table 1. In-house triage protocol and deep learning models performance in life-threatening prediction (test set). 

Bootstrapped 95% confidence intervals are shown between brackets. 

Abbreviations: NPV, negative predictive value; ∆, ModNet difference respect the protocol. 

Table 1 shows that the ModNet outperforms the current protocol in the life-threatening prediction task. 

It captures more true life-threatening situations (higher recall) being much more precise, i.e., with less false 

positives (much higher precision). Respect to non-life-threatening incidents, it detects many more true cases of 

this type (much higher specificity) also with less false negatives (higher NPV). Referring to the overall 

performance in both classes, the ModNet beats the protocol by far (13.2% of micro F1 score improvement). 

Focusing on the subnetworks, the ConNet is the weakest deep learning model, although its F1 is 

superior to that attained by the protocol. The CliNet offers the better detection rate for true life-threatening 

situations but at the expense of a significant amount of false positives. Finally, the TextNet exhibits the overall 

better behavior although its capability to capture true life-threatening events is not the best among the 

subnetworks.  

Table 2 shows that ModNet outcomes are substantially above those achieved by the protocol in the 

response delay prediction task. Overall detection of situations with a specific true admissible response delay 

(undelayable, minutes, hours, days) is amply improved by the ModNet (15.8% increment in macro recall) while 

Model 

Life-threatening level (yes/no) 

Single-class metrics (yes)  Two-class metric (yes/no) 

Recall Specificity Precision  NPV  F1micro 

Protocol 0.644 [0.641, 0.647] 0.636 [0.633, 0.638] 0.547 [0.544, 0.551] 0.723 [0.72, 0.725] 0.639 [0.637, 0.641] 

ConNet 0.44 [0.436, 0.443] 0.785 [0.782, 0.787] 0.583 [0.579, 0.587] 0.672 [0.669, 0.674] 0.644 [0.642, 0.646] 

CliNet 0.79 [0.787, 0.793] 0.61 [0.607, 0.612] 0.581 [0.578, 0.584] 0.809 [0.807, 0.812] 0.683 [0.681, 0.685] 

TextNet 0.638 [0.635, 0.642] 0.844 [0.842, 0.846] 0.737 [0.734, 0.74] 0.773 [0.771, 0.775] 0.76 [0.759, 0.762] 

ModNet 0.671 [0.668, 0.675] 0.84 [0.838, 0.842] 0.742 [0.739, 0.745] 0.789 [0.786, 0.791] 0.771 [0.77, 0.773] 

∆ (%) 2.7 20.4 19.5 6.6 13.2 
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remarkably enhancing overall precision (17.3% raise). Regarding to the overall capturing of events which do 

not exhibit certain true admissible response delay, the ModNet is also superior (5.8% increase in macro 

specificity) showing less false negatives in this task (5.5% increment in macro NPV). Concerning to the general 

performance in all classes, the ModNet significantly exceeds the protocol (16.4% of micro F1 score 

improvement). 

Table 2. In-house triage protocol and deep learning models performance in response delay prediction (test set). 

Bootstrapped 95% confidence intervals are shown between brackets. 

Abbreviations: NPV, negative predictive value; ∆, ModNet difference respect the protocol. 

Focusing on ModNet subnetworks for response delay prediction, the ConNet is at the bottom in 

performance terms, not being capable of outperforming the protocol. The CliNet is clearly over the ConNet and 

already beats the protocol, while the TextNet is the best ModNet subnetwork in all metrics, with a substantial 

increase respect to the CliNet. 

Table 3 shows that the ModNet outperforms the protocol in the jurisdiction prediction task. It captures 

more situations which are truly jurisdiction of the emergency system (better recall) being more precise, i.e., with 

less false positives (better precision). In relation with incidents which should be derived to primary care, i.e., 

non-emergencies, the ModNet detects more true cases of this type (higher specificity) also with less false 

negatives (better NPV). Respect to the overall performance in both classes, the ModNet surpasses the protocol 

(4.5% of micro F1 score improvement). 

Regarding to ModNet subnetworks, although the ConNet presents the highest recall values, its 

specificity is fairly poor, with worse general results than the protocol in the jurisdiction prediction task. The CliNet 

provides a substantial improvement over the later subnetwork, with an overall performance above the protocol. 

As in life-threatening and response delay, the TextNet is the subnetwork attaining the best outcomes. 

 

Model 

Admissible response delay (undelayable, minutes, hours, days) 

Recallmacro Specificitymacro Precisionmacro NPVmacro F1micro 

Protocol 0.411 [0.409, 0.413] 0.8 [0.799, 0.801] 0.416 [0.414, 0.419] 0.805 [0.804, 0.806] 0.428 [0.426, 0.43] 

ConNet 0.376 [0.374, 0.378] 0.791 [0.79, 0.792] 0.415 [0.412, 0.418] 0.793 [0.792, 0.794] 0.413 [0.411, 0.415] 

CliNet 0.477 [0.475, 0.479] 0.824 [0.823, 0.825] 0.53 [0.527, 0.532] 0.829 [0.828, 0.829] 0.506 [0.504, 0.508] 

TextNet 0.544 [0.542, 0.546] 0.851 [0.85, 0.851] 0.583 [0.58, 0.585] 0.854 [0.853, 0.855] 0.576 [0.574, 0.578] 

ModNet 0.569 [0.567, 0.571] 0.858 [0.857, 0.859] 0.589 [0.587, 0.591] 0.86 [0.859, 0.86] 0.592 [0.59, 0.594] 

∆ (%) 15.8 5.8 17.3 5.5 16.4 
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Table 3. In-house triage protocol and deep learning models performance in jurisdiction prediction (test set). 

