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Abstract:  

Effective responses to the COVID-19 pandemic require integrating behavioral factors such as risk-

driven contact reduction, improved treatment, and adherence fatigue with asymptomatic 

transmission, disease acuity, and hospital capacity. We build one such model and estimate it for all 

92 nations with reliable testing data. Cumulative cases and deaths through 22 December 2020 are 

estimated to be 7.03 and 1.44 times official reports, yielding an infection fatality rate (IFR) of 0.51% 

which has been declining over time. Absent adherence fatigue cumulative cases would have been 

47% lower. Scenarios through June 2021 show that modest improvement in responsiveness could 

reduce cases and deaths ≈14%, more than the impact of vaccinating half of the population by that 

date. Variations in responsiveness to risk explain two orders of magnitude difference in per-capita 

deaths despite reproduction numbers fluctuating ~ 1 across nations. A public online simulator 

facilitates scenario analysis over the coming months.  

 

Introduction 

Effective responses to the COVID-19 pandemic require an understanding of its global magnitude and 

the drivers of variations in outbreaks across nations. Yet more than ten months after WHO declared 

a global pandemic, the true number of cases and infection fatality rate remain uncertain, and the 

experience of different nations varies widely. As of late December 2020, countries have reported 

cumulative cases ranging between 7.03 and 7200 per 100,000, and case fatality rates between 0.05% 

and 9.0%. Asymptomatic infection (Gudbjartsson, Helgason et al. 2020), variation in testing rates 

across countries (Roser, Ritchie et al. 2020), and false negatives (Fang, Zhang et al. 2020, Li, Yao et al. 

2020, Wang, Xu et al. 2020) complicate assessment of the true magnitude of the pandemic from 

official data. The inference problem also requires disentangling other explanatory mechanisms: (i) 

differences in population density and social networks create variations in the effective reproduction 

number, RE; (ii) risk perceptions, behavior change, adherence fatigue, and policy responses alter 

transmission rates endogenously; (iii) testing is prioritized based on symptoms and risk factors, so 

detection depends on both testing rates and current prevalence (Onder, Rezza et al. 2020); (iv) limited 

hospital capacity is allocated based on case severity, affecting fatality rates; (v) age, socio-economic 

status, comorbidities, differential adherence to non-pharmaceutical interventions (NPIs) such as social 

distancing and masking, and improvements in treatment affect transmission risk and case severity 
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(Guan, Ni et al. 2020, O'Driscoll, Dos Santos et al. 2020, Wu and McGoogan 2020); (vi) weather may 

play a role in transmission (Xu, Rahmandad et al. 2020); and (vii) all these vary across nations. 

Prior studies have shed light on important parts of the puzzle by estimating basic epidemiological 

parameters and IFR in well-controlled settings (Russell, Hellewell et al. 2020), assessing the 

asymptomatic fraction and prevalence in specific populations (Hao, Cheng et al. 2020, Li, Pei et al. 

2020, Mizumoto, Kagaya et al. 2020, Salje, Tran Kiem et al. 2020, Sutton, Fuchs et al. 2020), estimating 

the role of undocumented infections (Ghaffarzadegan and Rahmandad 2020, Li, Pei et al. 2020, 

Moghadas, Fitzpatrick et al. 2020), illuminating the effects of various NPIs on expected future cases 

(Chinazzi, Davis et al. 2020, Flaxman, Mishra et al. 2020, Hsiang, Allen et al. 2020, Kissler, Tedijanto 

et al. 2020, Ruktanonchai, Floyd et al. 2020, Walker, Whittaker et al. 2020, Wu, Leung et al. 2020), and 

contrasting risks and healthcare demands across countries and populations (Britton, Ball et al. 2020, 

Gatto, Bertuzzo et al. 2020, Moghadas, Shoukat et al. 2020, Struben 2020, Walker, Whittaker et al. 

2020).  

Endogenous changes in behaviors and policies in response to outbreaks could also drive large 
variations in outcomes across nations.  However, classical epidemic models, such as the Susceptible-
Exposed-Infectious-Recovered (SEIR) model, do not include endogenous behavior and policy 
responses.  The classical models project exponential outbreaks that are ultimately limited by depletion 
of the susceptible pool or by the exogenous introduction of interventions that lower the effective 
reproduction rate (RE). Prior work in system dynamics shows that endogenous behavioral responses 
to infectious diseases significantly alter the dynamics.  Sterman (2001, Chapter 9.4) describes a wide 
range of behavioral feedbacks in the context of the HIV/AIDS epidemic, and shows that endogenous 
responses to risk can shift the dynamics from a single outbreak to an endemic condition with periods 
of reduced incidence followed by large outbreaks.  Further, Rahmandad and Sterman (2008) showed 
that the impact of endogenous behavior change in the SEIR model is large compared to variations 
caused by different values of epidemic parameters determining the basic reproduction rate, R0, and by 
different structures for the contact network among individuals.  

The history of the COVID-19 pandemic to date strongly suggests a role for behavioral feedbacks.  
Many nations have experienced multiple waves of COVID-19 as outbreaks induced behavior change 
and government policies that reduced transmission, only to see second or even third waves as the 
resulting reductions in incidence and deaths eroded NPI adherence by individuals and relaxation of 
government policies.  To fit the data, many COVID-19 models capture changes in transmission rates 
(1) as a function of time; (2) using data on policy adoption timing in specific nations; or (3) by 
incorporating policy switches that turn on in response to risks (Flaxman, Mishra et al. 2020, Kissler, 
Tedijanto et al. 2020, Li, Pei et al. 2020, Walker, Whittaker et al. 2020). These approaches improve the 
fit of models to past data but perform poorly in counter-factual experiments and long-term projections 
where historical data are uninformative and extrapolation of time-based functions unreliable. A smaller 
group of studies have taken a more endogenous view of responses where ongoing (Ghaffarzadegan 
and Rahmandad 2020, Struben 2020) or expected risks (Acemoglu, Chernozhukov et al. 2020, 
Farboodi, Jarosch et al. 2020) condition contact rates and transmission. Prior work, however, has not 
used these risk-driven response functions to explain the large cross-national variations in outcomes 
(Struben (2020) provides an exception).  

Overall, we lack a global view of the pandemic that is simultaneously consistent with these more 

focused findings, explains the orders-of-magnitude variation in official per-capita case and death rates 



Preprint, Ver. 7 (January 17, 2021) - the manuscript is under review and has not been published yet. 

3 

across countries, and offers reliable projections consistent with multiple waves of mortality and 

incidence (Lopez and Rodo 2020).  

 

Model  

We use a multi-country modified SEIR model to simultaneously estimate SARS-CoV-2 transmission 

across 92 countries (all nations that report data sufficient to enable estimation). For each country, the 

model tracks the population from susceptible through pre-symptomatic, infected, and recovered or 

deceased states, with explicit stocks for those whose cases are detected or undetected, and hospitalized 

or not (Figure 1A). Infection moves people from the Susceptible population (S) into the Pre-Symptomatic 

Infected stock. After an Incubation Period, these pre-symptomatic individuals flow into the Infected Pre-

Detection stock. After a further Onset to Detection Delay, this group splits among multiple pathways. First, 

those testing positive for COVID-19 flow into either Detected COVID+ Not Hospitalized or Detected 

COVID+ Hospitalized. Infected individuals who do not receive a positive test result, whether for lack 

of testing or a false negative test result, transition into either Undetected COVID+ or Undetected 

COVID+ Hospitalized. We assume demand for testing and hospitalization are driven by symptoms, so 

all asymptomatic individuals will be in the Undetected COVID+ stock. 

In addition to its multi-country scope, the model includes three novel features (Figure 1B). First, tests 

are allocated to individuals based on symptom severity relative to available testing capacity. Individuals 

with more severe symptoms, including those with COVID-19 and those without but presenting with 

similar symptoms (e.g., influenza) or risk factors (e.g., frontline healthcare workers), get priority for 

testing. We model symptom severity with a zero-inflated Poisson distribution, where zero severity 

indicates asymptomatic infection. In this framework, originally developed in the context of testing in 

project models (Rahmandad and Hu 2010), each increment of symptom severity increases the chance 

of receiving a COVID test, become hospitalized, or die. The formulation provides a consistent 

method to capture the significant heterogeneity in symptom severity, from life-threatening to 

asymptomatic cases, and its impact on testing and hospitalization, without the need to disaggregate 

the population by different severity levels.  Such disaggregation would make parameter estimation 

prohibitively time consuming (S1 and Figure S3 provide details). Besides its computational benefits, 

the formulation keeps the number of free (estimated) parameters to a minimum, specifically two:  the 

fraction of asymptomatic cases and the mean severity of symptomatic COVID+ individuals. Severity-

prioritized test allocation determines the ascertainment rate of COVID-positive cases as a function of 

prevalence and the current testing rate. It also results in different average COVID severity in the tested 

vs. untested populations. We also account for false negatives from tests (Fang, Zhang et al. 2020, 

Wang, Xu et al. 2020).  

Second, hospital capacity is allocated between COVID-positive cases and demand from non-COVID 

patients. The COVID infection fatality rate therefore depends endogenously on the adequacy of 

hospital capacity relative to the burden of severe cases, along with the age distribution of the 

population (Guan, Ni et al. 2020, O'Driscoll, Dos Santos et al. 2020, Wu and McGoogan 2020). 

Furthermore, we account for reductions in IFR that may result from improved treatments, deaths of 

high-risk populations such as the elderly and those with comorbidities in the first wave of the 

pandemic, heterogeneous adherence to NPIs as higher-risk subpopulations perceive greater risk than 

those lacking risk factors, shifting incidence toward younger, lower-risk people, and other factors. 
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Figure 1- Model overview. A) Expanded SEIR model for each country highlighting key stocks and flows. B) Major 
feedbacks captured in the model. 
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Third, the hazard rate of transmission responds to the perceived risk of COVID. Perceived risk 
reduces transmission through adoption of NPIs, from social distancing and masking to lockdowns. 
Perceived risk is based on subjective perceptions of the hazard of death, which respond with a lag to 
both official data (reported in the media) and actual deaths (gleaned from personal experience and 
word of mouth). Rising mortality eventually increases perceived risk, driving the hazard rate of 
transmission down, while declining cases and deaths can lead to the erosion of perceived risk, 
potentially leading to rebound outbreaks. We also account for adherence fatigue, modeled as a 
reduction in the impact of perceived risk on behaviors that reduce contacts. We use the recent (100-
day) reduction in contacts compared to pre-pandemic levels as the driver of adherence fatigue, and 
estimate a country-level parameter quantifying resulting reductions in the population’s responsiveness 
to increases in perceived risk.  

