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Abstract 

Expression quantitative trait loci (eQTL) mapping has successfully resolved some genome-wide 
association study (GWAS) loci for complex traits1–6. However, there is a need for implementing 
additional “omic” approaches to untangle additional loci and provide a biological context for 
GWAS signals. We generated a detailed landscape of the genomic architecture of protein levels 
in multiple neurologically relevant tissues (brain, cerebrospinal fluid (CSF) and plasma), by 
profiling thousands of proteins in a large and well-characterized cohort. We identified 274, 127 
and 32 protein quantitative loci (pQTL) for CSF, plasma and brain respectively. We 
demonstrated that cis-pQTL are more likely to be shared across tissues but trans-pQTL are 
tissue-specific. Between 78% to 87% of pQTL are not eQTL, indicating that protein levels have 
a different genetic architecture than gene expression. By combining our pQTL with Mendelian 
Randomization approaches we identified potential novel biomarkers and drug targets for 
neurodegenerative diseases including Alzheimer disease and frontotemporal dementia. In the 
context of personalized medicine, these results highlight the need for implementing additional 
functional genomic approaches beyond gene expression in order to understand the biology of 
complex traits, and to identify novel biomarkers and potential drug targets for those traits. 
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Genetic studies have been successful in identifying genetic regions associated with complex 
traits, including diabetes, cardiovascular disease and neurodegenerative diseases among others1–

4, but have fallen short in understanding the biological mechanisms underlying those traits. Most 
genome-wide association studies (GWAS) identify multiple disease loci rather than the 
functional variant or genes, which makes it difficult to biologically interpret the association 
results and identify novel biomarkers and drug targets. By leveraging gene-expression and 
genetic data generated by multiple studies5,6, including the Genotype-Tissue Expression (GTEx) 
project, it has been possible to identify the functional variants or genes driving some GWAS 
signals. GTEx and others have shown that there are tissue-specific expression quantitative trait 
loci (eQTL), and that in order to perform appropriate eQTL mapping, it is important to 
interrogate the tissue of interest for the specific trait in question. 

However, eQTL mapping has not been able to resolve all GWAS signals. There is evidence that 
many genetic variants alter protein and not transcript levels7. There are several published studies 
analyzing the genetic architecture of protein levels. Most are focused on a single tissue, mainly 
plasma7–10, though there are few studies with small sample sizes using cerebrospinal fluid11,12 
and brain tissue13. These studies suggest that a good proportion of the protein QTL (pQTL) are 
not eQTL, and that additional GWAS signals can be resolved with pQTL mapping. Integration of 
pQTL with Mendelian Randomization has led to the identification of causal pathway and novel 
biomarkers for complex traits as well as compounds that could be used for drug repurposing7.  

In this study, we combined high-throughput proteomics in multiple tissues with genetic data to 
determine the genomic architecture of protein levels in neurologically relevant tissues (brain, 
CSF and plasma), leading to the identification of multi-tissue and tissue-specific pQTL that are 
critical for the understanding of the biology of complex traits and diseases, mainly for CNS-
related traits including neurodegenerative and psychiatric diseases.  

 

Multi-tissue pQTL  

We generated data for 1,305 proteins using an aptamer-based approach in CSF (n=971), plasma 
(n=636) and brain (n=459) samples (Extended Fig.1, Table S1). We included multiple technical 
and biological replicates to confirm the replicability and reproducibility of our proteomic 
measurements (Extended Fig.2). We performed stringent quality control (QC) steps for the 
proteomic data (See Material and Methods). After QC, 835 CSF samples and 713 proteins, 529 
plasma samples and 931 proteins, and 380 brain samples and 1079 proteins were included in the 
analyses (Table 1 and S2). To identify pQTL within each tissue (Fig. 1a), we performed 
genome-wide association analyses of 14.06 million imputed autosomal common variants (minor 
allele frequency (MAF) > 0.02) against protein levels in each tissue. We defined cis-signals as 
when the single nucleotide polymorphism (SNP) fell within 1Mb upstream or downstream of the 
coding region, and trans-signals as when the single SNP fell outside of that window. To correct 
for multiple-tests, we used a stringent genome -wide threshold of p<5×10-8 for cis-pQTL and 
5×10-8/number of independent proteins for trans-pQTL. There were 169, 230 and 75 independent 
proteins that passed QC in CSF, plasma and brain respectively (see Material and Methods), 
therefore the p-value thresholds were set at 2.96×10-10 for CSF; 2.17×10-10 for plasma, and 
6.67×10-10 for brain.  

In total (cis+trans), we identified 274 independent study-wide significant signals for 184 CSF 
proteins, 127 independent signals for 100 plasma proteins and 32 independent signals for 27 
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brain proteins (Fig. 1, 2, Table S3, S4 and S5). The number of significant pQTL was 
proportional to the sample size, rather than the number of proteins. Of the 274 study-wide 
significant associations in CSF, 82% were cis associations and 18% were trans associations. In 
plasma, 76% were cis associations and 24% were trans associations. Lastly, in brain, 94% were 
cis associations and 6% were trans associations (Fig. 1b). The lower number of trans-pQTL in 
brain is likely due to the smaller sample size, and we predict that a similar proportion of cis/trans 
signals will be found in brain when larger studies are performed. 

Previous studies discovered that most eQTL are non-coding variants leading to the hypothesis 
that most of the eQTL effects act through modulation of transcription factor binding or 
chromatin structure14, but it is not clear if this is the case for pQTL. For this reason, we 
performed bioinformatic functional annotation and statistical analyses to determine if pQTL are 
enriched in specific regions such as untranslated regions (UTRs), downstream or upstream of the 
gene, splice sites, Non-coding RNA (ncRNA) splice sites, ncRNA_introns, ncRNA_exons, 
introns, intergenic regions, or exons. We found that the strength of the association (effect size or 
beta) for cis signals decreased with distance from the transcription start site (Extended Fig.3a), 
similar to what has been previously reported for cis-eQTL14. This effect was found in all three 
tissues, suggesting that this is a common biological event. There was an inverse relationship 
between absolute value of the effect size (beta) and MAF (Extended Fig.3b), consistent with 
previous protein level genome-wide association studies (p-GWAS;7,15).  However, both cis and 
trans pQTL were strongly enriched for exonic variants (Odds Ratio = 3.71, 5.25, 4.19 for CSF, 
plasma, and brain respectively; Extended Fig.3c). In 42-53% of the cis effects (95 out of 226 in 
CSF, 44 out 97 in plasma, 16 out of 30 in brain), the association can be explained by a coding 
variant whereas in eQTL only 2-5% 5 of the signals are located in coding regions, indicating that 
pQTL are significantly enriched for coding variants. These results suggest that are additional 
regulatory mechanisms (including post-transcriptional changes) for protein levels that may not 
be implicated for mRNA levels.  

