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ABSTRACT  

Objective: To develop a predictive model to aid non-clinical dispatchers to classify emergency medical call 

incidents by their life-threatening level (yes/no), admissible response delay (undelayable, minutes, hours, days) 

and emergency system jurisdiction (emergency system/primary care) in real time. 

Materials: A total of 1 244 624 independent retrospective incidents from the Valencian emergency medical 

dispatch service in Spain from 2009 to 2012, comprising clinical features, demographics, circumstantial factors 

and free text dispatcher observations.  

Methods: A deep multitask ensemble model integrating four subnetworks, composed in turn by multi-layer 

perceptron modules, bidirectional long short-term memory units and a bidirectional encoding representations 

from transformers module.  

Results: The model showed a micro F1 score of 0.771 in life-threatening classification, 0.592 in response delay 

and 0.801 in jurisdiction, obtaining a performance increase of 13.2%, 16.4% and 4.5%, respectively, with regard 

to the current in-house triage protocol of the Valencian emergency medical dispatch service. 

Discussion: The model captures information present in emergency medical calls not considered by the existing 

in-house triage protocol, but relevant to carry out incident classification. Besides, the results suggest that most 

of this information is present in the free text dispatcher observations. 

Conclusion: To our knowledge, this study presents the development of the first deep learning model 

undertaking emergency medical call incidents classification. Its adoption in medical dispatch centers would 

potentially improve emergency dispatch processes, resulting in a positive impact in patient wellbeing and health 

services sustainability.  

Keywords: medical emergencies, emergency medical calls, emergency medical dispatch, deep learning, 

multitask learning, ensemble learning. 
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BACKGROUND AND SIGNIFICANCE 

Emergency medical dispatch (EMD) involves the reception and management of requests for medical 

assistance in an emergency medical services system.[1] It comprises two main dimensions: call-taking, where 

emergency medical calls are received and incidents are classified according to their priority, i.e., triaged; and 

controlling, where the best available resources are dispatched to handle the event.[2] 

The call-taking process is generally managed by emergency medical dispatchers.[3]  These mediators 

are in many cases non-clinical staff, trained with the essential knowledge of medical emergencies for the proper 

and efficient management of the incident.[1, 4] Dispatchers usually follow a clinical protocol, established in the 

medical dispatch center, and periodically verified by medical supervisors.[5] 

However, despite preparation and the existence of triage protocols, assigning priorities to emergency 

medical call incidents (EMCI) is a challenging and stressful task for dispatchers, requiring constant 

concentration.[6-8] Additionally, there is always an inherent uncertainty on the real patient state, since the 

information of the event is gathered from telephonic interview processes. Furthermore, there are time 

constraints due to the incident priority or the need for tackling other incoming calls.[9] A wrong priority 

assignment derives either in insufficient medical attention or unnecessary resource deployment.[10-12] In 

consequence, EMCIs triage protocols are continuously revised and enhanced. 

Many triage algorithms, such as the Emergency severity index,[13] the Manchester triage system,[14] 

the Canadian triage and acuity scale [15] or the Australasian triage scale,[16] have been widely studied and 

enriched.[17-20] However, they are difficult to benchmark, deriving in no international agreement about their 

use for EMD.[21] Likewise, these algorithms depend on structured clinical information which is not always 

available during the call.[22] As such, improvements in EMD processes by redefining this sort of protocols are 

extremely costly and limited. 

In the Valencian Community (Spain), the triage of EMCI is currently supported by an in-house triage 

protocol, based on a clinical decision tree, grounded on heavily structured clinical variables, e.g., chest pain 

(yes or no), collected throughout the interview in a sequential manner. Therefore, free text dispatcher 

observations, with higher expressiveness than structured data, cannot be automatically processed by the 

protocol, limiting its generalization to situations beyond the established guidelines. 

The potential capability of deep learning to enhance EMCI classification through the provision of 

decision support to non-clinical dispatchers, was spotted by the Health Services Department of the Valencian 

region, aware of the potential of these models: deep learning is at the state of the art of machine learning in 

tasks involving complex types of data,[23] e.g., high dimensional, unstructured, sequential, multimodal,[24-27] 

such as those found in EMCI databases. Likewise, this and other machine learning tools have already been 

applied to tackle EMD challenges such as ambulance allocation,[28-30] prediction of emergency calls 
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volume,[31] automatic stress detection of the caller,[32] interpretable knowledge extraction,[33] performance 

monitoring,[34] cardiac arrest calls assistance [35] or triaging unconscious and fainting patients.[36] Therefore, 

we can argue that deep learning models are a feasible and promising technology to improve EMD through EMCI 

classification. 