Estimation 

Model parameters are specified based on prior literature and formal estimation. Parameters specified 

from the literature include the incubation period (mean  = 5 days (Guan, Ni et al. 2020, Linton, 

Kobayashi et al. 2020)), onset-to-detection delay ( = 5 days (Linton, Kobayashi et al. 2020)), post-

onset illness duration ( = 15 days (Guan, Ni et al. 2020)), and the sensitivity of RT-PCR-based testing 

(70% (Fang, Zhang et al. 2020, Wang, Xu et al. 2020)). Sensitivity analysis is presented in S7. 

We estimate the remaining parameters using a panel of data covering all nations with at least 1000 

confirmed COVID-19 cases by 22 December 2020 and sufficient testing data to enable parameter 

estimation, a total of 92 nations spanning 4.92 billion people. These include all disease hotspots to 

date, with two notable exceptions, China and Brazil, for which reliable testing data are not available. 

The panel includes reported daily testing rates, reported COVID cases and deaths, and all-cause 

mortality (where available), along with population, population density, age distribution, hospital 

capacity, and daily meteorological data.  

The model is nonlinear and complex, and any estimation framework is unlikely to have clean analytical 

solutions or provable bounds on errors and biases. Therefore, in designing our estimation procedure 

we apply three guideposts: (1) being conservative by incorporating uncertainties; (2) avoiding over-

fitting; and (3) enhancing the generalizability and robustness of estimates and projections. To do so 

we use a negative binomial likelihood function, which accommodates overdispersion and 

autocorrelation; we keep the number of estimated parameters to the minimum feasible, typically one 

or two for each mechanism; we utilize a hierarchical Bayesian framework (Gelman and Hill 2006) to 

couple parameter estimates across different countries, reducing the risk of over-fitting the data; and 

we use existing knowledge characterizing parameters and their expected similarity across countries to 

inform the priors for the magnitude of that coupling across countries. For example, the asymptomatic 

fraction of cases and other parameters representing biological processes should have low cross-

national variance, whereas parameters specifying risk perceptions and responses are expected to vary 

more widely (see S7 for sensitivity analysis on priors). Compared to more common choices in similar 

estimation settings (e.g. Gaussian likelihood functions), these choices tend to widen the credible 

regions for our estimates and reduce the quality of the fit between model and data by having fewer 

parameters and imposing coupling among them.  In return, the results may better capture 

uncertainties, are more informative about the underlying processes, and provide more reliable 

projections.  For example, better fits to individual nations could be obtained by estimating every 
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parameter separately for each nation, or including more free parameters, but doing so would 

dramatically increase the number of parameters to be estimated, would falsely assume that the 

experience of every nation is completely independent of all others, and could yield estimates that differ 

significantly across countries even for  parameters, such as the asymptomatic fraction of cases, that 

should vary little across nations on an age-adjusted basis. 

The estimation method identifies both the most likely value and the credible regions for the unknown 

parameters, given the data on reported cases and deaths (and for a subset of countries, excess total 

mortality). To avoid overfitting, we do not use any time-varying parameters in the estimation. The 

maximum likelihood method described above and in the supplement yields the estimated parameters.  

To quantify the uncertainties in parameters and projections we use a Markov Chain Monte Carlo 

method designed for high dimensional parameter spaces (Vrugt, Ter Braak et al. 2009); see S2 for 

details.  

Building confidence in the model 

Estimating parameters for a complex model and assessing its ability to capture important real-world 

processes are both critical and challenging. Before discussing results we present four sets of analyses 

addressing these challenges, and later report extensive sensitivity analyses to quantify various 

uncertainties. First, we compare model outputs to data. Figure 2A compares actual and simulated 

reported daily new cases and deaths for 18 larger countries using data through 22 December 2020. S5 

and S6 report the full sample. Over the full set of nations and full sample, Mean Absolute Errors 

Normalized by the mean of the actual data (MAEN) are 5.6% and 5.0% for cumulative infections and 

deaths, respectively, and less than 20% for 69 (75.0%) and 64 (69.6%) of the 92 nations, despite wide 

variation in the size and dynamics of national outbreaks, from those nearly quenched (New Zealand, 

Thailand), to those still growing (e.g. Latvia, Hungary) to those exhibiting multiple waves (e.g. Iran, 

Israel, USA). R2 exceeds 0.9 for 54% of 368 country-specific time series and exceeds 0.5 for 86%. 

Aggregation of within-nation heterogeneities reduces the quality of fit in a few countries. For example, 

we do not explicitly model outbreaks concentrated among subpopulations such as migrant workers 

(important in e.g., Qatar, Singapore) or nursing homes (important in, e.g., Belgium, France). The 

coupling of parameters across countries also limits the fit for outliers. Moreover, because the model 

does not include any time-varying parameters (e.g., Thanksgiving gatherings in the USA, school and 

university schedules, and other calendrical events that condition contacts), the model is expected to 

miss some important events. Nevertheless, 80% and 85% of official infection and death rates fall 

within the 95% uncertainty intervals from the beginning of the pandemic through the end of 2020.  

Second, we assess out-of-sample accuracy. Figure 2B shows out-of-sample prediction performance for 

reported deaths after fitting the model to data through 30 September 2020, then projecting outcomes 

through 22 December 2020. Across all predictions, 70% and 72% of observations for infections and 

deaths, respectively, fall within the 95% prediction intervals over the last 82-day period. Out-of-sample 

projections are limited by the fact that by 30 September 2020 the majority of countries had not 

experienced second waves or significant adherence fatigue, limiting the ability to estimate the 

magnitude of these behavioral feedbacks with the truncated sample. Despite these challenges, the 

model correctly predicts the existence of second waves in the majority of countries, and in many cases 

correctly predicts the timing and magnitude as well (see S6 for details and full results). 
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Figure 2-Model projections vs. data. A) Simulated (thick lines, Solid and Dashed for cases and deaths) vs. data (thin, dotted 
lines) for reported cases (top lines; right axis, thousands/day) and deaths (bottom lines; left axis; deaths/day) in countries 
with more than 45 million population and 300,000 confirmed cases by 22 December 2020 and testing data until at least 
September 2020. B) Out of sample death predictions for the same countries comparing data (dashed line) against estimates 
(thick solid line; 95% CIs are thin solid lines) using data until 30 September 2020 (denoted by vertical line). Numbers on 
each graph show the fraction of actual data during the prediction period inside the 95% confidence interval. High 
frequency noise (e.g. reported  cases in Mexico) is due to weekly cycles in testing data.  

Third, we validated the estimation framework using synthetic data generated by simulating the 

model with known parameters and adding auto-correlated noise in infection rates and IFR. Our 

estimation procedure accurately identifies the vast majority of parameters in the synthetic dataset. 

The absolute error between the estimated and true values was significantly smaller than the 

estimated uncertainty (median error 21% of the 95% credible interval (CI), with 77% of the absolute 

errors less than half the 95% CI (see S3 for details). 

Finally, we compare model estimates of actual cumulative cases against available national-level 

estimates from serological surveys. Few national seroprevalence studies include reliably 

representative samples. Nevertheless, using the SeroTracker project (Arora, Joseph et al. 2020) we 

identified nine country-level meta-estimates for actual prevalence. Figure 3 compares those meta-

analytic estimates against official data from testing and model estimates. Seroprevalence and official 

counts vary by an order of magnitude or more. Model estimates are close for seven of the nine 

seroprevalence estimates and higher than surveys for Spain and Luxembourg. Note that 

seroprevalence data were not used in model specification or parameter estimation. 

 

Figure 3-Comparison of cumulative percentage of cases based on official data (black diamond, left), seroprevalence 
estimates (blue circles with 95% CIs, middle), and model estimates (red squares with 95% CIs, right) for 9 countries at 
various dates. 
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Results 

Quantifying under-reporting 

We find COVID-19 prevalence and deaths are widely under-reported. Across the 92 nations, the 

estimated ratio of actual to reported cumulative cases (through 22 December 2020) is 7.03, 

corresponding to 465 million undetected cases (95% CI 478-513 million). Underreporting varies 

substantially across nations (10th-90th percentile range 3.2-18; Figure 4A).  

Underreporting is due in part to the large fraction of asymptomatic infections, estimated at 50%, 

consistent with other estimates (Oran and Topol 2020). The mean inter-quartile range, MIQR, of the 

credible intervals in the national estimates is 1.3%. However, the estimated asymptomatic fraction 

varies little across nations (standard deviation,  = 0.9%) and therefore cannot explain the large cross-

national variation in the ratio of estimated to reported cases (Figure 4A). 

The extent of underestimation depends primarily on testing capacity and how it is utilized. If every 

person could be tested regularly the estimated ratio of actual to reported cases would be approximately 

1.43, given assumed test sensitivity of ≈70% (Fang, Zhang et al. 2020, Wang, Xu et al. 2020). Testing 

capacity is limited, however. When testing capacity is small relative to the need, individuals presenting 

with COVID and COVID-like symptoms are prioritized, along with at-risk groups such as health care 

providers. Consequently, a larger proportion of those tested will be positive, but many infected 

individuals will go undetected, increasing the degree of underestimation, as seen in e.g. Mexico. 

Conversely, when testing capacity is high relative to the population, more of those infected will be 

identified, as seen in e.g. New Zealand. Over the full sample, increased testing has been continuously 

reducing the undercount ratio, though with decreasing returns (Figure 4B). 

COVID-19 deaths are also underreported (Figure 4A). We estimate 2.07 (2.04-2.32) million deaths by 

22 December 2020 across the 92 countries, 1.44 times larger than reported. Results are consistent with 

some country-specific estimates (Weinberger, Chen et al. 2020, Woolf, Chapman et al. 2020). 