Bootstrapped 95% confidence intervals are shown between brackets. 

Abbreviations: NPV, negative predictive value; ∆, ModNet difference respect the protocol. 

DISCUSSION 

Relevance  

The superior performance of the ModNet against the triage protocol suggests the existence of 

information provided during the emergency medical call not considered by the current protocol, but captured by 

the deep learning model. According to TextNet outcomes, far better than those attained by the ConNet and 

CliNet, most of this information would be present in the free text dispatcher observations. Since text fields are 

unbounded, they would embrace wider casuistry, allowing more precision in the EMCI description, lowering, 

consequently, its uncertainty. 

Clinical variables stand as excellent life-threatening detection (about 80% of total cases) features, since 

dispatchers ask them to reduce chances of missing situations where patient’s life is at risk. Likewise, the 

outstanding emergency system jurisdiction recall of demographics and circumstantial factors (capturing about 

95% of total cases) may be related with patient profiles highly susceptible from requiring emergency aid, e.g., 

elderly cardiac patient males.  

The hardest classification problem is to predict the admissible response delay, probably derived from 

the fact that it is a multiclass label, presenting twice possible outputs (undelayable, minutes, hours, days) than 

the other labels (life-threatening, jurisdiction), which are binary. Likewise, within these binary labels, the less 

frequent class is tougher to predict than the most frequent one. 

Model 

Emergency system jurisdiction (yes/no) 

Single-class metrics (yes) Two-class metric (yes/no) 

Recall Specificity Precision NPV  F1micro 

Protocol 0.855 [0.854, 0.857] 0.541 [0.537, 0.545] 0.8 [0.798, 0.803] 0.635 [0.631, 0.639] 0.756 [0.754, 0.758] 

ConNet 0.945 [0.943, 0.946] 0.288 [0.285, 0.292] 0.741 [0.739, 0.743] 0.708 [0.702, 0.713] 0.736 [0.734, 0.738] 

CliNet 0.9 [0.899, 0.902] 0.521 [0.517, 0.525] 0.802 [0.8, 0.804] 0.708 [0.704, 0.712] 0.78 [0.778, 0.782] 

TextNet 0.917 [0.916, 0.919] 0.519 [0.515, 0.523] 0.804 [0.802, 0.806] 0.745 [0.741, 0.749] 0.791 [0.789, 0.793] 

ModNet 0.895 [0.894, 0.897] 0.597 [0.593, 0.601] 0.827 [0.825, 0.829] 0.726 [0.722, 0.729] 0.801 [0.799, 0.802] 

∆ (%) 4 5.6 2.7 9.1 4.5 
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The modular approach followed in this work, assembling four specialized subnetworks into a single 

global network, has shown that the potential of the aggregated network is superior to any of its individual 

components, balancing their respective weaknesses and strengths while properly integrating processed 

information within each one.  

Finally, the results of this work imply that current emergency dispatch processes could be improved by 

means of deep learning, eventually deriving in a positive impact over patient wellbeing and health services 

sustainability. 

Limitations 

The main limitation of this work is the inherent uncertainty of the problem: in the studied dataset it was 

likely to find rather similar input combinations presenting completely different label values. In other words, 

different disorders presented the same clinical picture. For example, chest pain may imply a life-threatening 

situation, if the underlying unknown cause is a heart attack, or not, since it could be derived from a prior anxiety 

crisis. This non-discriminative variability sets bounds in terms of maximum performance attainable by any 

model, i.e., Bayes error.[75] 

Future work 

Next steps include the evaluation of the deep learning model with prospective cases from the Valencia 

region and its deployment and integration in the emergency medical dispatch center. For that, we will propose 

a graphical user interface to allow the interaction between the dispatcher and the model during the call. Finally, 

the resulting tool will be implemented in the emergency medical dispatch center of the Valencian Community. 

CONCLUSIONS 

A novel deep multitask ensemble model, designed to aid non-clinical dispatchers during emergency 

medical calls to classify incidents by their life-threatening level, admissible response delay and emergency 

system jurisdiction, has been developed and successfully evaluated. To our knowledge, this is the first deep 

learning model implemented to face this challenge. 

The performance achieved by the model is notably superior to that attained by the current in-house 

triage protocol of the emergency medical dispatch service of the Valencian Community, achieving an 

improvement of 13.2%, 16.4%, 4.5% in life-threatening, response delay and jurisdiction classification, 

respectively, with regard to the micro F1 score metric. 

The network modular design with specialized subnetworks for the different data modalities has allowed 

discovering the potential benefit of the information contained in free text fields for the automatic classification of 

emergency medical call incidents. This information can be used to optimize current guidelines. 
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The implantation of this model in medical dispatch centers would have a remarkable impact in patient 

wellbeing and health services sustainability. 
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