In this work, we develop and evaluate a deep learning model to provide decision support to non-clinical 

dispatchers in EMCI triage from the medical dispatch center of the Valencian region. Our model is designed to 

integrate the EMCI data collected during the call and carry out its classification.  Despite of the existence of 

studies dealing with EMCI classification for specific disorders, as mentioned in the previous paragraph, to our 

knowledge, this is the first large-scale study undertaking a general EMCI classification trough deep learning. 

MATERIALS  

Dataset  

A total of 1 244 624 independent EMCI of the Health Services Department of the Valencian Community, 

comprising during-call and after-call data, were compiled in retrospective from 2009 to 2012. The Health 

Services Department board of the Valencian Community approved the data use for this project, removing before 

their analysis any information that may disclose the identity of the person. 

During-call data (Figure 1 top) consist of demographics, circumstantial factors, clinical features 

collected throughout the triage tree navigation and free text dispatcher observations. From a data type 

perspective, we found structured, i.e., fixed fields, and unstructured, i.e., open fields, data, as well as stationary, 

i.e., their order is not informative, and sequential, i.e., their order is informative, data. Further details about these 

data are available in Supplementary material Appendix 1. 

After-call data involve physician diagnoses standardized by the International classification of diseases 

codes,[37] maneuvers, procedures, hospitalizations and emergency department stays linked to each one of the 

incidents (Supplementary material Appendix 1). These data were used to derive EMCI classification labels.  

The inclusion criteria in our study consisted in those EMCI which after-call data were fully available, and 

which during-call data were registered by non-novice dispatchers, i.e., dispatchers with more than 100 calls 

managed. The final working dataset size comprised 722 270 EMCI. 

Labels derivation 

Three different but complementary labels were defined to classify EMCI (Figure 1 bottom): life-

threatening level (yes/no), admissible response delay (undelayable, minutes, hours, days) and emergency 

system jurisdiction (emergency system/primary care). These labels were derived from after-call data, by means 

of a mapping defined by a panel of 17 physicians from the Health Services Department of the Valencian 

Community, using a Delphi methodology.[38] 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.06.26.20123216doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20123216


 

 

Figure 1. Dataset variables arranged by type. Names and cardinality, before and after pre-processing (derived variables), 

are presented, indicating how many variables (or subwords, when referring to text features) are available per case after pre-

processing. Examples for their values are also included.  Class frequencies for each output label are also reported. N is 

equal to the 722 270 EMCI used in the study. 

Framework  

The implementation language was Python 3.7.3,[39] making use of libraries Pandas,[40] NumPy,[41] 

and Fuzzywuzzy,[42] for data pre-processing and Pytorch (version 1.4.0),[43] Hugginface transformers [44] and 

Hyperopt [45] for modeling.  

METHODS 

Data pre-processing 

Depending on variable type, different pre-processing techniques were applied, mapping the original 

data to a matrix representation (Figure 1 right, highlighted pre-processing blocks). Details about this pre-

processing step can be found in Supplementary material Appendix 2. 
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Data splitting and sampling 

To evaluate model performance and tune hyperparameters without any bias, data were iteratively and 

randomly split into six subsets (Figure 2).[46] First, data were randomly split into two disjoint design and test 

sets, with 80% and 20% proportions respectively. Next, the design set was randomly divided again into a training 

and a validation set, with 80% and 20% proportions. Finally, a sampling step was performed taking 100000 

elements to define a training and a validation sample.  

Figure 2. Data splitting and sampling. The number of data of each partition, along with its percentage respect the total 

number of data, are provided. Abbreviations: HP, hyperparameter. 

Deep neural network design 

The problem of classifying EMCI combining multimodal data was divided into four subproblems: three 

EMCI classification problems taking as inputs for each one EMCI data from the same type (structured stationary, 

structured sequential and unstructured sequential) and a last EMCI classification problem taking as inputs inner 

outputs obtained from the solution of the prior problems. To solve these four challenges, four deep learning 

subnetworks were developed: the Context subnetwork (ConNet), the Clinical subnetwork (CliNet), the Text 

subnetwork (TextNet) and the Ensemble subnetwork (EnsNet). Finally, once trained, they were combined in a 

single global modular neural network model,[47] defining the Modular network (ModNet). 