Underreporting is significantly less for deaths than cases because deaths are concentrated among 

severe cases who are more likely to have been tested, and post-mortem testing corrects some of the 

undercount. 
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Figure 4. Underestimation of cases and deaths. A: Ratio of (estimated) actual to reported cases  (blue circles) and deaths 
(red squares) by country; log scale as of 22 December 2020. B: Ratio of (estimated) actual to reported cases (solid line; 
left logarithmic axis) and total tests per day (dotted line; right axis) over time for the full sample (all 92 nations).  
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Trends and Fluctuations in Cases and Mortality 

National IFR estimates are reported in Figure 5A. IFR across the 92 nations through 22 December 

2020 is 0.51% (CI: 0.47%-0.53%), with wide cross-national variation, from 0.04% (CI: 0.03%-0.04%; 

Qatar) to 1.99% (CI: 1.44%-2.21%; France), a range similar to estimates across counties in the USA 

(Basu 2020). These variations arise in the model from differences in age distribution (O'Driscoll, Dos 

Santos et al. 2020, Wu and McGoogan 2020) and the adequacy of health care. Consistent with prior 

estimates (Walker, Whittaker et al. 2020), we find hospitalization can reduce the age- and severity-

adjusted risk of death to 46% of the rate without treatment, with large cross-national variation likely 

due to variations in treatment quality across nations (=22%; MIQR: 7%). Simulated IFR varies 

endogenously over time, exhibiting fluctuations around an overall declining trend (Figure 5B). The 

fluctuations are due to variations in the adequacy of treatment capacity, with IFR rising when surging 

caseloads overtake hospital capacity. The peak in global IFR in spring 2020 arose as cases 

overwhelmed hospital capacity in several nations, including many European countries with older 

populations. Since then, many—but not all—countries show notable reductions in IFR, due to factors 

including (i) improvements in treatments and greater availability of ventilators and PPE; (ii) 

heterogeneity in cases as some in the highest-risk populations were lost in the early waves; and (iii) 

heterogeneity in risk perceptions and responses as older, high-risk individuals adhere more strongly to 

NPIs compared those who perceive less personal risk, resulting in a decline in the average age of new 

confirmed cases in many nations. Available data do not enable us to identify the contribution of these 

different processes, but their combined effect is estimated to reduce IFR by 32.5% (=23.7%; 

MIQR=10.3%) for every doubling in cumulative cases. Despite the overall decline in IFR, hospital 

capacity shortages caused by renewed waves of infection increase IFR above the trend (e.g., India in 

June and July). 

We also find significant heterogeneity across countries in the initial effective reproduction number, RE 

(median 2.73, IQR 2.16-3.66), reflecting differences in population density, social networks, and 

cultural practices (Figure S9 provides details). We find a composite index of weather conditions by 

nation (Xu, Rahmandad et al. (2020) strongly affects transmission, generally increasing the hazard rate 

of transmission with the onset of winter.  

Importantly, the effective reproduction rate, RE, changes over time as people and policymakers 

respond to perceived risk (Pan, Liu et al. 2020). We find behavioral and policy responses to the 

perceived risk of death reduce transmission and RE with a mean lag of 38 days, though with substantial 

cross-national variation (=53.4; MIQR: 13.3). These responses are relaxed as perceived risk falls, 

though more slowly (mean lag 245 days; =188; MIQR: 64). Importantly, we also find that extended 

periods of contact reduction, and the personal and economic hardship it causes, lead to adherence 

fatigue—a reduction in the impact of perceived risk on behaviors that reduce contacts, with an 

estimated average elasticity of 1.24 (=1.07; MIQR: 0.19). A counter-factual simulation (Figure 6, 

dotted line) shows that, absent adherence fatigue, total cases and deaths through 22 December 2020 

would have been lower by 47% and 45%, respectively, corresponding to 265 (252-278) million cases 

and 1.18 (1.14-1.22) million deaths. 

The model endogenously captures the multiple waves observed across many countries through 22 

December 2020 despite their different magnitudes and timing (Figure 2A). These rebounds are due to 
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lags in the perception of and responses to the risk of COVID-19.  Initial reductions in transmission 

eventually lower deaths, leading to lower adherence to NPIs as perceived risk gradually falls, setting 

the stage for renewed outbreaks. Rebounds could also be triggered by changes in weather conditions, 

particularly the onset of colder weather. Rebound outbreaks are larger in nations where adherence 

fatigue is greater. Rebound waves are also larger where reductions in IFR are larger, because the decline 

in mortality erodes adherence to NPIs.  

 

Figure 5- Fatality rates. A) Average estimated infection fatality rates (%) across countries as of 22 December 2020. B) IFR 
trajectories over time for the full sample and selected nations. 

A 

 
B 
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Testing shapes early trajectories 

Testing, treatment, risk perceptions, individual behavior, and government policy all change through 

several important feedbacks. We find that those receiving a positive test notably reduce their infectious 

contacts (Mean: 17.3% of original contact rate; =12.4%; MIQR: 9.9%). These reductions are 

especially important because symptomatic individuals, who are more likely to get tested, are estimated 

to be more infectious than asymptomatic ones (Mean asymptomatic infectiousness vs. symptomatic: 

29.3%; =0.26%; MIQR: 1.3%; consistent with (Li, Pei et al. 2020)).  

Testing also regulates the reported rate of deaths, which drives perceived risk. More reported deaths 

increase perceived risk, triggering behavioral and policy responses that reduce transmission. Plentiful 

early testing results in high detection rates, greater perceived risk, and stronger responses, slowing 

transmission. Conversely, insufficient early testing increases underestimation, limiting perceived risk 

and allowing transmission to further outpace testing. Testing thus reduces future cases, allowing a 

larger fraction of severe cases to be hospitalized, saving lives and reducing IFR. The exponential nature 

of contagion means even small early differences can lead to notable differences in epidemic size (Pei, 

Kandula et al. 2020), IFR, and total deaths. 

Figure 6 (dashed line) shows the impact of enhanced early testing by comparing the estimated results 

to a counterfactual in which all countries test 0.1% of their population per day, a rate currently 

exceeded over the full sample (See Figure 3B). We assume enhanced testing begins when WHO 

declared COVID-19 a pandemic (11 March 2020). We find enhanced testing would have reduced total 

cases from 496 million to 427 (CI: 404-445) million, with a reduction in deaths from 2.16 to 2.00 

million (CI: 1.85-2.14). 

Projections with endogenous responses to risk and vaccination 

We explore four scenarios projecting the pandemic through 30 June 2021 (Figure 7): (I) Baseline: 

assumes country-specific testing rates continue as of 22 December 2020 with country-specific 

 
Figure 6- Counter-factual Experiments. Most likely estimate (solid lines) of cumulative cases (A) and deaths (B) 
compared with counterfactuals for scenario i, in which testing rises to 0.1% of population per day starting 11 March 
2020 (dashed line); and scenario ii with no adherence fatigue (dotted line). Thin lines show 95% CIs. 

 A B 
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estimated parameters. (II) Responsive: countries become 20% more responsive to risk (details in 

supplement S5). Scenario II represents a modest increase in responsiveness given levels of perceived 

risk: on average, contact rates fall by 7% (σ=17%) January-June 2021, comparable to the impact of 

enhanced mask use (Chu, Akl et al. 2020). (III) Vaccination: Assumes every country will be fully 

vaccinated by the end of 2021 using a constant vaccination rate. This timeline is optimistic for 

developing countries; furthermore, the vaccine is assumed to be perfectly protective, to face no 

resistance, and to be administered with priority to high-risk individuals. (IV) Enhanced responsiveness 

and vaccination, combining Scenarios II and III.     

Figure 7 contrasts the results. Scenario I yields 900 million cumulative cases by 30 June 2021.  Most 

cases are concentrated in a few countries, with USA (115 million median cumulative cases; 95% CI 

108-122 million), Mexico (96 million; 82-105), India (60 million; 57-65), and Iran (40 million; 35-44) 

suffering the largest burdens.  Figure 7A & B show estimated cumulative actual cases and deaths by 30 

June 2021 (Supplement S5 provides Scenario I projections over time). The responsive scenario (II) 

reduces cases (Figure 7A) and deaths (Figure 7B) by 14% (CI: 12%-16%) and 12% (CI: 7%-17%). The 

largest reductions arise in countries with large populations and that are estimated to have a large 

potential for new waves (Figure 7D), including India (12.3 million reduction in cases), USA (9.51 

million), Mexico (7.48 million), and Italy (6.3 million) among others. The vaccination scenario brings 

down cases and deaths by 2.7% and 9.1%, to 875 million (CI: 851-898) and 3.68 million (CI: 3.45-

3.90) respectively, less than the impact of greater responsiveness to risk. Combining the two provides 

additional benefit but with decreasing returns for cases (16%; CI: 13%-18%). The relatively small 

impact of vaccination through mid 2021 is due to two factors.  First, by mid 2021 we assume 

approximately half the population is immunized (but with a vaccine assumed to be 100% protective).  

Second, behavioral feedbacks undermine the impact of immunization: to the extent immunization 

reduces deaths and perceived risk, adherence to NPIs erodes, leading to more new cases.  

These scenarios should not be interpreted as predictions: changes in testing, vaccination, individual 

behavior, and government responses to risk not accounted for in the model are possible, perhaps 

likely, in the coming months. The general finding is the significant sensitivity of outcomes to 

behavioral and policy responses to risk. Stronger responses to perceived risk would significantly reduce 

future cases. Lax responses and greater adherence fatigue would lead to larger rebound outbreaks.   

Moreover, responsiveness comes at a low cost in terms of cumulative reductions in contacts, a proxy 

for the reductions in travel, dining, shopping, and other activities that lead to unemployment and harm 

businesses. We next explore this important finding in more depth.  
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Figure 7- Projections across four scenarios. Estimated true cumulative cases (A) and deaths (B) across 92 countries until 
June 30 2021 under scenarios I (No vaccine, same responsiveness; solid line), II (20% more responsive; dashed), III 
(vaccinating population over 2021; dotted), and IV (responsiveness and vaccination, II+III; dash-dot). C) Median (95% 
CI) estimated true cumulative cases (blue circels; bottom axis) and deaths (red squares; top axis) as % of population, 
projected by the end of June 2021 under Scenario I (Logarithmic Scale). D) Median (95% CI) reductions in cumulative 
cases in Scenario II (20% more responsive) compared with Scenario I (in % of population) for top 20 countries (blue 
circles; bottom scale); red squares (top scale) represent average change in contacts compared to Scenario I for January-
June 2021 period.  
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A global dilemma: similar behaviors, different outcomes 

Across scenarios, a few nations are projected to experience significant growth in incidence before 

vaccines become widely available, but most are able to stabilize their epidemics through NPIs, albeit 

with occasional new outbreak waves. Endogenous risk perceptions create an important balancing 

(negative) feedback that leads most countries to converge to an effective reproduction number RE ≈ 

1: RE > 1 leads to rapid growth in cases and deaths, increasing perceived risk and renewed use of 

NPIs that bring RE down; RE < 1 lowers cases and deaths, leading to the erosion of perceived risk 

and reduced adherence to NPIs that then lead to more cases, raising RE back toward one.  