The enrichment of coding variants for pQTL was not only in cis but, but also in trans (Extended 
Fig.3, Extended Fig.6, Table S3, S4, S5), suggesting that protein levels are more likely to be 
regulated post-transcriptionally than by regulating mRNA levels. In multiple cases, the most 
significant signal was a coding variant in the gene that affects protein cleavage or secretion (cis-
signal; as in the case of IL6R or YKL-40; Extended Fig.3c, Table S3), or a coding variant in the 
receptor of the protein that is likely to modify protein-receptor binding (trans-signal: as in the 
case of variants in the APOC4  gene region that are associated with the BAFF Receptor; 
Extended Fig.3c, Table S3). In line with the hypothesis that coding variants have a higher effect 
size and that pQTL are enriched for coding variants, we found that pQTL explain a large 
proportion of the variation in protein levels. The median variation in protein levels explained by 
pQTL was 9% to 14.9% (interquartile range: 13.2% to 15%; Extended Fig.3d). However, there 
are some extreme cases in which the top pQTL explains more than half of the variability in 
protein levels, such as in the case of rs2075803 (p.K100E) which explains 81% of the CSF 
Siglec-9, rs5498 (p.K469E) which explains 74.4% of plasma sICAM-1, and rs5498 (p.K469E) 
which explains 67.4% of brain PPAC (Extended Fig.3d, Table S3, S4, S5). The CSF Siglec-9, 
plasma sICAM-1, and brain PPAC have been replicated in other studies13,15–17 using a different 
proteomic approach indicating that these findings are not a platform driven finding.  
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To replicate our pQTL findings, we accessed, processed and analyzed several publicly-available 
datasets. We also performed meta-analyses and cross-tissue replication. For CSF, we leveraged 
two studies in which similar proteomic and genetic data were available: Sasayama et al. 
generated aptamer-based proteomic and GWAS data from 132 samples of Japanese origin11 and 
the Parkinson's Progression Markers Initiative (n=131; released December 2019, PPMI19 
hereafter), also had proteomics and genetic data available. We found that 51 pQTL (49 cis and 2 
trans) were genome-wide significant and in the same direction in those studies. We also 
performed a meta-analysis of the Sasayama and the PPMI studies (Table S6) to identify 
additional genome-wide and nominal associations. We found that 153 of our study-wide 
significant signals had genome-wide significance in PPMI+Sasayama meta-analysis and 27 
additional pQTL showed at least a nominal association in the same direction in the 
Sasayama+PPMI meta-analyses. We also identified an additional 16 pQTL that have been 
reported to be pQTL in other tissues (plasma in AddNeuroMed 18, INTERVAL7, KORA8, 
SCALLOP9, and a mass spectrometry based pQTL dataset13, and in our plasma or brain pQTL 
data). We were unable to test for replication of five pQTL as protein levels were not available in 
other studies. In summary, we were able to replicate more than 90.1% of the CSF pQTL, which 
is higher than previous studies7. Twenty two pQTL are still pending replication, as current 
studies with smaller sample sizes do not provide enough statistical power. However, based on 
our validation with plasma and brain pQTL, a good proportion are likely real. This is supported 
by the fact that we have been able to replicate 96.8% and 96.9% of the plasma and brain pQTL 
(see below). 

For replication of the plasma pQTL we used the AddNeuroMed (n=343), INTERVAL (n=3,301), 
KORA (n=1335), and SCALLOP (n=3394) studies. We were able to replicate 96.8% of our 127 
pQTL. We were not able to test another two, as they were not measured in those studies. For 
brain, there were no published studies using the same aptamer-based proteomic method. 
However we matched our proteins with a mass spectrometry based pQTL dataset13. We were 
able to replicate five signals at genome-wide significance, eight signals at a nominal association, 
and 17 pQTL that showed at least a nominal association in brain or CSF. Only one pQTL was 
not replicated. 

To increase the statistical power and identify additional genome-wide significant pQTL, we 
performed meta-analyses that included all the CSF cohorts as well as multi-tissue analyses. We 
first performed a CSF mega meta-analysis including the 596 common proteins shared among our 
study, PPMI and the Sasayama study (Extended Fig.4c,d). The additional sample size identified 
425 pQTL for 310 proteins, compared to the 250 pQTL for 185 proteins identified by our CSF 
cohort. This represents an almost two-fold increase in the pQTL signals by increasing the sample 
size just 25%, suggesting that many other pQTL will be identified with a larger sample size. We 
observed a similar increased in the number of pQTL when performing a multi-tissue meta-
analysis. For these analyses, we included 342 proteins that passed QC in our three tissue types as 
well as the PPMI and Sasayama study, and found 253 pQTL compared to the 139 that were 
found in our CSF sample (Extended Fig.4c,d). 

Because our study includes cognitively normal elderly individual and Alzheimer disease cases, 
we performed additional analyses to determine if any of the pQTL are disease-specific. We 
included disease status as a covariate, and performed case-only and control-only analyses and 
compared the effect sizes (betas) of the genome-wide pQTL of the initial analyses with the beta 
of these analyses. We found an extremely high correlation (Pearson’s r>0.98, Extended Fig.5, 
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Table S7, S8, S9), indicating that the association of the genetic variants with protein levels does 
not depend on disease status. 

 

Complex and pleiotropic loci 

To identify complex loci where more than one independent association exists at the same region, 
we performed conditional analyses for the top GWAS signal.  After a first round of conditional 
analyses, 87 CSF, 30 plasma, and 6 brain loci still had SNPs with independent and genome-wide 
significance (Fig. 2a).  We performed a second round of conditional analyses including the top 
SNP from the initial and the first conditional analyses. In this second round of conditional 
analyses 32 CSF, eight plasma, and one brain loci still showed independent and genome-wide 
significant association (Fig. 2a).  We continue performing conditional analyses until no SNP 
passed the genome-wide threshold. We found one protein with up to five independent signals, 
ten with four and more than 30 with three independent signals. There were still nominal 
associations after the conditional analyses for a large proportion of the loci. This indicates that 
we may be underestimating the number of independent signals for these loci, and highlights the 
complex mechanisms that regular protein levels.  

As an example of these complex regions: the main signal for CSF ARTS1 (Fig. 2b) is driven by 
the nonsynonymous variant p.D575N (rs10050860; p-value=7.41×10-86). After conditioning on 
this signal, there was still a genome-wide signal tagged by rs469674 (conditional p-
value=1.40×10-88) which is predicted to affect a transcription factor binding site (RegulonDB 
score =119) and is associated with gene expression (GTEx; multi-tissue p-value=0). The third 
independent signal in this region (rs27895; conditional p-value=2.17×10-13) is driven by a 
nonsynonymous variant (p.G346D). Similarly, the main signal for CSF ASAHL is driven by the 
nonsynonymous variant p.V151I (rs4859571; p-value=4.79×10-63) and the second independent 
signal by rs7688400 (conditional p-value=1.82×10-42) which affects gene expression 
(RegulonDB Score=2; GTEx p-value:3.25×10-103). The third independent signal is tagged by the 
nonsynonymous variant p.F334L (rs6823734, conditional p-value=1.04×10-25), and the fourth 
independent signal is tagged by another coding variant (Fig. 2c). All together, these results 
indicate that proteins are highly regulated and include several independent mechanisms, even at 
the same locus. These mechanisms may affect protein expression levels by affecting cleavage, 
cell secretion, receptor binding, or clearance (nonsynonymous variants) and others by regulating 
gene expression (non-coding variants).  

We found that there are some loci that regulate the levels of not only one protein, but up to 13 
different proteins as in the case of genetic variants in the APOE region. Genetic variants in the 
APOE gene region are associated with 13 different CSF proteins, including PTP-1B, Apo E2, 
SMOC1, EMAP-2, AREG, 14-3-3, phosphoglycerate kinase 1, CKAP2, RUXF, 14-3-3 
protein_zeta/delta, PSME1, UB2G2 and QORL1 (Fig. 2d,e, Extended Fig.6a, Table S10). 
These proteins are located on different chromosomes indicating that this is not just a cis-
regulation, where these genes present similar mRNA regulatory mechanism because they are 
located on the same chromosomal region. Genetic variants in APOE are the strongest risk factors 
for Alzheimer disease and Lewy body dementia. Several studies have found that the 14-3-3 
protein is a marker of non-specific neuronal death20,21, and our results supports 14-3-3 
protein_zeta/delta as a potential biomarker for Alzheimer disease and other neurodegenerative 
diseases. For CSF, we found 59 pleotropic regions where the same locus was associated with two 
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or more proteins. In plasma, we replicated the known pleiotropy of the ABO locus for seven 
different proteins including E-Selectin (Fig. 2f, Extended Fig.6b, Table S11), which was 
implicated in stroke risk by recent studies using Mendelian Randomization approaches22. Further 
studies are needed to establish how these, and other genetic variants are associated with more 
than one protein. For example, genetic variants in the SPCS3-VEGFC region regulates brain 
levels of five different proteins: Angiopoietin-1, Growth hormone receptor, RET, ANGL3, and 
DLL4 (Fig. 2g, Extended Fig.6c, Table S12). Similarly, F5 regulates CSF Coagulation Factor 
V, CAMK1, P-Selectin and L-Selectin.  An additional 32 pleotropic regions in plasma and nine 
in brain tissue were found. 