Likewise, as the life-threatening, response delay and jurisdiction labels provide different but related 

information, e.g., a life-threatening situation implies a low admissible response delay, a multitask learning [48] 

paradigm was followed, to exploit these label dependences. To promote training efficiency and regularization 

while reducing the number of subnetworks parameters, a hard parameter sharing approach [49] was adopted. 

Hence, each of the four developed subnetworks presented a task-shared block (same set of parameters for all 

label prediction tasks) and a task-specific block (specific set of parameters for each label prediction task). 
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Every subnetwork is described next, supported by Figure 3:  

The Context subnetwork (Figure 3 left) deals with the demographics and circumstantial factors bound 

to an EMCI. It consists on a multi-layer perceptron (MLP),[50] due to its adequateness to model structured and 

stationary data, composed by dense and output blocks. A dense block integrates a fully connected layer [51] a 

batch normalization layer [52] to manage internal covariate shift, a leaky ReLU [53] activation function to avoid 

vanishing and exploding gradients, while preventing dead neurons issues,[54] and a dropout layer [55] to 

prevent neuron co-adaptation. An output block is composed by a fully connected layer and a softmax activation 

function, to dispose of a normalization score (between 0 and 1) for each class of each predicted label. 

The Clinical subnetwork (Figure 3 center) deals with the clinical features collected during the call. It 

consists on a recurrent model, since clinical features are notified in a sequential manner, being their recording 

order potentially informative. It is composed by an embedding layer,[56] which compresses the sparse input 

space into a smaller and dense one; a stack of multiple bidirectional long short-term memory (BLSTM)[57] units, 

which capture long-term dependences far better than standard recurrent models; multiple skip connections [58] 

across the BLSTM units, to reduce the risk of losing relevant information during BLSTM propagation; a 

concatenation block which concatenates the outputs of these skip connections; and a MLP module, integrated 

by dense and output blocks, to act as an intermediary between the multiple BLSTM outputs and the final label 

predictions. 

The Text subnetwork (Figure 3 right) deals with the free text dispatcher observations written during an 

EMCI. It is composed by a bidirectional encoding representations from transformers (BERT)[59] block, since 

this model is at the state of the art in natural language processing tasks, including text classification, and a MLP 

module, to relate BERT outputs with label outputs. The BERT block is comprised by an embedding block, an 

encoder block,[60] and a pooler block, while the MLP component is constituted by dense and output blocks. 

The Ensemble subnetwork (Figure 3 bottom) integrates inner outputs from the ConNet, CliNet and 

TextNet to generate the final outputs of the Modular network. It consists of a concatenation block with a MLP 

component, composed by dense and output blocks. The inputs of the concatenation block are the outputs of 

the last layer of the dense block prior to the task-specific block of each one of the former subnetworks. It takes 

these inner outputs, and not the final output scores since these last values aggregate tons of information in just 

a small set of scalar values; hence, the modeling potential of the inner outputs is higher. 
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Figure 3. Deep learning model architecture (Modular network), including its constituting subnetworks (Context subnetwork, 

Clinical subnetwork, Text subnetwork and Ensemble subnetwork). Arrows indicate the forward propagation direction, for 

each one of the subnetworks, as well as the global network, colored according to the particular neural network they refer. 
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Parameter tuning 

Subnetworks were trained in a constructive modularized manner,[47] so they were independently 

trained and assembled later as loosely coupled models. The optimizer selected for that was ADAM,[61] given 

its learning adaptability, noisy gradients management and learning process stability. [62-63]. A term of weight 

decay [64] was included in the parameters upgrading rule expression, to promote regularization. Likewise, it 

was followed a mini-batch upgrading approach,[65] computing gradients with backpropagation [66] and 

backpropagation through time.[67] The objective function was a cross-entropy [68] loss (CEL). For each 

subnetwork, three CEL were calculated (one per label) averaged afterwards and finally backpropagated to carry 

out the parameter tuning process. Layers with leaky ReLU activation functions were initialized with Kaiming 

initialization,[69] while softmax activation function layers were initialized with Xavier’s initialization.[70]  

Hyperparameter tuning 

The influence of hyperparameters over subnetworks performance was carefully considered in this work, 

in order to maximize the attainable outcomes. The hyperparameters studied were related with subnetworks 

architecture and optimizer settings (check Supplementary material Appendix 4 for details).  