Critically, however, RE fluctuates around 1 at very different quasi-steady state infection and fatality 

rates across nations. Recall that RE ≈ 1 means that, on average, infected individuals infect one new 

case before they are removed from the infectious pool by recovery or death. That balance can be 

achieved at a high or low level of prevalence. Those nations with high responsiveness to risk settle at 

RE ≈ 1 with low prevalence and death rates, while those with lower responsiveness to perceived risk 

achieve that balance only when cases and deaths rise high enough to drive RE down toward 1. The 

large cross-national variation in the estimated behavioral responses to risk lead to death rates more 

than two orders of magnitude higher in nations with weak responsiveness and greater adherence 

fatigue compared to those with sustained strong responses (Figure 8). Over the 6 months preceding 22 

December 2020, average estimated RE values have approximately converged to ≈1 (mean=1.19, 

σ=0.21), indicating comparable levels of contact reduction across nations. In contrast, deaths per 

million over the same period show a 10-90th percentile range of 0.033 to 3.7. 

 

 
 
Figure 8. Effective reproduction number RE vs. estimated true daily deaths per million in each nation, averaged over the 
6 months ending 22 December 2020, with a few countries highlighted. Inset: Oscillation in death rate vs. RE in the USA 
caused by lags in the perception of and behavioral responses to the risk of death, and lags between behavioral responses 
that reduce transmission and subsequent deaths. Data are weekly averages over the six-month period ending 22 December 
2020 (darker circles are the more recent weeks). 
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Summary of main results 

We find prevalence and mortality are substantially under-reported by official data: across the 92 

nations for which data are available, estimated cumulative COVID cases are approximately 7 times 

greater than official reports, with under-reporting across nations spanning three orders of magnitude.  

The magnitude of under-reporting has declining over time as testing has increased. Nevertheless, and 

despite the large magnitude of under-reporting, estimated cumulative cases through the end of 2020 

constitute small fractions of the populations, so herd immunity remains distant in nearly all nations 

(see S5).  

We find deaths are 1.44 times larger than official reports. The overall infection fatality rate to date is 

≈0.51%, consistent with growing evidence (Russell, Hellewell et al. 2020, Verity, Okell et al. 2020). 

We also find substantial cross-national variation in IFR.  The variation arises from differences in 

population age structure, and in the burden of severe cases relative to hospital capacity, highlighting 

the importance of limiting case growth. We also find that IFR has, on average, declined substantially 

since the onset of the pandemic. Despite the overall declining trend in IFR, mortality surges when 

renewed outbreaks overwhelm treatment capacity.  

We estimate that approximately half of infections are asymptomatic, consistent with estimates from 

smaller samples (Gudbjartsson, Helgason et al. 2020, Lavezzo, Franchin et al. 2020, Mizumoto, 

Kagaya et al. 2020), with asymptomatic individuals estimated to be about one-third as infective as 

symptomatic patients.  

The wide variation across nations arises endogenously and without major differences in biological 

parameters. First, inadequate early testing in some countries has led to greater underestimation of 

prevalence, and thus later and weaker responses, causing faster epidemic growth, further outstripping 

testing and treatment capacity in a self-reinforcing (positive) feedback. Second, the growth rate, timing, 

and size of outbreak waves depend strongly on the magnitude of behavioral and policy responses to 

perceived risk, and the lags in forming and eroding those perceptions, which we find vary notably 

across countries and determine the gain and phase lag in the negative feedbacks that lead to outbreak 

waves. These feedbacks amplify minor differences in testing and responsiveness to perceived risk, 

generating significant heterogeneity in cases and deaths despite convergence of RE to ≈1 across 

nations. Projections through 30 June 2021 show that modest reductions in transmission through NPIs 

can lead to large reductions in cumulative cases and deaths in many countries, even absent effective 

vaccines. In contrast, the early impact of vaccines is modest, because risk-driven response leads to 

relaxation of NPIs and keeps cases and deaths high until a large fraction of the population is 

vaccinated.  

Due to the rapidly evolving nature of the pandemic, behavior and policies, and vaccine availability and 

uptake, we have developed and will regularly update an online simulator enabling users to explore 

alternative vaccination and responsiveness scenarios over the coming months, freely available at 

https://exchange.iseesystems.com/public/mitsdl/covidglobal/.  

 

 

https://exchange.iseesystems.com/public/mitsdl/covidglobal/
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Robustness and boundary conditions 

We conducted several analyses to assess the robustness of the results. (1) We ensured MCMC chains 

had converged (100% of Gelman-Rubin convergence statistics were below 1.2 and 97% under 1.1). 

(2) We varied the priors for cross-country parameter variances to 4 and 0.25 times the base values, 

resulting in <3% change across historical measures, though scenario results for a few countries are 

more sensitive (S7 provides details). (3) To see if any country disproportionately affects the results we 

repeated the analysis using three different samples, excluding the top 5 countries by (i) estimated cases, 

(ii) reported cases, and (iii) population. Only India and USA appear in all three sets. Average outcomes 

across the remaining countries changed less than 1% (see S7). (4) We assessed the sensitivity of results 

to the parameters estimated from prior research by calculating the elasticities of key outcomes to 

parametric assumptions. Across metrics most elasticities are less than approximately 0.5. The largest  

is for the impact of test sensitivity; greater sensitivity reduces under-estimation. 

These robustness tests do not address a few limitations that temper the interpretation of the results. 

Some arise from limits on data availability across nations.  For example, we are unable to include China 

and Brazil because they do not report adequate testing data, and other useful data, such as all-cause 

mortality, are not available for some nations.  Some limitations arise from the computational burden 

of estimation:  although we limit the number of parameters to be estimated to avoid overfitting, the 

analyses we report, including estimation of credible intervals via MCMC, take 2 weeks of continuous 

parallelized computation on a 48-core server.   

Other limitations are due to inherent uncertainties. First, we do not represent within-nation 

heterogeneity that may affect the course of the epidemic. These variations likely matter especially in 

large, diverse nations (e.g., USA), including differences in transmission risk between rural and urban 

areas, differences in adherence to NPIs based on political views, and especially differences in the ability 

of individuals and households to limit transmission risk or receive treatment based on socio-economic 

status, race and ethnicity, and other factors affecting social justice (Britton, Ball et al. 2020, 

Laxminarayan, Wahl et al. 2020, Painter and Qiu 2020). Second, we model IFR as depending on age 

distribution and hospitalization, but do not explicitly model how well different nations are able to 

protect vulnerable subpopulations (the effect is aggregated into the overall impact of cumulative cases 

on IFR). Third, the model aggregates behavioral and government policy responses, and does not 

represent the effectiveness of specific NPIs. Fourth, due to the computational burden it would 

impose, we did not use filtering (e.g. Kalman or particle) or state-resetting methods to account for 

time-varying determinants of transmission (e.g. the impact of holidays). Fifth, we do not account for 

emergence of new variants of the virus that may alter transmissibility or IFR. Finally, without explicit 

travel networks our results may under-estimate the risk of re-introduction of the disease where it has 

been contained.  

 

Discussion 

The study yields conceptual, methodological, and policy implications. Conceptually, the model we 

develop integrates the biological and social factors conditioning transmission captured in typical SEIR 

models with a range of behavioral factors, some of which are novel in epidemiological modeling. We 

include endogenous test allocation and hospitalization based on symptom severity relative to capacity; 
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endogenous risk perceptions and responses, including adherence fatigue; and learning and other 

factors that cause the infection fatality rate to decline on average over time. While these mechanisms 

are intuitively plausible, empirical estimation of each feedback loop is indispensable for selecting which 

mechanisms to include in the model—and which to leave out; inferring the actual toll of COVID-19; 

explaining the multiple waves of infection; offering reliable long-term projections; and assessing the 

likely impact of policies. Quantification also enables us to explain orders of magnitude variations in 

outcomes across nations without resorting to exogenous time-varying parameters or ad-hoc nation-

specific fixed effects, and with parameters characterizing COVID-19 that are consistent with prior 

research. 

Two methodological contributions may inform future work. Our modeling framework captures 

heterogeneity in disease severity, which conditions test and treatment capacity allocation, without the 

need for explicit disaggregation into subpopulations or to the individual level. Our approach makes 

estimation computationally feasible and provides a consistent method to model the allocation of 

testing, hospital capacity, and the impact of acuity on mortality. Second, our hierarchical Bayesian 

estimation framework enables us to use the data from all nations to inform the estimated parameters 

for each. As expected, we find parameters capturing biological attributes of SARS-CoV-2 and 

COVID-19, such as the asymptomatic fraction of cases, have far less cross-national variation than 

parameters characterizing risk perceptions and behavioral responses to the threat.  

A counter-intuitive finding provides important policy implications. After controlling the initial peak, 

most countries have settled into a quasi-steady state with the effective reproduction number RE 

fluctuating around one, but with caseloads and death rates varying by two orders of magnitude.  This 

result arises directly from the endogenous inclusion of behavioral feedbacks: lower mortality erodes 

adherence to NPIs, raising RE and leading to rebound outbreaks, which then lead to renewed contact 

reductions that bring RE back down. However, the estimated responsiveness to risk varies widely 

across nations. Those with strong responses bring RE to 1 with few cases and deaths, while those with 

weak responses require much larger death rates to drive RE toward one. Critically, vaccine introduction 

does not change this fundamental result: vaccines save lives, triggering the relaxation of NPIs. The 

initial reduction in death rates will therefore be slower than expected based purely on the protection 

offered by vaccines. Consequently, different nations pay widely different prices in lost lives. Although 

we do not carry out a detailed analysis of the economic costs of different NPIs, the behavioral and 

policy changes that reduce contacts enough to bring RE to one are a rough measure of the self-

isolation, distancing, and other actions that reduce economic activity and employment by cutting 

travel, dining, shopping, and other activities sustaining commerce and industry. Thus, by increasing 

responsiveness to risks, communities and nations can bring down death rates at little additional 

economic cost, a finding consistent with analysis of the 1918 influenza pandemic (Correia, Luck et al. 