Many of the published studies on eQTL and pQTL have not identified pleotropic regions because 
they have focused on cis-associations13,23–25. Our results indicate that protein expression is 
regulated at multiple levels and in coordination with other independent proteins, which are likely 
part of the same signaling pathway. In order to understand the biological process of health and 
disease, it is important to identify which proteins are regulated by the same genetic factors. This 
study identifies tissue-specific pleiotropic effects, highlighting the complex mechanisms that 
regulate protein levels. Identification of additional tissue-specific cis, trans and pleotropic 
regions will identify novel pathways relevant to pathogenesis. 

 

Multi-tissue genetic architecture of protein levels 

Our unique study design, which includes high-throughput protein levels in multiple tissues 
linked to genetic data, enabled us to investigate the overlap of the genetic architecture of protein 
levels across tissues. We compared the overlap of study-wide significant cis and trans-pQTL 
between CSF, plasma and brain, while focusing on the proteins (n=411) that passed QC in all 
three tissues (Fig. 3a, Table S13). We observed that cis-pQTL are more likely to be shared 
across tissues than trans-eQTL. When using the standard genome-wide significance cutoff as a 
threshold, we found that 11.8% (21 of 199) of cis-pQTL loci were shared between the three 
tissues, and 48% (86/178) of cis-pQTL are found in two or more tissues. Although cis-pQTL are 
often shared between tissues, more than half of the pQTL (92/178) were tissue-specific. Only 
one trans-pQTL was shared across all tissues and only 14.0% (19 of 135 trans) are shared 
between two or more tissues. Plasma shared more pQTL with CSF than brain (Fig. 3b,c; in cis: 
72 vs 24; and trans:19 vs 1). CSF seems to capture the overall genetic architecture of brain 
protein levels better than plasma, as 91% (32/35) of the brain cis-pQTL are found in CSF 
compared to the 68% (24/35) captured by plasma.   

As our sample size was not consistent across tissues and CSF had a higher number of samples, 
these results could be biased by differential statistical power. Therefore, we performed similar 
analyses with more permissive p-values. We contemplated two complementary scenarios: a 
pQTL is shared across tissues if it is genome-wide significant for one tissue and has a p-value of 
<0.05 (scenario 1; Extended Fig.7a, Table S14) or p<0.001 (scenario 2; Extended Fig.7b, 
Table S15). These two scenarios led to similar results as those performed with the genome-wide 
threshold. Between 22-32% of the cis-pQTL were found in all the tissues compared to 2-4% of 
the trans-pQTL, and CSF was able to capture most of the cis and trans brain pQTL. We 
performed similar comparisons by comparing our CSF and brain pQTL with the plasma pQTL 
from the INTERVAL study that includes 3,301 samples to confirm that our findings were not an 
artifact of the sample size. For these comparisons we focused on 616 proteins that passed QC in 
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CSF and brain from this study, and plasma from INTERVAL (Extended Fig.8a-d).  These 
analyses replicated our findings and indicate cis-pQTL are more likely to be shared across tissues 
than trans-pQTL. As expected, CSF captures the overall genetic architecture of brain protein 
levels better than plasma, but plasma still captures more than half of the observed brain pQTL, 
suggesting that plasma may still be an informative tissue to study brain-related disorders, such as 
Alzheimer disease. 

 

Multi-tissue pQTL identify functional genes and provide a biological context for GWAS 
findings 

eQTL mapping and colocalization analyses have been instrumental in identifying the functional 
genes in genetic studies of complex traits5,26. However, it is known that changes in transcript 
levels do not necessarily translate to changes in protein levels. In order to resolve all GWAS 
signals, it is vital to determine the overlap between eQTL and pQTL. We analyzed the overlap of 
our cis-pQTL with the latest release GTEx v8 cis-eQTL across all 50 tissues (Table 2 & Table 
S16).   

Only 13-22% of the cis-pQTL were also cis-eQTL for the same gene from the GTEx multi-tissue 
analysis. More specifically, in brain, only 13% of the pQTL were found in GTEx, which is 
similar to the Robins et al. (2019) study13 in which the authors used mass-spectrometry based 
proteomics to measure 7901 proteins in 144 samples, and found an overlap in 16% of proteins 
with eQTL from GTEx. This may be also explained by the fact that as the number of brain 
samples in GTEx is only 323 compared to the 380 samples included in this study, which 
represent the largest brain pQTL performed so far. In plasma, only 22% of our pQTL were also 
eQTL, similar to other previous studies7. No previous studies have analyzed the overlap between 
pQTL and eQTL in CSF yet. Based on our results only 18% of the pQTL have been reported as 
eQTL in GTEx.  

We also analyzed the correlation in the for overlapping pQTL and eQTL. We found that the 
correlation of the QTL effect size in blood (Spearman r=0.63) was higher than in CSF (Spearman 
r=0.32) or brain (Spearman r=0.20). This indicates that a large proportion (37 to 80%) of the 
pQTL cannot be inferred directly from eQTL, especially in brain, and therefore additional multi-
tissue proteomic analyses in larger datasets are needed in order to map the additional GWAS 
signals. As most of the eQTL analyses are only focused on cis-eQTL mapping, we were not able 
to analyze the overlap for the trans-eQTL.  

It is critical to perform trans-pQTL analyses, because trans-pQTL analysis can identify novel 
protein-protein interactions or proteins that are part of the same pathway. For example, variants 
in the HLA-DQA1 gene region are known to be associated with Alzheimer Disease risk3 and here 
we found that they are also associated SLAM family member 5 (SLAF5), and CD33 protein 
levels. CD33 is also a known GWAS locus for Alzheimer Disease risk, and both CD33 and 
SLAF5 are microglia-specific proteins27. Recent studies, especially the identification of the 
association of TREM2 with Alzheimer disease risk28,29, have highlighted the importance of 
microglia in Alzheimer disease. TREM2 acts downstream of CD33 in modulating the microglial 
pathology in Alzheimer disease30,31.  Similarly, in a recent study we found a trans-pQTL for CSF 
TREM2 levels in the MS4A4A gene32. Although the two genes have been implicated in 
Alzheimer Disease, Deming et al. (2019) demonstrate for the first time that that MS4A4A 
interacts with TREM2, and that it is possible to modulate TREM2 levels by targeting MS4A4A 
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levels. This study also provided a biological context for the original association of MS4A4A. 
MS4A4A modifies Alzheimer disease risk by regulating TREM2 levels. Mendelian 
Randomization studies also demonstrated that higher TREM2 levels are protective, and there are 
currently clinical trials that targets TREM2 by using activating antibodies or MS4A4A as a 
potential therapy for Alzheimer disease32. Here for the first time we are putting another two 
genes, HLA-DQA1 and SLAF5, in the same pathway as CD33, TREM2 and MS4A4A. These 
genes are likely to affect microglia activity and innate immune response This study goes beyond 
Alzheimer disease, and the data generated here can be leveraged for other traits as well. Multiple 
groups7,9 have also identified a trans-pQTL for the ABO locus in E-selectin that has been 
demonstrated to be the gene driving the association for stroke risk and may be a useful potential 
biomarker for stroke risk. These and other similar findings are a clear example of how pQTL 
studies can help identify the functional genes underlying GWAS signals, as well as add 
biological context to the GWAS loci.  

 

Mendelian Randomization to identify novel biomarkers and drugs for neurodegenerative 
diseases 

We and others10,33 have demonstrated that by combining pQTL summary statistics with 
Mendelian Randomization (MR) analyses it is possible to identify novel biomarkers and causal 
proteins for complex traits. The advantage of this approach is that it is possible to perform large-
scale unbiased biomarker discovery for multiple complex traits, without the need for expensive 
studies. To infer the causality between proteins and complex traits, we performed MR analysis 
by using pQTL as instrumental variables. We performed MR for Alzheimer disease risk, onset 
and progression, Parkinson disease, Frontotemporal dementia, Amyotrophic lateral sclerosis and 
stroke risk (Table S17).  We found three potential biomarkers and proteins involved in 
Alzheimer disease risk in CSF, and 13 in plasma (Table 3, Fig. 4, Table S18). Some of these 
proteins were regulated by known GWAS hits, but others were novel.  For example, using AD 
risk as the outcome, Siglec-3 protein (encoded by CD33), a known regulator for Alzheimer 
disease risk3, was found significantly associated with Alzheimer disease risk in plasma and CSF. 
Higher plasma Siglec-3 (CD33) was associated with increased Alzheimer disease risk. 