Hyperparameters were tuned following a multi-step strategy (Figure 4): 

The first step involved an automatic active learning [71] hyperparameter optimization process (Figure 4 

top): four surrogate models (one per subnetwork), based on tree-structured parzen estimators,[72] learned the 

conditional probability distribution of subnetworks hyperparameters given their associated CEL. Aiming to 

maximize the Expected Improvement [73] of the CEL, new hyperparameter configurations were iteratively 

sampled from the surrogate models, being upgraded after each training loop. Thereby, 280 different 

subnetworks (70 hyperparameter configurations times four subnetworks) were trained and evaluated in the 

training and validation samples, respectively. 

Next, the best hyperparameter configurations proposed by the surrogate models were selected (Figure 

4 middle). To prevent overfitting, the best five hyperparameter configurations for each subnetwork were taken 

to retrain and validate the subnetworks, in the training and the validation set, respectively, obtaining a total of 

20 models trained in this step. Then, the CEL was obtained for each of them and those hyperparameter 

configurations with the best value, i.e., lowest validation CEL, were considered as the optimal hyperparameter 

configuration. 

Finally, the optimal hyperparameters were used to retrain the four subnetworks using the whole design 

set, to ensure a proper exploitation of the data (Figure 4 bottom). Once trained, its integration into a single 

architecture defined the global network (ModNet), evaluated later in the test set. 
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Figure 4. Multi-step hyperparameter tuning strategy. Yellow arrows imply unidirectionality, while blue arrows stand for a 

feedback loop, both inside a hyperparameter optimization step. Green arrows denote unidirectionality across 

hyperparameter optimization steps.  Abbreviations: HP, hyperparameter; TR, training; VAL, validation; DSG, design TS, 

test.  

Evaluation  

The performance of the ModNet, as well as ConNet, CliNet and TextNet subnetworks (EnsNet outputs are the 

same as the ModNet), were evaluated in the test set (144 454 independent EMCI) for each label prediction task. 

Likewise, performance metrics were also obtained for the current triage protocol of the Valencian emergency 

medical dispatch service, as a comparative baseline. The evaluation metrics included recall, specificity, 

precision, negative predictive value (NPV) and the F1 score. For binary labels (life-threatening, jurisdiction), 

recall, specificity, precision and NPV were referencing the interest class, i.e., life-thread and emergency system 

jurisdiction. Regarding the multiclass label (response delay), recall, specificity, precision and NPV were 

calculated for each class and then averaged following a macro approach. Likewise, micro F1 score was 

computed for both the binary and multiclass labels, to dispose of an overall performance descriptor, not 

restricted to a single label class while taking into account the total number of true positives, true negatives, false 

positives and false negatives across all the classes. Finally, for all metrics, 95% confidence intervals were 

calculated by 1000 bootstrap samples [74] extracted from the test set. 
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RESULTS 

Tables 1, 2 and 3 show the classification performance results for the life-threatening, response delay 

and jurisdiction labels. Metrics are calculated in the test set, for the protocol, the ConNet, the CliNet, the TextNet 

and the ModNet. Percentage differences (∆) between the ModNet (final deep learning model) and the protocol 

are also reported.  

 Table 1. In-house triage protocol and deep learning models performance in life-threatening prediction (test set). 

Bootstrapped 95% confidence intervals are shown between brackets. 

Abbreviations: NPV, negative predictive value; ∆, ModNet difference respect the protocol. 

Table 1 shows that the ModNet outperforms the current protocol in the life-threatening prediction task. 

It captures more true life-threatening situations (higher recall) being much more precise, i.e., with less false 

positives (much higher precision). Respect to non-life-threatening incidents, it detects many more true cases of 

this type (much higher specificity) also with less false negatives (higher NPV). Referring to the overall 

performance in both classes, the ModNet beats the protocol by far (13.2% of micro F1 score improvement). 

Focusing on the subnetworks, the ConNet is the weakest deep learning model, although its F1 is 

superior to that attained by the protocol. The CliNet offers the better detection rate for true life-threatening 

situations but at the expense of a significant amount of false positives. Finally, the TextNet exhibits the overall 

better behavior although its capability to capture true life-threatening events is not the best among the 

subnetworks.  