2020). Although contrary to the intuitions of many policy makers, the results suggest no strong 

tradeoff between saving lives and saving the economy. Stronger responsiveness to risk and adherence 

to NPIs offer an opportunity to save lives at low costs even as vaccines are approved and deployed.  
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S1 MODEL STRUCTURE AND KEY FORMULATIONS 

The model simulates the evolution of COVID-19 epidemic, risk perception and response, testing, 

hospitalization, and fatality at the level of a country, and couples all countries in the parameter 

estimation step. Here we explain key equations and structures in each sector, followed by complete 

listing of model equations and parameters in S8. Full model, data, and analysis code is available online 

at https://github.com/tseyanglim/CovidGlobal. 

Population Groups and Transmission Dynamics 

The model is a derivative of the well-known SEIR (Susceptible, Exposed, Infectious, Recovered) 

framework for simulating infection dynamics. Figure S1 provides an overview of key population 

groups and the population movements among them1. 

 

Figure S1- Key population stocks and flows. Rectangles represent stocks (state variables), while arrows and valves represent the flows between them (state 

transitions). Some in the Susceptible population (S) flow into the Pre-Symptomatic Infected stock (P) based on 

the Infection Rate (rSP). After an average Incubation Period (τP), these pre-symptomatic infected flow into 

the Infected Pre-Detection (IP) stock. After a further average Onset to Detection Delay (τT), this group splits 

among multiple pathways. First, if tested positive for COVID-19, they flow into either Infectious 

Confirmed Not Hospitalized (IC) or Hospitalized Infectious Confirmed (ICH). Anyone not tested positive, 

whether for lack of testing or erroneous test results, transitions into either Hospitalized Infectious 

Unconfirmed (IUH) or Infectious Unconfirmed Post-Detection (IU). We assume demand for testing and 

hospitalization are driven by symptoms, so all asymptomatic patients will be in the latter category. 

From these Infectious categories, resolution flows (r…) take individuals to either Recovered (R…) or 

Dead (D…) states, with corresponding subscripts U, C, CH, and UH for stocks and UU, UHCH etc. for flows. 

Given the differences in severity and potential survival extension due to hospitalization, we distinguish 

between resolution delay for those in hospital (Hospitalized Resolution Time; τH) and those not 

                                                 

1 In the equations below we use short-hand to simplify mathematical notations. The full model documentation uses full 
variable names. Table S1 provides the mapping between the short-hand and the full names, as well as the sources and 
equations for the variables and parameters discussed below. 

https://github.com/tseyanglim/CovidGlobal
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hospitalized (Post-Detection Phase Resolution Time; τR). We use first order exponential delays for all lags, 

though sensitivity analyses showed very little impact of using higher order delays.  

The Infection Rate (rSP) controls the flow from S to P and depends on Infectious Contacts (CI), fraction of 

total Population (N) that is susceptible, and Weather Effect on Transmission (W). The latter is a function of 

RW, the country-level projections for impact of weather on COVID-19 transmission risk year-round 

developed by Xu and colleagues (1) and a parameter, Sensitivity to Weather (sW), to be estimated: 

𝑟𝑆𝑃 = 𝐶𝐼𝑊(
𝑆

𝑁
)          (1) 

𝑊 = 𝑅𝑊
𝑠𝑊            (2) 

Infectious contacts depend on the Reference Force of Infection (β), various infectious sub-populations (and 

their relative transmission rates; ma for asymptomatic and mT for confirmed), and Contacts Relative to 

Normal (FC), which captures behavioral and policy responses as a fractional multiplier to baseline 

infectious contacts: 

𝐶𝐼 = 𝛽𝐹𝐶(𝑚𝑎(𝑃
𝑎 + 𝐼𝑃

𝑎 + 𝐼𝑈
𝑎) + 𝐼𝑃

𝑠 + 𝐼𝑈
𝑠 + 𝑃𝑠 + 𝐼𝑈𝐻 +𝑚𝑇(𝐼𝐶𝐻 + 𝐼𝐶))    (3) 

In this equation we separate various stocks (of I and P) into asymptomatic (a superscript) and 

symptomatic (s superscript). That distinction is treated analytically using a zero-inflated Poisson 

distribution that is discussed in the next section. In light of evidence on the short serial interval for 

COVID-19, likely below the incubation period (2, 3), we do not distinguish the infectivity of pre-

symptomatic individuals from those post onset. Contagion dynamics start from Patient Zero Arrival 

Time, T0, another estimated parameter. The key mechanisms regulating the population flows among 

these stocks are discussed below, and a schematic of important relationships is provided in Figure S2. 

Five parameters are estimated in the equations discussed above. One of them (sW) is global (i.e. 

assumed identical across countries; see the estimation section below for details on the distinction 

between global and country-specific parameters) and the remaining four are country-specific: β, mT, 

ma, and T0. 
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Figure S2- Overview of model's mechanisms. Major feedback loops are identified as Balancing (Negative feedback; B) and Reinforcing (Positive feedback; R). 

 

Modeling the Severity of Symptoms 

COVID-19 infection varies in acuity, from asymptomatic to life-threatening. Disease acuity affects 

fatality risk and also testing and hospitalization decisions, which in turn affect official records of 

infection and fatality rates. Since movement between population groups via testing or hospitalization 

is itself a function of acuity, to allow for consistent inference of mean acuity across different 

population groups, we use an analytical framework to track acuity levels. The framework, which we 

adapted from prior research (4), obviates the need to disaggregate the population by different acuity 

levels (which would prohibitively raise the computational costs for estimation).  

Specifically, we represent acuity using a zero-inflated Poisson distribution. This distribution combines 

two subpopulations – one with Poisson-distributed acuity levels with mean Covid Acuity (αC), and 

another Additional Asymptomatic Fraction with zero acuity, which is the zero-inflated component. The 

sum of those with zero acuity from the Poisson part of the population and the second group is the 

Total Asymptomatic Fraction (pa). We assume this asymptomatic group is not given priority in testing or 

hospitalization, and is not at risk of death. Thus they will always follow the 𝑆
𝑟𝑆𝑃
→ 𝑃

𝑟𝑃𝑃
→ 𝐼𝑃

𝑟𝐼𝑈
→ 𝐼𝑈

𝑟𝑈𝑈
→  𝑅𝑈 

pathway. The pathways for the remaining population depend on acuity and its impacts on testing, 

hospitalization, and death. Note that the concept of acuity defined here only needs to have a 

Testing

Ascertainment
Rate

Perceived risk
of COVID

Infectious
Contacts

Infectious
People

Test demand from
uninfected

Proportion of tests
going to infected

+

-

+

+

+
-

+

Risk-driven
responses

Reported Cases

-

+

-

Hospital
capacity

Hospital
coverage

Infection
fatality rate

Deaths

+ -

+

+

-
+

+

R1

Contagion

B3

Control through

testing

B2

Risk reduction

response

B4

Fear-induced test

demand

Nonlinear

'overwhelming'

fatality effect

Cumulative
Cases

R2

IFR Reduction

Adherence
Fatigue +

-

B5

Adherence

Fatigue

Susceptibles

+

B1

Herd Immunity

B6

Weather

-



6 

monotonic relationship with tangible symptoms and risk factors and it does not have a one-to-one 

relationship with any real-world measure of acuity, and as such is better seen as a mathematical 

construct that informs modeling rather than a real-world variable with clinical definition. 

From this framework two parameters, a and αC, are estimated as country specific parameters with 

limited variability across countries.  

 

Testing 

The testing sector reads the Active Test Rate (Tt) for each country as exogenous input data (see appendix 

S3 for pre-processing details for this data). A fraction of the total test rate, typically small, is allocated 

to post-mortem testing of COVID-19 victims who have not been previously confirmed (Post Mortem 

Tests Total, TPM). Specifically, of the deaths of unconfirmed infectious individuals (whether hospitalized 

or not), a certain Fraction of Fatalities Screened Post Mortem (nPM) will be identified true post-mortem tests. 

We anchor the nPM to Fraction Covid Death In Hospitals Previously Tested (nDCH). The rationale for this 

anchoring is that on the margin if there are many unidentified COVID patients in hospitals, the 

chances are that the system lacks enough testing capacity and thus post-mortem testing should also 

be less thorough:  

𝑛𝑃𝑀 = 𝑛𝐷𝐶𝐻            (4) 

We experimented other functional forms with a free parameter connecting the two constructs, but 

following our conservative estimation principle decided against including that free parameter in the 

final model. We feared that absent clear observables to identify this additional parameter (e.g. on 

country-specific policies regulating post-mortem testing) the degree of freedom would improve the fit 

but potentially for the wrong reason.  

The remaining Testing Capacity Net of Post Mortem Tests (𝑇𝑁𝑒𝑡 = 𝑇𝑡 − 𝑇𝑃𝑀) is allocated to test demand 

from two sources. First, symptomatic COVID patients leaving the pre-detection (IP) phase may seek 

testing (Positive Candidates Interested in Testing Poisson Subset: 𝑀𝐶 =
𝐼𝑃

𝜏𝑇
(1 − 𝑝𝑎)). Second, COVID-

negative individuals may seek testing due to various perceived risks and other conditions with 

overlapping symptoms such as common cold and influenza-like illnesses (MN, Potential Test Demand 

from Susceptible Population). This “negative” demand includes a Baseline Daily Fraction Susceptible Seeking 

Tests (nST) of the population not previously tested positively (NU), and increases with the Recent Detected 

Infections (TPIR), which is an exponentially weighted moving average of Positive Tests of Infected (TPI). 