The TMEM175/GAK/DGKQ/CPLX1/IDUA locus is the third most significant locus in the large 
meta�analyses of Parkinson disease risk GWASs34–36. This multi-gene locus contains more than 
one independent signal associated with PD36. However, it is unclear which gene or genes are 
responsible for this association. Several recent papers suggest that coding variants in 
TMEM17537, eQTL affecting GAK36, IDUA and DGKQ38 or CPLX139 could be the drivers of this 
association. We found that the SNPs in this locus were associated with IDUA protein levels as 
well as Parkinson’s disease risk (rs35220088; p= 2.47×10-6 and 3.52×10-9, respectively) and our 
MR analyses indicate that IDUA is a functional gene in this locus. (MR FDR-corrected p-value: 
9.37×10-6; Table S17). The IDUA gene encodes alpha-L-iduronidase, which degrades 
glycosaminoglycans (GAGs) in the lysosome. Mutations in the IDUA gene cause 
mucopolysaccharidosis type I (MPS I), a lysosomal storage disease40. These findings also 
highlight the power of pQTL to help in determining the causal gene in a multi-loci genomic 
region associated with disease risk. 

E-Selectin protein is a known stroke biomarker22, and our MR analyses indicate that this protein 
is not only a biomarker but also is part of the cascade of pathogenic events that leads to disease 
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(Table S18). Some proteins were inferred to be functional across more than one 
neurodegenerative disease within each tissue (Table S18).  Among CSF proteins, IL-1F6 was 
shown in the MR analyses to be associated with Alzheimer disease progression, Parkinson’s 
Disease risk and Frontotemporal Dementia risk. SLAF5 was linked to both Alzheimer and 
Parkinson’s Disease risk.  Among plasma proteins, MICA was involved in the causal pathways 
of both Alzheimer disease risk and Frontotemporal Dementia risk and PSME1 was involved in 
the causal pathways of both Alzheimer disease age at onset and Parkinson’s Disease risk. Among 
brain proteins, IL-17 RD was involved in causal pathways of both Frontotemporal Dementia risk 
and stroke risk, and PPAC was involved in the causal pathways of both Alzheimer disease age at 
onset and Amyotrophic lateral sclerosis risk.   

Our study and those like it are not only useful for identifying pQTL that will help to resolve 
GWAS locus, but also for identifying novel biomarkers and causal pathways using MR analyses. 
We integrated the pQTL data, MR analyses and databases for approved and experimental drug 
targets to identify potential drugs that could be repurposed for diseases caused by complex traits. 
It is also known that compounds aiming to target proteins supported by genetic and genomic data 
are more likely to work than those without genetic support. We found that 44.5% (n=130), 37% 
(n=67) and 49.3% (n=39) of the CSF, plasma and brain proteins with pQTL colocalize with drug 
targets (Table S19).  

Our results identify multiple potential drug repurposing opportunities. For example, we 
identified a very strong cis-pQTL (p= 3.4×10-111, and 8.3×10-84 in CSF and plasma respectively) 
for Siglec-3, which is encoded by CD33 and is a known GWAS locus for Alzheimer disease risk. 
AVE9633 is an anti-CD33 antibody used in acute myeloid leukemia, however our studies 
indicate that CD33 could be also be a target for Alzheimer disease. In fact, there are already 
clinical trials that are using antibodies targeting CD33 as a potential therapy for Alzheimer 
disease41. Similarly, our results suggest that Acetazolamide as a potential drug for amyotrophic 
lateral sclerosis. Our genetic analyses found a strong pQTL for carbonic anhydrase IV, which is 
a target for Acetazolamide. Several studies have reported that the expression of Carbonic 
Anhydrase IV is altered in the motor neurons of Amyotrophic lateral sclerosis patients42,43. 
Acetazolamide is a carbonic anhydrase inhibitor44, used to treat glaucoma, epilepsy and altitude 
sickness45. Acetazolamide has been associated with worse outcomes in Amyotrophic lateral 
sclerosis, supporting the idea that targeting carbonic anhydrase IV can modify disease course of 
Amyotrophic lateral sclerosis.  However, our results indicate that higher activity levels of 
carbonic anhydrase IV would be associated with better Amyotrophic lateral sclerosis outcomes. 
Finally, our analyses nominated IDUA as the functional gene for the Parkinson’s disease 
TMEM175/GAK/DGKQ/CPLX1/IDUA locus, but also indicate that IDUA could be a potential 
drug target. These data indicate that IDUA can be targeted with chondroitin sulfate. IDUA is 
required for the lysosomal degradation of glycosaminoglycans, dermatan sulfate and heparan 
sulfate (HS). HS significantly stimulates the formation of α-Synuclein fibrils in vitro46. HS also 
mediates macropinocytotic uptake of α-Synuclein47. Pharmacological inhibition of HS binding of 
α-Synuclein and genetic reduction of HS synthesis facilitates the clearance of pathogenic 
proteins and reduce their aggregation47. Additional potential drugs targeting proteins with strong 
pQTL can be found in Table S19. Overall, our data and analyses provide new evidence for 
potential therapeutic targets by linking genetic factors to disease via specific proteins. 

Discussion 
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In this study we generated a detailed map of multi-tissue pQTL that will be instrumental in 
understanding the tissue-specific genetic architecture of protein levels. pQTL were enriched for 
coding variants compared to eQTL. By leveraging this data, we have been able to resolve some 
of the GWAS loci, identify additional proteins implicated in disease pathogenesis and identify 
novel biomarkers for complex traits. If we want to understand the genetic architecture of 
complex traits, we first need to understand the genetic architecture of protein levels. Until now, 
gene expression has been the main approach to solve some of the GWAS loci. However, here we 
demonstrate that a large proportion (>78%) of the pQTL are likely driven by post-transcriptional 
and post-translational effects, and therefore cannot be found by eQTL analyses. However, multi-
tissue pQTL mapping has been constrained by the limited availability of large-scale proteomic 
analyses in several tissues, a bottleneck remedied by this study. Here we present the largest brain 
and CSF pQTL analyses performed so far, the first neurological-relevant multi-tissue pQTL 
study and a unique resource to leverage multi-tissue pQTL to understand complex traits. This 
data can be leveraged to perform MR analysis on other CNS pathologies for which there is good 
GWAS data such as schizophrenia or bipolar disorders, as well as cognition or measures of brain 
function. All the results from this study can be interactively accessed through the Online 
Neurodegenerative Trait Integrative Multi-Omics Explorer (ONTIME; 
https://ontime.wustl.edu/).  
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Methods 
Aptamer-based proteomics data sample collection 
This study comprises about 1237 participants from Washington University. Samples from 
participants were of three tissue types: a) CSF; b) plasma; c) brain (parietal lobe cortex). CSF 
samples were collected in the morning after an overnight fast, processed, and stored at -80 °C.  
Plasma samples were collected in the morning after an overnight fast, immediately centrifuged, 
and stored at − 80°C.  Brain tissues (~500mg) were collected from the fresh frozen human 
parietal lobes. 
For CSF tissue, there were 971 unique participants and 1300 samples (329 participants provided 
two samples, one baseline and one longitudinal) in total, including 275 AD cases, 1020 
cognitively normal controls and five with unknown status.  The age is normally distributed with 
a mean of 69.4 years and standard deviation of 9.3 years. 53% of the samples are from women. 
For plasma tissue, there are 636 unique participants and 648 samples in total, including 234 AD 
individuals, 409 cognitively normal controls and five with unknown status.  The age is normally 
distributed with a mean of 69.8 years and standard deviation of 9.4 years.  54% of the samples 
are from women.  For brain tissue, there are 458 unique participants and 459 samples in total, 
including 345 cases, 12 cognitively normal controls and 102 with unknown or other status (e.g. 
FTD, other neurological diseases).  The age is normally distributed with a mean of 83.3 years 
and standard deviation of 10 years.  57% of the samples are from women. The donor overlap 
across three tissues are shown as a Venn diagram in Extended Fig. 2b: 9 donors were shared 
across all three tissues; 481 donors were shared by both CSF and plasma; 29 donors were shared 
by plasma and brain; 481, 117 and 420 were exclusively for CSF, plasma, and brain tissues 
respectively.  The Venn Diagram was drawn using VennDiagram48 R package.  These recruited 
participants were evaluated by the clinical personnel from Washington University. The AD 
severity was determined by the Clinical Dementia Rating (CDR)49.  The Institutional Review 
Boards of Washington University School of Medicine in St. Louis approved the study, and 
research was carried out in accordance with the approved protocols.   