Table 2 shows that ModNet outcomes are substantially above those achieved by the protocol in the 

response delay prediction task. Overall detection of situations with a specific true admissible response delay 

(undelayable, minutes, hours, days) is amply improved by the ModNet (15.8% increment in macro recall) while 

Model 

Life-threatening level (yes/no) 

Single-class metrics (yes)  Two-class metric (yes/no) 

Recall Specificity Precision  NPV  F1micro 

Protocol 0.644 [0.641, 0.647] 0.636 [0.633, 0.638] 0.547 [0.544, 0.551] 0.723 [0.72, 0.725] 0.639 [0.637, 0.641] 

ConNet 0.44 [0.436, 0.443] 0.785 [0.782, 0.787] 0.583 [0.579, 0.587] 0.672 [0.669, 0.674] 0.644 [0.642, 0.646] 

CliNet 0.79 [0.787, 0.793] 0.61 [0.607, 0.612] 0.581 [0.578, 0.584] 0.809 [0.807, 0.812] 0.683 [0.681, 0.685] 

TextNet 0.638 [0.635, 0.642] 0.844 [0.842, 0.846] 0.737 [0.734, 0.74] 0.773 [0.771, 0.775] 0.76 [0.759, 0.762] 

ModNet 0.671 [0.668, 0.675] 0.84 [0.838, 0.842] 0.742 [0.739, 0.745] 0.789 [0.786, 0.791] 0.771 [0.77, 0.773] 

∆ (%) 2.7 20.4 19.5 6.6 13.2 
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remarkably enhancing overall precision (17.3% raise). Regarding to the overall capturing of events which do 

not exhibit certain true admissible response delay, the ModNet is also superior (5.8% increase in macro 

specificity) showing less false negatives in this task (5.5% increment in macro NPV). Concerning to the general 

performance in all classes, the ModNet significantly exceeds the protocol (16.4% of micro F1 score 

improvement). 

Table 2. In-house triage protocol and deep learning models performance in response delay prediction (test set). 

Bootstrapped 95% confidence intervals are shown between brackets. 

Abbreviations: NPV, negative predictive value; ∆, ModNet difference respect the protocol. 

Focusing on ModNet subnetworks for response delay prediction, the ConNet is at the bottom in 

performance terms, not being capable of outperforming the protocol. The CliNet is clearly over the ConNet and 

already beats the protocol, while the TextNet is the best ModNet subnetwork in all metrics, with a substantial 

increase respect to the CliNet. 

Table 3 shows that the ModNet outperforms the protocol in the jurisdiction prediction task. It captures 

more situations which are truly jurisdiction of the emergency system (better recall) being more precise, i.e., with 

less false positives (better precision). In relation with incidents which should be derived to primary care, i.e., 

non-emergencies, the ModNet detects more true cases of this type (higher specificity) also with less false 

negatives (better NPV). Respect to the overall performance in both classes, the ModNet surpasses the protocol 

(4.5% of micro F1 score improvement). 

Regarding to ModNet subnetworks, although the ConNet presents the highest recall values, its 

specificity is fairly poor, with worse general results than the protocol in the jurisdiction prediction task. The CliNet 

provides a substantial improvement over the later subnetwork, with an overall performance above the protocol. 

As in life-threatening and response delay, the TextNet is the subnetwork attaining the best outcomes. 

 

Model 

Admissible response delay (undelayable, minutes, hours, days) 

Recallmacro Specificitymacro Precisionmacro NPVmacro F1micro 

Protocol 0.411 [0.409, 0.413] 0.8 [0.799, 0.801] 0.416 [0.414, 0.419] 0.805 [0.804, 0.806] 0.428 [0.426, 0.43] 

ConNet 0.376 [0.374, 0.378] 0.791 [0.79, 0.792] 0.415 [0.412, 0.418] 0.793 [0.792, 0.794] 0.413 [0.411, 0.415] 

CliNet 0.477 [0.475, 0.479] 0.824 [0.823, 0.825] 0.53 [0.527, 0.532] 0.829 [0.828, 0.829] 0.506 [0.504, 0.508] 

TextNet 0.544 [0.542, 0.546] 0.851 [0.85, 0.851] 0.583 [0.58, 0.585] 0.854 [0.853, 0.855] 0.576 [0.574, 0.578] 

ModNet 0.569 [0.567, 0.571] 0.858 [0.857, 0.859] 0.589 [0.587, 0.591] 0.86 [0.859, 0.86] 0.592 [0.59, 0.594] 

∆ (%) 15.8 5.8 17.3 5.5 16.4 
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Table 3. In-house triage protocol and deep learning models performance in jurisdiction prediction (test set). 

Bootstrapped 95% confidence intervals are shown between brackets. 

Abbreviations: NPV, negative predictive value; ∆, ModNet difference respect the protocol. 