COVID-positive and COVID-negative sources of demand add up to create the overall Testing Demand 

(MT): 

𝑀𝑁 = 𝑛𝑆𝑇𝑁𝑈 +𝑚𝐼𝑇𝑇𝑃𝐼𝑅          (5) 

𝑀𝑇 = 𝑀𝑁 +𝑀𝐶           (6) 

Where the Multiplier Recent Infections to Test (mIT), captures the sensitivity of negative test demand to 

recent infection reports. 
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To allocate the available tests (TNet) between these two sources of demand, we use an analytical logic 

that allocates testing based on symptom severity. Via self-selection and screening by testing centers, 

people who have more symptoms or other signals that correlate with COVID infection (e.g., high 

exposure risk) are more likely to be tested. We assume each unit of acuity increases the likelihood that 

an individual gets tested, based on a variable Prob Missing Symptom, pMS. This variable represents the 

probability that each acuity unit fails to convince the testing decision process to test a given individual, 

i.e. how selectively and sparingly tests are conducted. Specifically, in this model an individual with k 

acuity units is tested with probability: 

𝑝(𝑡𝑒𝑠𝑡|𝑘 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠) = 1 − 𝑝(𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑘 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠) = 1 − 𝑝𝑀𝑆
𝑘     (7) 

We assume the negative test demand is coming from a population with a Poisson-distributed, unit 

average acuity level (αN=1) for symptoms of non-COVID influenza-like illnesses. The test demand 

from COVID patients also comes from a Poisson distribution of acuity, but with mean αC. With the 

Poisson distribution and given a level of α and pMS, one can calculate the fraction of each demand 

source that would be tested: 

𝑝(𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑠𝑡) = 1 − 𝑝(𝑛𝑜𝑡 𝑏𝑒𝑖𝑛𝑔 𝑡𝑒𝑠𝑡𝑒𝑑) = 1 − ∑
𝑒𝛼𝛼𝑘

𝑘!
𝑝𝑀𝑆
𝑘𝑘=∞

𝑘=0 = 1 − 𝑒−𝛼(1−𝑝𝑀𝑆)  (8) 

We therefore need to find the pMS that allows test supply to match demand that is satisfied, specifically, 

by solving the following equation for pMS*: 

𝑇𝑁𝑒𝑡 = 𝑀𝑁(1 − 𝑒
−𝛼𝑁(1−𝑝∗𝑀𝑆)) + 𝑀𝐶(1 − 𝑒

−𝛼𝐶(1−𝑝∗𝑀𝑆))      (9) 

Figure S3 provides a graphical summary of the zero-inflated Poisson symptom and testing framework. 

In this figure testing outcomes are graphed for a population where 10% are COVID-positive, 

assuming that Covid Acuity, αC, is 6, and with two different levels of pMS (=0.8 and 0.95). For this figure 

we also assume a 55% asymptomatic fraction for COVID patients. Even with testing that prioritizes 

patients with more symptoms, and despite the large difference in symptom frequency between 

COVID patients and negative cases, the majority of tests are allocated to negative cases with a few 

symptoms. COVID patients with multiple symptoms are likely to be identified if PMS is not very large, 

but when total demand for testing (i.e. the sum of all bars with symptoms>0) is large, PMS , found 

from solving equation 9, may be close to 1, excluding many COVID patients with multiple symptoms 

and thus higher risks of fatality. 
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Figure S3- Schematic overview of zero-inflated Poisson process and test allocation. Red bars represent COVID-positive individuals and blue ones are COVID-
negative. Asymptomatic fraction is assumed to be 55% for COVID patients with the symptomatic cases following a Poisson distribution with mean 6. Color 
coded bars signal fraction of tested individuals with different levels of probability of missing symptoms, PMS. 

 

Having solved for p*MS (numerically), we analytically calculate the average acuity level for those 

positively tested (αCP: Average Acuity of Positively Tested ) and those either not tested or having received 

a false negative result (αCN). Specifically, if test sensitivity was 100%, the average acuity for those not 

tested would be: 

𝛼𝑁𝑜𝑡 𝑇𝑒𝑠𝑡𝑒𝑑 = ∑ 𝑘
𝑒𝛼𝛼𝑘

𝑘!
𝑝𝑀𝑆
∗ 𝑘𝑘=∞

𝑘=0 =𝛼𝑝𝑀𝑆
∗ 𝑒−𝛼(1−𝑝∗𝑀𝑆)      (10) 

The acuity level for those tested could then be found based on the conservation of total acuity across 

those positively tested and those not. Starting with this basic specification we further account for the 

Sensitivity of Covid Test (sT) to calculate the values of αCP and αCN. We parametrize sensitivity at 70%, 

which is the estimated sensitivity for the PCR-based tests used as the primary diagnosis method of 

current infections of COVID-19 (5, 6). 

Overall, the testing rates that are determined by solving for 𝑝𝑀𝑆
∗ , combined with sensitivity of tests, 

inform the fraction of COVID positive individuals transitioning from pre-detection (IP) to confirmed 
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vs. unconfirmed states (IC or ICH vs. IU or IUH), while the calculated α values inform the likelihood of 

hospitalization and fatality rates, as discussed next. 

The testing sector includes the following two country level parameters that are estimated: nST, mIT. 

 

Hospitalization 

The hospitalization sector of the model starts with each country’s Nominal Hospital Capacity (hN) in total 

hospital beds. In practice, geographic variation in hospital density and demand creates imperfect 

matching of available beds with cases of COVID-19 at any point in time, e.g. because some potential 

capacity is physically distant from current COVID hotspots. This imperfect matching means some of 

the nominal hospital capacity is effectively unavailable at any time, especially in larger, less densely 

populated countries. We therefore calculate Effective Hospital Capacity (hE) by considering geographic 

density of hospital beds (Bed per Square Kilometer; dH):  

ℎ𝐸 = ℎ𝑁 (
𝑑𝐻

𝑑𝐻
∗ )
𝑠𝐷𝐻

           (11) 

Where the 𝑑𝐻
∗  represents a large Reference Hospital Density of 6.06 beds per km2 (which is the value of 

𝑑𝐻 for South Korea). The parameter sDH (Impact of Population Density on Hospital Availability) is estimated. 

Effective capacity is allocated between Potential Hospital Demand (HCD) from COVID-19 cases and the 

regular demand for hospital beds from all other conditions (which we assume equals pre-pandemic 

effective hospital capacity). We assume that COVID-19 patients will have higher priority for 

hospitalization compared to regular demand. Specifically, we assume that fraction of regular demand 

allocated (mHR) would be the square of that for COVID demand (mHC), 𝑚𝐻𝑅 = 𝑚𝐻𝐶
2 , and solve the 

resulting hospital capacity allocation problem analytically: 

ℎ𝐸 = ℎ𝐸𝑚𝐻𝑅 + 𝐻𝐶𝐷𝑚𝐻𝐶  ⇒ 𝑚𝐻𝐶 =
−𝐻𝐶𝐷+√𝐻𝐶𝐷

2 +4ℎ𝐸
2

2ℎ𝐸
      (12) 

We determine the COVID demand for hospitalization based on a screening process similar to that 

for testing. Two types of COVID patients may seek hospitalization: those with confirmed test results 

and those without. The former are more likely to seek hospital treatment. We first calculate a 

parameter analogous to pMS in the testing sector that informs the demand from confirmed COVID 

patients for hospitalization. This parameter, the PMAS Confirmed for Hospital Demand (pMHC) is 

determined based on acuity level of confirmed (αCT) and Reference COVID Hospitalization Fraction 

Confirmed (rH), an estimated parameter capturing the overall need for hospitalization among COVID 

patients: 

𝑝𝑀𝐻𝐶 = (1 − 𝑟𝐻)
1

𝛼𝐶𝑇          (13) 

For unconfirmed COVID patients we scale the analogue of this parameter (pMHU) based on how much 

priority non-COVID patients generally receive: 

𝑝𝑀𝐻𝑈 = 𝑝𝑀𝐻𝐶 + (1 − 𝑝𝑀𝐻𝐶)(1 − 𝑚𝐻𝑅)        (14) 
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This formulation ensures that: 1) Confirmed COVID patients are more likely to be hospitalized, but 

also that 2) if there is ample hospital capacity (mHR~1), then confirmed and unconfirmed COVID 

patients will receive similar priority for the same level of acuity. In short, the pM. values determine 

hospital demand by confirmed and unconfirmed COVID patients, which add up to HCD. The latter 

determines the fraction of hospital demand that is met. Analogous to the testing sector, this fraction 

along with demand determines the flow of individuals from the pre-detection (IP) state to hospitalized 

vs. non-hospitalized states (ICH or IUH vs. IC or IU). Matching demand to allocated capacity also allows 

us to calculate the realized Probability of Missing Acuity Signal at Hospitals (p*M) for confirmed and 

unconfirmed patients. As in the testing sector, those probabilities let us approximate for the expected 

acuity levels for COVID patients in and out of hospital, as well as tested vs. not-tested, i.e. αCT, αCH, 

αU, and αUH. These average acuity levels in turn inform fatality rates for each group.  

The hospital sector includes two country level estimated parameter with limited variation across 

countries: sDH and rH. 

 

Infection Fatality Rates 

For patients in each of the U, C, CH, and UH groups we specify the Infection Fatality Rate (f), as: 

𝑓(.) = 𝑓𝑏𝛼(.)
𝑠𝑓𝑠𝐻𝐹(. )𝑔𝐴𝑔𝑣𝑓          (15) 

The parameter Base Fatality Rate for Unit Acuity (fb) sets the baseline for fatality rate. Sensitivity of Fatality 

Rate to Acuity (sf) determines how fatality changes with estimated acuity levels; more severe cases are 

expected to have higher fatality rates. Hospitalization reduces fatality rates, expressed as the relative 

Impact of Treatment on Fatality Rate (sHF); Finally, IFR reduction due to heterogenous responses (e.g. high 

risk groups becoming more cautious as cases accumulate), improved treatment with learning curves, 

and other drivers is captured in Time variant change in fatality (vf). 

The 𝑔𝐴𝑔 function incorporates the impact of age distribution on fatality rates. For age effect, we 

calculate a risk factor for each country. We use data from the World Bank on the age distribution of 

each country’s population in 10-year age strata to calculate an age-weighted average of the IFRs for 

COVID patients by 10-year age group reported in prior work (7). We normalize this age-weighted 

average IFR against its value for China, where the data on IFRs by age group were originally recorded. 

Normalizing in this way means the age effect is not sensitive to any systematic over- or under-

estimation of the IFR in prior work, only to the relative risk by age group. The resulting normalized 

age effect ranges from 0.271 (Kenya, median age ~20 years) to 2.368 (Japan, median age ~48 years). 

Given the well-established impact of age on fatality, this factor is directly multiplied into the infection 

fatality equations.  

Finally, we formulate the vf factor as a function of cumulative cases to-date in each country using a 

standard learning curve formulation, bounded by a minimum multiplier that is 10% baseline, and starts 

to operate after cases reach 0.5% of population. The Learning and Death Reduction Rate, 𝑙𝐼𝐹𝑅, is estimated 

for each country. Specifically: 
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𝑣𝑓 = Max(0.1,Max (1,
Cumulative Cases

0.005∗Population
)
−𝑙𝐼𝐹𝑅

)      (16) 

Overall, the fatality sector includes three parameters that are estimated at the country level, with limited 

variance across countries, those are: 𝑓𝑏, 𝑠𝐻𝐹, and 𝑠𝑓. A fourth country-level parameter, 𝑙𝐼𝐹𝑅, is allowed 

to very more widely across different nations.  