 
Proteomic data QC process 
We used a multiplexed, aptamer-based approach50, to measure the relative concentrations 
(relative fluorescent units, RFU) of proteins from CSF, plasma and brain tissues, assayed using 
1,305 modified aptamers in total.  The assay covers a 108 dynamic range, and measures all three 
major categories: secreted, membrane and intracellular proteins.  The proteins cover a wide 
range of molecular functions, such as protein binding and the MAPK cascade.  The coverage of 
proteins on the platform has taken into account proteins known to be relevant to human disease, 
including Alzheimer diseases 51, cardiovascular diseases52, thus has been widely used for 
biomarker discovery. 
Aliquots of 150 μl of tissue samples were sent to Genome Technology Access Center at 
Washington University in St. Louis for protein measurement. Assay details have been previously 
described by Gold and colleagues 50. In brief, modified single-stranded DNA aptamers are used 
to bind to specific protein targets that are then quantified by a DNA microarray. Protein 
concentrations are quantified as RFU. 
Quality control (QC) was performed at the sample and aptamer levels using control aptamers 
(positive and negative controls) and calibrator samples.  At the sample level, hybridization 
controls on each plate were used to correct for systematic variability in hybridization.  The 
median signal over all aptamers was used to correct for within-run technical variability. This 
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median signal was assigned to different dilution sets within each tissue: For CSF samples, a 20% 
dilution rate was used. For plasma samples, three different dilution sets (40%, 1% and 0.005%) 
were used. For brain samples, a 20% dilution rate was used. 
To QC the proteomics datasets (Extended Fig.1a-d), the protein/analyte outliers were first 
removed by applying four criteria as below: 1) Minimum detection (LOD) filtering. Limit of 
detection (LOD) was defined as the summation of average expression level of the new NP-buffer 
(used as dilution buffer of CSF samples since plate-42) and K fold of standard deviation (K = 2).  
If the analyte for a given sample was less than LOD, this sample was an outlier.  Collectively, if 
the number of outliers given an analyte was less than 15% of total sample size, this analyte was 
kept.  2) Flagging analytes based on the scale factor difference.  The scale factor difference was 
calculated as the absolute value of the maximum difference between the calibration scale factor 
per aptamer and the median for each of the plates run.  If the value for this analyte was less than 
0.5 (NOTE: SOMAlogic SQS report used 0.4), the analyte passed this criterion. 3) CV of 
calibrators lower than 0.15.  The coefficient of variation (CV) for each aptamer was calculated 
by dividing the standard deviation by the mean of each calibrator at the raw protein level.  If the 
analyte had a CV of less than 0.15, this analyte passed the CV QC.  4) IQR strategy.  Outliers 
were identified if the subject was located outside of either end of distribution using a 1.5-fold of 
IQR given the log10 transformation of the protein level.  Collectively, if the number of outliers 
of given an analyte was greater than 85% of total sample size, this analyte was filtered.  Analytes 
were kept after passing all the criteria above for the downstream statistical analysis. 5) An 
orthogonal approach was used to call subject outliers based on IQR.  Collectively, if the number 
of outliers given an analyte was greater than 85% of total number of analytes passed QC, this 
subject was labeled as an outlier. 

Furthermore, the analytes were removed if shared by most (~80%) of the subject outliers.  
After this second removal of analytes, subject outliers were called again.  Outlier subjects were 
again removed. 
Proteins were mapped to UniProt53 identifiers and Entrez gene symbols. Mapping to Ensembl 
gene IDs and genomic positions (start and end coordinates) was performed using gencode v30 
liftover to hg19/GRCh37.  
 
Reproducibility investigation via comparisons between biological or technical replicates 
To measure the reproducibility of the aptamer-based platform, we compared the replicates for the 
same subject given each tissue. 
For plasma samples, we included 11 subjects with two measures, one as fasted and the other as 
non-fasted.  After QC, we kept 931 proteins in 633 samples.  The overall Pearson’s correlation 
coefficient between fasted and non-fasted samples (Extended Fig.2d) is 0.907, with a 95% 
confidence interval from 0.904 to 0.911 and p-value < 2.2 × 10-16.  
For plasma samples, we included one subject with two biological replicates: one collected in 
1997, the other in 2007.  Both samples passed QC.  The overall Pearson’s correlation coefficient 
between these two biological replicates (Extended Fig.2e) is 0.938, with a 95% confidence 
interval from 0.9299 to 0.9453 and p-value < 2.2 × 10-16.  
For brain samples, we included one subject with two technical replicates.  After QC, we kept 
1079 proteins and 435 samples.  Out of these 435 samples, only one replicate of the subject 
remained.  Thus, we compared two technical replicates using the values before QC across all 
1305 proteins.  The overall Pearson’s correlation coefficient between these two replicates 
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(Extended Fig.2f) is 0.976, with a 95% confidence interval from 0.9762 to 0.9812 and p-value < 
2.2 × 10-16. 
For CSF samples, we designed 329 subjects with two measures, one as baseline (LP date1) and 
the other as longitudinal (LP date 2).  After QC, we kept 713 proteins and 1270 samples.  Out of 
these 1270 samples, 321 subjects with two measures remained in the analysis (Extended 
Fig.2a,c).  The average time difference between the two LP dates was 6.14 years, and the 
standard deviation was 2.98 years.  The overall Pearson’s correlation coefficient (Extended 
Fig.2c) between two LP dates was 0.995, with a 95% confidence interval from 0.99518 to 
0.99526 and p-value < 2.2 × 10-16.  
The overall high correlations within each tissue indicated that the aptamer-based technology was 
highly reproducible. 

 
 

Genomic data QC process 
Most of the samples with proteomic profiling were collected with genotyping data (Extended 
Fig.1d).  For CSF, 965 out of 971 unique subjects have both genotype and proteomic data.  For 
plasma, 633 out of 636 unique subjects have both genotype and proteomic data.  For brain tissue, 
450 out of 458 unique subjects have both genotype and proteomic data. 
Samples were genotyped on multiple genotyping platforms from Illumina.  Stringent quality 
thresholds were applied to the genotype data for each platform separately. SNPs were kept if 
they passed all of the following criteria: i) genotyping successful rate >= 98% per SNP or per 
individual; ii) MAF >= 0.01; iii) Hardy-Weinberg equilibrium (HWE) (p>=1 × 10-6). After 
removing low quality SNPs and individuals, genotype imputation was performed using the 
Impute2 program with haplotypes derived from the 1,000 Genomes Project (released June 2012). 
Genotype imputation was performed separately based on the genotype platform used. SNPs with 
an info-score quality of less than 0.3 reported by Impute2, with a MAF < 0.02 or out of HWE 
were removed. After Imputation and QC, the different imputed plink files were merged. A total 
of over 14 million (14,059,245) imputed and directly-genotyped SNPs and 1,530 individuals 
were used for final analyses.  To adjust for population substructure (Extended Fig.1d), principal 
component analysis (PCA) was conducted using the PLINK1.9 (v1.90b6.4)54 subcommand pca.  
HapMap samples (CEU: Caucasian Europeans from Utah; JPT: Japanese in Tokyo; YRI: Yoruba 
in Ibadan, Nigeria) were included in the analyses in order to remove outliers and confirm self-
reported ethnicity. Samples kept were within the CEU cluster. To identify unanticipated 
duplicates and cryptic relatedness using pair-wise genome-wide estimates of proportion identity 
by descent (IBD) (Extended Fig.1d), we used the subcommand IBD from PLINK1.9 
(v1.90b6.4)54. When duplicate samples or a pair of samples with cryptic relatedness (PI_HAT >= 
0.5) were identified, we removed one sample from the pair. A total of 835 CSF, 529 plasma and 
380 brain samples from Washington University passed filters on both genomics and proteomics 
QC. 