DISCUSSION 

Relevance  

The superior performance of the ModNet against the triage protocol suggests the existence of 

information provided during the emergency medical call not considered by the current protocol, but captured by 

the deep learning model. According to TextNet outcomes, far better than those attained by the ConNet and 

CliNet, most of this information would be present in the free text dispatcher observations. Since text fields are 

unbounded, they would embrace wider casuistry, allowing more precision in the EMCI description, lowering, 

consequently, its uncertainty. 

Clinical variables stand as excellent life-threatening detection (about 80% of total cases) features, since 

dispatchers ask them to reduce chances of missing situations where patient’s life is at risk. Likewise, the 

outstanding emergency system jurisdiction recall of demographics and circumstantial factors (capturing about 

95% of total cases) may be related with patient profiles highly susceptible from requiring emergency aid, e.g., 

elderly cardiac patient males.  

The hardest classification problem is to predict the admissible response delay, probably derived from 

the fact that it is a multiclass label, presenting twice possible outputs (undelayable, minutes, hours, days) than 

the other labels (life-threatening, jurisdiction), which are binary. Likewise, within these binary labels, the less 

frequent class is tougher to predict than the most frequent one. 

Model 

Emergency system jurisdiction (yes/no) 

Single-class metrics (yes) Two-class metric (yes/no) 

Recall Specificity Precision NPV  F1micro 

Protocol 0.855 [0.854, 0.857] 0.541 [0.537, 0.545] 0.8 [0.798, 0.803] 0.635 [0.631, 0.639] 0.756 [0.754, 0.758] 

ConNet 0.945 [0.943, 0.946] 0.288 [0.285, 0.292] 0.741 [0.739, 0.743] 0.708 [0.702, 0.713] 0.736 [0.734, 0.738] 

CliNet 0.9 [0.899, 0.902] 0.521 [0.517, 0.525] 0.802 [0.8, 0.804] 0.708 [0.704, 0.712] 0.78 [0.778, 0.782] 

TextNet 0.917 [0.916, 0.919] 0.519 [0.515, 0.523] 0.804 [0.802, 0.806] 0.745 [0.741, 0.749] 0.791 [0.789, 0.793] 

ModNet 0.895 [0.894, 0.897] 0.597 [0.593, 0.601] 0.827 [0.825, 0.829] 0.726 [0.722, 0.729] 0.801 [0.799, 0.802] 

∆ (%) 4 5.6 2.7 9.1 4.5 
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The modular approach followed in this work, assembling four specialized subnetworks into a single 

global network, has shown that the potential of the aggregated network is superior to any of its individual 

components, balancing their respective weaknesses and strengths while properly integrating processed 

information within each one.  

Finally, the results of this work imply that current emergency dispatch processes could be improved by 

means of deep learning, eventually deriving in a positive impact over patient wellbeing and health services 

sustainability. 

Limitations 

The main limitation of this work is the inherent uncertainty of the problem: in the studied dataset it was 

likely to find rather similar input combinations presenting completely different label values. In other words, 

different disorders presented the same clinical picture. For example, chest pain may imply a life-threatening 

situation, if the underlying unknown cause is a heart attack, or not, since it could be derived from a prior anxiety 

crisis. This non-discriminative variability sets bounds in terms of maximum performance attainable by any 

model, i.e., Bayes error.[75] 

Future work 

Next steps include the evaluation of the deep learning model with prospective cases from the Valencia 

region and its deployment and integration in the emergency medical dispatch center. For that, we will propose 

a graphical user interface to allow the interaction between the dispatcher and the model during the call. Finally, 

the resulting tool will be implemented in the emergency medical dispatch center of the Valencian Community. 

CONCLUSIONS 

A novel deep multitask ensemble model, designed to aid non-clinical dispatchers during emergency 

medical calls to classify incidents by their life-threatening level, admissible response delay and emergency 

system jurisdiction, has been developed and successfully evaluated. To our knowledge, this is the first deep 

learning model implemented to face this challenge. 

The performance achieved by the model is notably superior to that attained by the current in-house 

triage protocol of the emergency medical dispatch service of the Valencian Community, achieving an 

improvement of 13.2%, 16.4%, 4.5% in life-threatening, response delay and jurisdiction classification, 

respectively, with regard to the micro F1 score metric. 

The network modular design with specialized subnetworks for the different data modalities has allowed 

discovering the potential benefit of the information contained in free text fields for the automatic classification of 

emergency medical call incidents. This information can be used to optimize current guidelines. 
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The implantation of this model in medical dispatch centers would have a remarkable impact in patient 

wellbeing and health services sustainability. 
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