Note on comorbidities and fatality: We also explored including three comorbidities but found the estimates 

unreliable and therefore they are not included in the main specification of the model. Those 

comorbidities include obesity, chronic disease, and liver disease. The effects we explored for each 

were: 𝑔(.) = 𝑑(.)
𝑠(.)𝑓

, where we used the following country-level indicators from the World Health 

Organization (8), normalized by the average across all countries (d(.)):  

For obesity: Prevalence of obesity among adults, BMI ≥30 (age-standardized estimate) (%) 

For chronic health issues: Probability (%) of dying between age 30 and exact age 70 from any of 

cardiovascular disease, cancer, diabetes, or chronic respiratory disease 

For liver disease: Liver cirrhosis, age-standardized death rates (15+), per 100,000 population 

 

Risk Perception, Behavioral Responses, and Adherence Fatigue 

In equation 3 we noted that Contacts Relative to Normal (FC) regulates infection rates. This factor ranges 

between a minimum (Min Contact Fraction; cMin) and 1 as a function of the impact of perceived risk on 

behaviors, F: 

𝐹𝐶 = (1 − 𝑐𝑀𝑖𝑛)𝐹 + 𝑐𝑀𝑖𝑛          (17) 

𝐹 = e
−max (0,𝜆𝐿𝑅𝑎𝐹−

𝑠𝐶
𝑎𝐹
)
         (18) 

The impact of perceived risk on response uses an exponential function (eq 18) with exponent 

informed by Perceived Risk of Life Loss (𝐿𝑅), which is then moderated by a multiplier (Dread Factor in 

Risk Perception, λ) and Impact of Adherence Fatigue (𝑎𝑓). This moderated risk is compared to a Risk 

Threshold for Response (
𝑠𝐶

𝑎𝐹
), which itself responds to adherence fatigue. 

 𝐿𝑅 adjusts to an underlying Indicated Risk of Life Loss (𝐿𝑅
∗ ) with a time constant that is asymmetric, i.e. 

Time to Upgrade Risk (τRU) could be different from Time to Downgrade Risk (τRD). The 𝐿𝑅
∗  itself depends 

on Perceived Hazard of Death (ZDP) and a discount rate to turn daily costs to life-long ones (γ=0.03/year): 

𝑑𝐿𝑅

𝑑𝑡
=
𝐿𝑅
∗ −𝐿𝑅

𝜏𝑅.
            (19) 

𝐿𝑅
∗ =

𝑍𝐷𝑃

𝛾
            (20) 

The Perceived Hazard of Death (ZDP) is an average of reported daily hazard of death (with the weight 

Weight on Reported Probability of Infection, wR) and true hazard for death which individuals may perceive 

through word of mouth and their social networks. 
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Finally, we formulate the Impact of Adherence Fatigue based on a 100-day exponential average of relative 

contacts, Recent Relative Contacts (FR) and a country-specific estimated parameter, Strength of Adherence 

Fatigue (sa): 

𝑑𝐹𝑅

𝑑𝑡
=
𝐹𝐶−𝐹𝑅

100
           (21) 

𝑎𝑓 = 𝐹𝑅
𝑠𝑎           (22) 

 

Overall, the risk perception and response sector includes the following six country-specific parameters 

that are estimated: cMin, τRU, τRD, λ, wR, and sa. 

Vaccination 

We include a simple vaccination sector in the model to inform policy analyses. This sector was not 

active in the estimation of the model and most of the analyses reported in the paper, but is operational 

for vaccination scenarios reported in future projections. It is formulated using the following 

assumptions: 

- Vaccines are perfect in stopping transmission to vaccinated. Therefore they move individuals 

from the “Susceptible” stock to “vaccinated” where they remain for the rest of simulation. 

- Individuals may opt not to vaccinate. A user of the model can specify a fraction of population 

not accepting the vaccine, and those individuals are assumed to be represented with the same 

fraction across different population stocks. The scenarios simulated in the paper assume this 

fraction is zero but the online simulator allows for changing that fraction.  

- All individuals willing to vaccinate will get vaccinated regardless of their prior COVID 

infection status. However, vaccines are effective only on susceptible individuals, so those 

actively infected at the time of vaccination will not be affected by vaccine. 

- Vaccination rate is set based on a user-specified vaccination period. The rate will ramp up 

linearly for a given fraction of this period, and then will remain constant for the remainder. 

The final rate is specified such that everybody will get the vaccine within the specified 

vaccination period. In the reported simulations, the ramp-up is assumed to be fast and the 

overall period is set to one year, starting from January 2021. In the online simulator the ramp 

up period is assumed to be half the overall vaccination period, and users can input the overall 

period. 

- Vaccination could follow a priority plan in which higher-risk individuals are vaccinated first. 

In the model this mechanism is implemented by tracking a co-flow of acuity for all susceptible 

individuals. Vaccination is allowed to drain this acuity coflow with a rate that exceeds average 

acuity in the susceptible population by a user-specified ratio. In the reported scenarios we use 

a draining factor 1.5 times the average acuity in the stock of susceptibles. The average acuity 

in susceptible population would then be the 𝛼𝐶 used in the formulations above (with initial 

𝛼𝐶 starting from the empirically estimated value), and will change dynamically in response to 

vaccination of elderly and other high-risk groups and the potentially faster draining of acuity 

coflow.   
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Summary of Key Equations and Parameters 

Table S1 summarizes the main equations discussed in S1, providing the mapping between full variable 

names and the short forms. It also includes all estimated model parameters, as well as those specified 

based on prior research. 

Table S1- Mapping between full variable names and their short form for the subset of variables and parameters discussed in S1. Also included are equations 
explained above and sources for other variables. 

Short form Full variable name Equation/Source 

Tt Active Test Rate Data (See S4 for pre-processing details) 

𝑚𝐻𝐶  Allocated Fraction COVID 
Hospitalized 

−𝐻𝐶𝐷+√𝐻𝐶𝐷
2 +4ℎ𝐸

2

2ℎ𝐸
  

𝑚𝐻𝑅  Allocated Fration NonCOVID 
Hospitalized 

𝑚𝐻𝐶
2   

αCP Average Acuity of Positively Tested See full documentation 

fb Base Fatality Rate for Unit Acuity Estimated 

nST Baseline Daily Fraction Susceptible 
Seeking Tests 

Estimated 

dH Bed per Square Kilometer Data (8) 

mT Confirmation Impact on Contact Estimated 

FC Contacts Relative to Normal 
e
−max (0,𝜆𝐿𝑅𝑎𝐹−

𝑠𝐶
𝑎𝐹
)
(1 − 𝑐𝑀𝑖𝑛) + 𝑐𝑀𝑖𝑛  

αC Covid Acuity Estimated 

RW CRW Use estimates from (1) 

gAG Demographic Impact on Fatality 
Relative to China 

Use estimates based on (8, 9) 

γ Discount Rate per Day 8.2e-5 /Day 

λ Dread Factor in Risk Perception  Estimated 

hE Effective Hospital Capacity 
ℎ𝑁 (

𝑑𝐻

𝑑𝐻
∗ )
𝑠𝐷𝐻

  

nDCH Fraction Covid Death In Hospitals 
Previously Tested 

See full documentation 

nPM Fraction of Fatalities Screened Post 
Mortem 

𝑛𝐷𝐶𝐻  

ICH Hospitalized Infectious Confirmed See full documentation 

IUH Hospitalized Infectious Unconfirmed See full documentation 

τH Hospitalized Resolution Time 20 Days 

sa Impact of Adherence Fatigue 𝐹𝑅
𝑠𝑎  

sDH Impact of Population Density on 
Hospital Availability 

Estimated 

sHF Impact of Treatment on Fatality Rate Estimated 

τP Incubation Period 5 days 

𝐿𝑅
∗   Indicated Risk of Life Loss 𝐿𝑅

∗ =
𝑍𝐷𝑃

𝛾
  

IP Infected pre Detection  See full documentation 

IU Infected Unconfirmed Post-
Detection 

See full documentation 
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f(.) Infection Fatality Rate (.) 𝑓𝑏𝛼(.)
𝑠𝑓𝑠𝐻𝐹(. )𝑔𝐴𝑔𝑣𝑓  

rSP Infection Rate 𝐶𝐼𝑊(
𝑆

𝑁
)  

IC Infectious Confirmed Not 
Hospitalized 

See full documentation 

CI Infectious Contacts 𝛽𝐹𝐶(𝑚𝑎(𝑃
𝑎 + 𝐼𝑃

𝑎 + 𝐼𝑈
𝑎) + 𝐼𝑃

𝑠 + 𝐼𝑈
𝑠 + 𝑃𝑠 +

𝐼𝑈𝐻 +𝑚𝑇(𝐼𝐶𝐻 + 𝐼𝐶))  
lIFR Learning and Death Reduction Rate Estimated 

cMin Min Contact Fraction Estimated 

mIT Multiplier Recent Infections to Test Estimated 

hN Nominal Hospital Capacity Data 

τT Onset to Detection Delay 5 Days 

T0 Patient Zero Arrival Time Estimated 

ZIP Perceived Hazard of Infection See full documentation 

𝐿𝑅  Perceived Risk of Life Loss 𝑑𝐿𝑅

𝑑𝑡
=
𝐿𝑅
∗ −𝐿𝑅

𝜏𝑅.
  