 
pQTL identification 
To test for the association between genetic variants and protein levels we performed a linear 
regression (additive model), including age, sex, principal component factors from population 
stratification and genotype platform as covariate: 
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cis-pQTL mapping.  We conducted cis-pQTL mapping within each of the three tissues. Only 
proteins passing QC were included in the analyses.  Protein level was 10-based logarithm 
transformed to approximate the normal distribution.  Within each tissue, cis-pQTL were 
identified by linear regression, as implemented in PLINK2 (v2.00a2LM)54, adjusting for sex, 
age, and the first two genotype-based principal components (PCs) and genotyping platforms 
(Omni1, Omini2.5, NeuroX). We restricted our search to variants within 1 Mb upstream and 
downstream of the gene body by which each protein was coded.  Nominal P-values for each 
variant–protein pair were estimated using a t-test (two-sided). To identify the list of all 
significant variant–protein pairs associated with pGenes, variants with a nominal P-value below 
the genome-wide significance (5×10-8) level were considered significant and included in the final 
list of variants–protein pairs. 
trans-pQTL mapping.  PLINK2 (v2.00a2LM)54 was used to test all autosomal variants (MAF > 
0.02) using the same QC pipelines as cis-pQTL mapping, but was restricted to variants and 
proteins encoded by the genes locating outside the 2Mb window, in each tissue independently 
using an additive linear model. For trans-pQTL mapping, we tested variants for association with 
the same protein list as for cis-pQTL mapping. We included the covariates of the first two 
genotype PCs, age, sex, and genotyping platforms when performing association tests.  The 
correlation between variant and protein levels was evaluated using the estimated t-statistic from 
this model, and list of all significant variant–protein pairs associated with pGenes, variants with a 
nominal P-value below the genome-wide significance (5×10-8/number_PCs) were considered 
significant and included in the final list of variant–protein pairs.  The number of PCs was derived 
as the minimum principal component number that cumulatively explain 95% of the variance for 
each tissue after QC. For CSF, plasma and brain, the number of PCs is 169, 230, and 75 
respectively.  Thus, the p-value thresholds are 3×10-10, 2×10-10, and 7×10-10 respectively. 

 
Disease specific analyses: We performed similar analyses including disease status in the model:  
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To confirm that none the of findings were driving by disease status. 
We also performed analyses sin cases or controls only and compare the β1 for all the analyses to 
identify any disease-specific effect. 
Variance explained by the top variant on certain protein: We calculated the adjusted R square 
value using the linear regression model with the top variant as the only predictor and the log10-
based certain protein abundance as the outcome. 

 
Conditional analysis on locally independent pQTL 
To identify conditionally significant associations, we performed a stepwise conditional analysis 
on all pQTL from round_0 using PLINK2 (v2.00a2LM)54 with the –condition or --condition-list 
option. We used the same significance threshold of P-value = 5×10-8 used for the univariable 
analysis on identifying independent local pQTL. 
Conditional analyses were performed as follows: Before conditional (row-1), no SNPs were used 
as a covariate given one locus.  For round-1 (row-2) conditioning, the top SNP from the before-
conditioning stage given the same locus was used as an additional covariate in the default model.  
For round-2 (row-3) conditioning, the top SNP from the before-conditioning stage and the top 
SNP from round-1 stage were used as an additional covariate in the default model.  Both SNPs 
were within the same locus.  This iteration continued for each round by adding one more top 
SNP from the prior round until no variants passed the genome-wide significance threshold given 
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the same locus.  For CSF and plasma samples, in total four rounds of conditional analyses were 
performed.  For brain samples, three rounds of conditional analyses were performed.  The result 
was visualized using locusZoom v1.355.   

 
Replication strategy for CSF pQTL 
To identify all previously reported pQTL from large-scale protein-level GWAS, we performed 
the CSF replication analyses outline here: We first searched the processed pQTL results using 
Sasayama et al., 2017 (SOMAscan-based, CSF) and Parkinson's Progression Markers Initiative 
(PPMI) released in December 2019, unpublished (SOMAscan-based, CSF) and meta-analysis of 
these two prior studies; We next checked summary statistics from INTERVAL (SOMAscan-
based, plasma). Finally, we queried other plasma pGWAS findings from EBI-NHGRI using 
phenoscannerV256. 

 
Reprocessing pQTL using Sasayama 2017 CSF SOMAscan individual data  To replicate CSF 
pQTL, we performed linear regression on all proteins using the individual level proteomic and 
genotype data from Sasayama and colleagues published in 2017 11.  We decided to reprocess the 
pQTL analyses because the original studies used unimputed genotype data. We performed 
imputation in the Sasyama data in order to have a similar number of SNPs across studies.  For 
proteomics QC, only IQR strategy was used as neither calibrator nor negative control values 
were provided.  Protein outlier was identified if this subject was located outside of either end of 
distribution using 1.5-fold of IQR given the log10 transformation of the protein level.  
Collectively, if the number of outliers given an analyte was greater than 85% of total sample 
size, this analyte was filtered.  Next, an orthogonal approach was used to call subject outliers 
based on IQR.  Collectively, if the number of outliers given an analyte was greater than 85% of 
total number of analytes passed QC, this subject was labeled as an outlier.  Overall 1128 proteins 
and 133 subjects passed protein data QC.  Genotype data QC and imputation was performed as 
described above. A total of over 5 million (5,187,563) imputed and directly-genotyped SNPs and 
154 individuals were used for final analyses.  Population substructure analyses was performed as 
described above. A total of 132 CSF samples from study by Sasayama and colleagues passed 
filters on both genomics and proteomics QC.  We performed linear regression (additive model), 
including first two principal component factors from population stratification as covariates. 
Reprocessing pQTL using PPMI 2019 CSF SOMAscan data. To replicate CSF pQTL, we 
performed linear regression on all shared 709 proteins using the proteomic and genotype data 
from Parkinson's Progression Markers Initiative (PPMI) released in December 2019, 
unpublished.  We performed protein QC, genotype imputation and QC and analyses using the 
same protocols as the ones used for the data generated in this study and described above. A total 
of over 7 million (7,392,620) imputed and directly-genotyped SNPs and 132 CSF samples from 
study by PPMI released December 2019 passed filters on both genomics and proteomics QC.  
We performed a linear regression (additive model), including age, gender and first two principal 
component factors from population stratification as covariates. 
 
Meta-analyses on pQTL using summary statistics from single studies  To replicate more pQTL, 
we performed fixed effect meta-analyses using METAL57.  Overall, we performed four different 
combinations of meta-analyses: 1) meta1_PPMI19_JP17: meta-analysis on both the CSF studies 
by Sasayama and colleagues published in 2017 and by PPMI released in 2019; 2) 
meta2_WUcsf_PPMI19_JP17: meta-analysis on all three CSF studies by Sasayama and 
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colleagues published in 2017, by PPMI released in 2019, and by Washington University cohort 
(this study); 3) meta3_WUcsf_WUplasma_WUbrain: meta-analysis on all three-tissue findings 
from CSF, plasma and brain respectively by Washington University cohort (this study); 4) 
meta4_ WUcsf_WUplasma_WUbrain_ PPMI19_JP17: meta-analysis on both the CSF studies by 
Sasayama and colleagues published in 2017 and by PPMI released in 2019 plus all three-tissue 
findings from CSF, plasma and brain respectively by Washington University cohort (this study). 
 

 
Replication strategy for plasma pQTL 
To identify all previously reported pQTL from large-scale protein-level GWAS, we performed 
CSF replication analyses using the following strategies. We first searched the processed pQTL 
results using AddNeuroMed (SOMAscan-based, plasma). We next checked summary statistics 
from INTERVAL (SOMAscan-based, plasma).  Finally, we queried other plasma pGWAS 
findings from EBI-NHGRI using phenoscannerV2. 
Reprocessing pQTL using AddNeuroMed plasma SOMAscan data. To replicate plasma pQTL, 
we performed linear regression on all proteins using the proteomic and genotype data from the 
AddNeuroMed consortium 23. A total of over 7 million (7,313,640) imputed and directly-
genotyped SNPs and 343 plasma samples from study by AddNeuroMed passed filters on both 
genomics and proteomics QC.  We performed a linear regression (additive model), including 
age, gender, first two principal component factors from population stratification, centers, status, 
visit cohorts and batch effects as covariates. 
 
Replication strategy for brain pQTL 
To identify all previously reported pQTL from large-scale protein-level GWAS, we performed 
the CSF replication analyses using the strategies as follows: we first searched the processed 
pQTL results using results from our CSF findings; We next queried all plasma pGWAS findings 
from EBI-NHGRI using phenoscannerV2. 
For each locus, we investigated whether the sentinel SNP or a proxy (r2 > 0.5) was associated 
with the same Target protein (or aptamer) in our study at different defined significance 
thresholds. For the known category in our primary assessment, we used a P-value threshold of 
5×10-8. For the replicated category in our primary assessment, we used a P-value threshold of 
5×10-2. 
 
Overlapping of cis-pQTL and GTEx defined cis-eQTL 
For this analysis, we restricted eQTL result reported by GTEx latest and final release v8 5, since 
this project provided the most comprehensive summary statistics across a wide range of 50 tissue 
types, including nine brain regions and whole blood. Specifically, the GTEx eQTL results were 
filtered to contain only cis-variants (also within 1 Mb upstream and downstream) of genes that 
encode proteins found in our pQTL study and only the common variants in both data sets were 
used.  The metasoft output from multi-tissue analyses58 was used for the gene-variant pair 
extraction, and the beta_fixed effect was used to correlate with pQTL effect size. 

 
Identification of tissue-specific/shared pQTL 
In order to investigate tissue-specificity of pQTL, we performed two steps of analysis.  411 
proteins were available all from Washington University dataset. We first assembled a table with 
P-values for every top pQTL per tissue across all three tissues.  We identified the tissue-
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specificity under three different significant thresholds: 1) a P-value threshold of 5×10-8 for all 
three tissues; 2) a P-value threshold of 5×10-8 for one tissue, and 3) a P-value threshold of 5×10-2 

for the other two tissues.  The rationale to perform the 2nd and 3rd analyses with more permissive 
p-values was because our sample size was not consistent across tissues. As CSF had a higher 
number of samples and therefore these results could be biased by statistical power, we performed 
similar analyses with more permissive p-values. We used Venn-diagrams to visualize the tissue 
specific and shared pQTL.  The Venn Diagrams were drawn using VennDiagram48 R package.   
 
Second, we curated another table with P-values for every top CSF and brain pQTL from 
Washington University datasets, plus plasma pQTL from the INTERVAL study that includes 
more than 3301 samples where 616 proteins were available and performed similar comparisons 
as we did in step 1.  This step was to demonstrate that findings from step-1 were not a product of 
different sample size.  
 
 
Annotation of pQTL 
All significant pQTL (hg19) were annotated using ANNOVAR59 version (2018-04-16) with the 
option -geneanno in gene-based annotation mode.  Genomic features and variants affecting the 
nearest genes were used for downstream analyses.  The bar plots were drawn using the ggplot260 
R package. 
 
Identification of pleiotropic regions 
To identify unique non-overlapping regions associated with a given an aptamer, we first defined 
a 1-Mb region upstream and downstream of each significant variant for that aptamer.  Within the 
region (2Mb) containing the variant with the smallest P value, any overlapping regions were then 
merged into the same locus.  To identify whether a region was associated with multiple 
aptamers, we next used an LD-based clumping approach (LD block from the 1000 Genome 
Project implemented into the ROGHE61 R package).  Variants were combined into a single 
region per LD (EUR) defined loci.  Any loci associated with more than one protein were 
identified as pleiotropic regions. 
 
Investigation of disease status effect on pQTL 
To investigate of disease status effect on pQTL, we performed linear regression on the same 
protein-loci pairs (before conditioning on top variants) identified from the above default model 
using three additional models: 1) joint analysis including disease status as another covariate (CO 
vs non-CO); 2) AD case (CA) only using the same covariates as default model; 3) cognitive 
unimpaired (CO) only using the same covariates as default model.  Using scatterplots, we 
visualized the correlation between each of the additional models and our default model.  Using 
model 1 for comparison, we observed a Pearson correlation coefficient of 0.999 (p-value < 2.2 × 
10-16), 0.999 (p-value = 4.3 × 10-202), 0.999 (p-value = 9.5 × 10-52) for CSF, plasma, and brain 
respectively.  Using model 2 for comparison, we observed a Pearson correlation coefficient of 
0.991 (p-value = 3.9 × 10-160), 0.989 (p-value = 1.8 × 10-83), 0.998 (p-value = 2.4 × 10-29) for 
CSF, plasma, and brain respectively.  Using model 3 for comparison, we observed a Pearson 
correlation coefficient of 0.999 (p-value = 5.2 × 10-234), 0.998 (p-value = 1.17 × 10-122), 0.602 (p-
value = 0.002) for CSF, plasma, and brain respectively.  The relatively low correlation seen 
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when using model 3 for comparison with controls only in brain samples was due to a much 
smaller sample size as a control for brain samples. 
 
 
Performing MR using TwoSampleMR R package 
We used the R package TwoSampleMR v0.4.2262, which includes two primary methods. For 
single SNP, the most basic method, the Wald ratio, was used. For multiple SNPs without 
pleiotropy, the inverse variance weighted (IVW) estimator was used.  This is a meta-analysis of 
each Wald ratio for each SNP.  The regression is constrained to pass through the origin, thus 
leading to a zero-intercept.  This package also implements the harmonization steps before 
performing MR, and these steps are: 1) Correct the wrong effect/non-effect alleles; 2) Correct the 
strand issues; 3) Fix the palindromic SNPs; 4) Remove the SNPs with incompatible alleles.  The 
SNPs selected for the analysis were the based on suggestive threshold, 1×10-5.  The beta-
coefficients and standard errors (SEs) for the selected variants (pQTL) from this study were used 
as input instrumental variables.  These instrumental variables were also extracted from the 
summary statistics from the latest genome-wide association studies for the outcome on 
neurological disease related traits. (Details see TableS16; Briefly, AD-risk GWAS was published 
in 20193; AD-progression GWAS in 201863; AD-age at onset GWAS in 2017 64; PD-risk GWAS 
in 201936; ALS-risk GWAS in 201665; FTD-risk GWAS in 201466; Stroke-risk GWAS in 201867) 
 
Overlap of proteins with pQTL and drug targets 
To obtain information on drugs that target proteins with pQTL from this study, we used the 
DrugBank database (as of 1/3/2020)45. This is a manually curated database that maintains 
profiles for >15,000 drugs. For our analysis, we focused on the protein target for each drug.  For 
each protein assayed, we identified all drugs in the DrugBank with a matching protein target 
based on UniProt ID, annotated via https://www.uniprot.org/database/DB-0019.  We further 
integrate the MR analyses result into the overlap of proteins with pQTL and drug targets. 
 
Data availability:  
All data is available in the NIA-approved National Institute on Aging Genetics of Alzheimer's 
Disease Data Storage Site (NIAGADS), the Knight-ADRC 
(https://knightadrc.wustl.edu/research/resourcerequest.htm), the Center for Neurogenomics and 
informatics (NGI) website (https://neurogenomics.wustl.edu/). The summary statistics for all the 
analyses can be easily explored in the ONTIME (Online Neurodegenerative Trait Integrative 
Multi-Omics Explorer) pheweb (https://ontime.wustl.edu/). 
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Tables 

. 
Table 1. Demographics of the baseline cohort.   

 CSF Plasma Brain 
N 835 529 380 

Age [mean+/-sd] 69.4+/-9.3 69.8+/-9.4 83.3+/-10 
Female (%) 53% 54% 57% 
 % CDR=0  74.37% 68.24% 11.57% 

APOE e4 (%) 38% 41% 48% 
Characteristics of the baseline cohort after QC, including age, gender, Alzheimer disease status (as 
Clinical Dementia Rating (CDR)) and APOE e4 allele percentage.  For CSF, age denotes age at lumbar 
puncture; For plasma, age denotes age at plasma draw date; For brain, age denotes age at death.  Values 
are reported in years (mean ± Standard deviation [sd]). For a basic demographic on the entire cohort 
before QC, please see Table S1. 
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Table 2. Overlap of cis-eQTL from GTEx and cis-pQTL from this study.   

tissue pQTL cis-eQTL in 
GTEx 

Overlap eQTL 
vs. pQTL  

Effect size correlation 
(Spearman rho) pQTL vs 

eQTL 
CSF 226 40 18% 0.32 

Plasma 97 21 22% 0.63 
Brain 30 4 13% 0.20 

Within each tissue, the table contains: 1) the number of lead cis-pQTL; 2) number of the same 
gene-variant pairs found in cis-eQTL from GTEx v8 metasoft results for all tissues; 3) 
percentage of the gene-variant pairs with effect of eQTL given effect of pQTL; 4) the 
correlation coefficient (Spearman’s rho) of the overlapping pQTL and eQTL. 
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Table 3. Number of significant protein-trait associations from Mendelian Randomization analyses.   

Outcome CSF Plasma Brain 
AD risk 3 13 7 

AD progression 18 25 6 
AD Age at Onset 8 2 20 

PD risk 13 15 35 
ALS risk 1 4 3 
FTD risk 1 8 5 

Stroke risk 7 8 24 
Within each tissue, the table contains the number of significant proteins (FDR < 5/21) and associations 
with the seven neurological traits: 1) AD risk3; 2) AD progression63; 3) AD Age At Onset64; 4) PD 
risk36; 5) ALS risk65; 6) FTD risk66; 7) Stroke risk67. 
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FIGURES 

 

Fig. 1. Study design and overview of the genome-wide associations of protein levels within 
each tissue.  (a) Schematic of study design. CSF, plasma, brain tissues were profiled using a 
high-throughput aptamer-based proteomics platform.  We identified common genetic variation 
within each tissue associated with each protein after integrating both the genotype for each 
variant and protein level.  (b) Table of sample size after QC and total number of pQTL (split by 
cis, P < 5×10-8, and trans P < 5×10-8/number_PCs) for each tissue. For trans-pQTL, the p-value 
cutoff for CSF is 3×10-10 (5×10-8/169), for plasma it is 2×10-10 (5×10-8/230) and for brain it is 
7×10-10 (5×10-8/75). Trans* represents replication of trans-pQTL given genome-wide 
significance (P-value < 5×10-8). (c) Stacked-Manhattan-plots for all three tissues mapping 
genomic locations of these pQTL within each tissue (cis: dark-green; trans: gold). The X- axis 
denotes the positions of the common variants.  (d) Tables of replication of these pQTL within 
CSF, plasma and brain, given different nominal P-value thresholds on different datasets.  
Overall, we classified pQTL into five mutually exclusive groups: 1) known pQTL in the 
matched-tissue (single-study) with a p-value less than 5×10-8; 2) replicated pQTL in the 
matched-tissue with a p-value less than 5×10-2 but greater than or equal to 5×10-8;  [*NOTE: for 
CSF, we split this group into two sub-groups: 2a) replicated only in the meta-analysis of two 
external CSF studies with a p-value less than 5×10-8; 2b) replicated pQTL in the matched-tissue 
with a p-value less than 5×10-2 but greater than or equal to 5×10-8] 3) replicated ones in the other 
tissues with a p-value less than 5×10-2; 4) found in any tissues (matched or not) with a p-value 
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greater than or equal to 5×10-2; 5) unknown (either protein or SNP missing).  For CSF, we 
further split the 2nd group into 2a) replicated pQTL in the matched-tissue (meta-analysis, Table 
S6) with a p-value less than 5×10-8 and 2b) replicated pQTL in the matched-tissue (meta-analysis 
and/or single-study) with a p-value less than 5×10-2 but greater than or equal to 5×10-8.   
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Fig. 2. Overview of the independent loci from the conditional analyses and Identification of 
pleiotropic regions.  (a) Tables of conditionally independent pQTL (cis and trans) locally (2 Mb 
window) after each round for each tissue. Before conditional, no SNPs were used as a covariate 
given one locus.  For round-1 conditioning, the top SNP from before-conditioning stage given 
the same locus was used as an additional covariate in the default model.  For round-2 
conditioning, the top SNP from before-conditioning stage and top SNP from round-1 stage was 
used as an additional covariate in the default model.  Both SNPs were within the same locus.  For 
each round we added the previous independent top hits from the prior rounds until no variants 
passed genome-wide significance threshold given the same locus. (b) Regional association plots 
of the ERAP1 region associated with CSF ARTS1 protein: (round_0) before conditional 
analyses, centered on rs17482078; (round_1) after conditioning on the prior top SNP 
(rs17482078, centered on rs467735; (round_2) after conditioning on the prior top SNPs 
(rs17482078 and rs467735, centered on rs141244362; (round_3) after conditioning on the prior 
top SNPs (rs17482078 and rs467735 and rs141244362, centered on rs153541.  No genome-wide 
significant SNPs was observed in round_4 after conditioning on all prior top SNPs. (c) Regional 
association plots of the NAAA region associated with CSF ASAHL protein: (round_0) before 
conditional analyses, centered on rs66498356; (round_1) after conditioning on the prior top SNP 
(rs66498356, centered on rs112222416; (round_2) after conditioning on the prior top SNPs 
(rs66498356 and rs112222416, centered on rs6823734; (round_3) after conditioning on the prior 
top SNPs (rs66498356 and rs112222416and rs6823734, centered on rs13126007.  No genome-
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wide significant SNP was observed in round_4 after conditioning on all prior top SNPs.  The 
SNPs for each regional plot are denoted as a purple diamond. Each dot represents individual 
SNPs, and dot colors in the regional plots represent linkage disequilibrium with the named SNP 
at the center. Blue vertical lines in the regional plots show recombination rate as marked on the 
right-hand Y-axis.  (d) Table of all pleiotropic regions with each tissue given genome-wide 
significance threshold for both cis and trans-pQTL and the name of top-1 locus ranked by 
number of unique proteins. (e) Circos plot on top-1 locus (mapped to APOE-TOMM40) 
associated with 13 unique CSF proteins. (f) Circos plot on top-1 locus (mapped to ABO or HRG) 
associated with 7 unique plasma proteins. (g) Circos plot on top-1 locus (mapped to SPCS3-
VEGFC) associated with 5 unique brain proteins.  Outermost numbers denote chromosomes. 
Lines link the genomic location of this locus with genes encoding significantly associated 
proteins. Associations denote genome-wide significance. Line thickness is proportional to effect 
size of linear regression (red, positive; blue, negative). 
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Fig. 3. Summary of the tissue-specificity analyses.  (a) Venn diagrams of proteins passing QC 
across all three tissues. (b) Venn diagrams of all cis-pQTL across all three tissues given P< 5×10-

8 threshold. (c) Venn diagrams of all trans-pQTL across all three tissues given genome-wide 
significance threshold. (d) Manhattan plots of the ISG14-chr19:52158316 within each tissue as 
an example of three-tissue-shared cis-pQTL. 
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Fig. 4. Mendelian randomization prioritized proteins in the causal relationship with seven 
neurological traits.  Mendelian Randomization (MR) results is calculated using the 
“TwoSampleMR” R package 62, and the effects for each protein-disease pair are visualized using 
Heatmap of MR inference of (a) CSF, (b) plasma, and (c) brain protein effect on seven 
neurological-related traits. The p-value threshold for significance is 0.05 after multiple test 
correction.  The color represents whether the effect size is positive (yellow) or negative (blue).  
Alzheimer disease (AD); Parkinson disease (PD); Amyotrophic lateral sclerosis (ALS); 
Frontotemporal dementia (FTD). Stroke is the general risk, not a specific subset of the stroke.  
The summary statistics are curated from published datasets (Table S16 for details). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