N Population Data (10) 

𝑀𝐶  Positive Candidates Interested in 
Testing Poisson Subset 

𝐼𝑃

𝜏𝑇
(1 − 𝑎)  

TPM Post Mortem Tests Total See full documentation 

τR Post-Detection Phase Resolution 
Time 

10 Days 

HCD Potential Hospital Demand See full documentation 

MN Potential Test Demand from 
Susceptible Population 

𝑛𝑆𝑇𝑁𝑈 +𝑚𝐼𝑇𝑇𝑃𝐼𝑅  

TPI Positive Tests of Infected See full documentation 

P Pre-Symptomatic Infected See full documentation 

pMHC PMAS Confirmed for Hospital 
Demand (1 − 𝑟𝐻)

1

𝛼𝐶  

pMHU PMAS Unconfirmed for Hospital 
Demand 

𝑝𝑀𝐻𝐶 + (1 − 𝑝𝑀𝐻𝐶)(1 − 𝑚𝐻𝑅)  

pMS Prob Missing Symptom From solution to equation 9 

TPIR Recent Detected Infections See full documentation 

rH Reference COVID Hospitalization 
Fraction Confirmed 

Estimated 

β  Reference Force of Infection Estimated 

𝑑𝐻
∗   Reference Hospital Density Data (8) 

ma Multiplier Transmission Risk for 
Asymptomatic 

Estimated 

FR Recent Relative Contacts 𝑑𝐹𝑅

𝑑𝑡
=
𝐹𝐶−𝐹𝑅

100
  

sT Sensitivity of Covid Test 0.7 

sf Sensitivity of Fatality Rate to Acuity Estimated 

𝑠𝐶  Sensitivity of Contact Reduction to 
Utility 

Estimated 

sW Sensitivity to Weather Estimated 

sa Strength of Adherence Fatigue Estimated 
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S Susceptible See full documentation 

𝑇𝑁𝑒𝑡  Testing Capacity Net of Post 
Mortem Tests 

𝑇𝑡 − 𝑇𝑃𝑀  

MT Testing Demand 𝑀𝑁 +𝑀𝐶  

τRD Time to Downgrade Risk Estimated 

τRU Time to Upgrade Risk Estimated 

vf Time Variant Change in Fatality 
Max(0.1,Max (1,

Cumulative Cases

0.005∗Population
)
−𝑙𝐼𝐹𝑅

)  

pa Total Asymptomatic Fraction  Estimated 

UL Utility from Limited Activities 𝑒0.5𝑠𝐶  
UN Utility from Normal Activities 𝑒𝑠𝐶𝑎𝑓(1−𝐿𝑅)  
wR Weight on Reported Probability of 

Infection 
Estimated 

W Weather Effect on Transmission 𝑅𝑊
𝑠𝑊  

 

 

 

  



16 

S2 ESTIMATION METHOD 

Overview of the Approach 

The model we estimate is nonlinear and complex, and any estimation framework is unlikely to have 

clean analytical solutions or provable bounds on errors and biases. Therefore, in designing our 

estimation procedure we apply 3 guideposts: 1) Being conservative by incorporating uncertainties. 2) 

Avoid over-fitting; and 3) Enhance generalizability and robustness of estimates and projections. To 

these ends: we use a likelihood function that accommodates overdispersion and autocorrelation 

(negative binomial); we utilize a hierarchical Bayesian framework to couple parameter estimates across 

different countries which reduces the risk of over-fitting the data; and we use the conceptual 

definitions of parameters and their expected similarity across countries to inform the priors for the 

magnitude of that coupling across countries. Compared to more common choices in similar estimation 

settings (e.g. use of Gaussian likelihood functions), these choices tend to widen the credible regions 

for our estimates and reduce the quality of the fit between model and data. In return, we think the 

results may be more reliable for projection, more informative about the underlying processes, and 

better reflective of uncertainties in such complex estimation settings. We also conduct a validation test 

of our estimation framework using synthetic data in section S3. 

The model is a deterministic system of ordinary differential equations with a set of known and 

unknown parameters. The known parameters are those specified based on the existing literature and 

do not play an active role in estimation. The unknown parameters can be categorized into those that 

vary across different countries and those that are the same across all countries (i.e. “general” 

parameters). The estimation method is designed to identify both the most likely value and the credible 

regions for the unknown parameters, given the data on reported cases and deaths (and for a subset of 

countries, the excess deaths). This is done through a combination of estimating the most likely 

parameter values in a likelihood based framework, and using Markov Chain Monte Carlo simulations 

to quantify the uncertainties in parameters and projections. 

We first introduce the 3 different components of the likelihood function we use: the fit to time series 

data, the random effects component coupling country-level parameters, and the penalty for excess 

mortality. Then we explain the implementation details.  

The Fit to Time Series for Cases and Deaths 

Define model calculations for expected reported cases and deaths for country i as μij(t) (with index j 

specifying cases and deaths) and the observed data for those variables as yij(t); the country-level vector 

of unknown parameters as 𝜽𝒊 and the general unknown parameters as ϕ. Note that 𝜽𝒊 vector includes 

several parameters, each specifying an unknown model parameter, such as Impact of Treatment on 

Fatality, or Total Asymptomatic Fraction, for country i. The model can be summarized as a function 

f that produces predictions for expected cases and deaths for each country given the general and 

country-specific parameters:  

𝜇𝑖𝑗(𝑡) = 𝑓(𝝓, 𝜽𝒊)           (23) 

We use a negative binomial distribution to specify the likelihood of observing the y values given θ and 

ϕ. Specifically, the logarithm of likelihood for observing the data series y given model predictions μ(θ 

,ϕ) is: 
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𝐿𝑇(𝑡|𝝓, 𝜽) = ∑ 𝐿1𝑖𝑗(𝑡) + 𝐿2𝑖𝑗(𝑡) + 𝐿3𝑖𝑗(𝑡)𝑖𝑗        (24) 

 where (dropping time index for clarity): 

𝐿1𝑖𝑗 = −∑
ln (1+𝜀𝑖𝜇𝑖𝑗)

𝜀𝑖𝑗
𝑦𝑖𝑗=0           (25) 

𝐿2𝑖𝑗 = ∑ ∑ ln (𝑘 +
1

𝜀𝑖𝑗
)

𝑦𝑖𝑗−1

𝑘=0𝑦𝑖𝑗>0
         (26) 

𝐿3𝑖𝑗 = ∑ [− ln(𝑦𝑖𝑗!) − (𝑦𝑖𝑗 +
1

𝜀𝑖𝑗
 ) ln(1 + 𝜀𝑖𝑗𝜇𝑖𝑗) + 𝑦𝑖𝑗 ln(𝜀𝑖𝑗) + 𝑦𝑖𝑗 ln(𝜇𝑖𝑗)𝑦𝑖𝑗>0    (27) 

Summing the LT function over time provides the full (log) likelihood for the observed data given a 

parameterization of the model. The negative binomial likelihood function includes two parameters, μ 

and ε which determine the mean and the scaling/shape of the observed outcomes. The second 

parameter, ε, provides the flexibility needed fit outcomes with fat tails and auto-correlation. This 

parameter could itself be subject to search in the optimization process. Specifically, we assume that: 

𝜀𝑖𝑗 = 𝜀𝑖𝜀𝑗            (28) 

Thus we create a (set of) country specific parameter(s) (𝜀𝑖) and two general parameters (𝜀𝑗) which 

should be estimated along with the conceptual model parameters. The country level scale (𝜀𝑖) implicitly 

assesses the reliability and inherent variability in country level reports, and the general ones inform the 

variability in case data vs. deaths. We augment the vectors ϕ and θ to include these scaling parameters 

as well. 

Incorporating the coherence of parameters across countries 

Up to this point we have not included any relationship among country specific parameters, 𝜽𝒊. This 

independence assumption would allow parameters representing the same underlying concept to vary 

widely across different countries. Such treatment, by providing more flexibility, enhances the model’s 

fit to historical data. However, it ignores the conceptual link that exists for a given parameter across 

countries, potentially allowing the model to fit the data for the wrong reasons (i.e. using parameter 

values that do not correspond to meaningful real world concepts). The result would likely be less 

reliable and also not robust for future projections. We therefore define a Hierarchical Bayesian 

framework to account for the potential dependencies among model parameters. Specifically, we 

assume the same conceptual parameters (e.g. Impact of Treatment on Fatality), across different 

countries, are coming from an underlying normal distribution with an unknown mean (to be 

estimated) and a pre-specified prior for the standard deviation. This assumption is similar to the use 

of “Random Effect” models common in regression frameworks, though we deviate from canonical 

random effect models by pre-specifying the standard deviation. In fact it is possible to estimate the 

standard deviation across countries as well (and to obtain better fits to data by including the additional 

degrees of freedom), but adding those degrees of freedom ignores qualitatively relevant insights about 

the level of coupling across different countries for each parameter, and thus results may fit the data 

better but for the wrong reasons. For example, some parameters, such as Patient Zero Arrival Time, 

could be very different across countries, whereas parameters reflecting innate properties of the SARS-

CoV-2 virus itself (e.g. Total Asymptomatic Fraction (a)) or those determining fatality (e.g. Base Fatality 
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Rate for Unit Acuity (fb)) should be very similar across different countries. Allowing the model to 

determine the variance for the latter will lead to better fits: the model can find baseline fatality rates 

that easily match fatality variations across countries, and would expand the corresponding variance 

parameter accordingly. However, as a result the estimation algorithm will have too easy a job: it will 

not require a precise balancing between hospitalization, impact of acuity on fatality, and post-mortem 

testing decisions to fit fatality data. Thus, the estimates may well be less informative, or further from 

true underlying processes and the general characteristics of the disease which we care about. Overall, 

our implementation of a hierarchical Bayesian estimation framework to account for the coupling 

among the variables may reduce the apparent quality of fit but offer more robust results better 

informing the underlying mechanisms.  

The implementation of this random effect introduces another element to the overall likelihood 

function: 

𝐿𝐶(𝜽) = −∑
(𝜃𝑖𝑘−�̅�𝑘)

2

2𝜎𝑘
2𝑖𝑘           (29) 

Here θik represents the kth parameter for country i, and �̅�𝑘 is the (estimated) average across countries 

for the kth parameter. σk is the pre-specified allowable variability for the kth parameter across different 

countries.  

In setting these factors we chose small values for factors representing biological and natural processes, 

while adding more room for variation when human behaviors and perceptions were involved (See 

Table S2 for those settings). Specifying these standard deviation priors adds a subjective element to 

the estimation process. We note that subjective elements are ultimately indispensable in any modeling 

activity: from specifying the model boundary to the level of aggregation, use of various functional 

forms, and choice of likelihood functions, these choices are built on subjective assessments that 

experts bring to a modeling project. Absent our conceptually informed variability factors, we would 

need to make the assumption that country-level parameters are independent, or that our complex 

estimation process would correctly identify the true dependencies among those parameters. We think 

both those alternatives are inferior in the chosen method. So here we focus on transparently 

documenting and explaining those assumptions, and Supplement S3 provides a validation experiment. 

Table S2 summarizes the estimated model parameters, their estimated values (mean across countries 

and mean of Inter-Quartile Range) and the assumed variability factor (σk) for each. 

Table S2- Estimated model parameters, their estimated values (mean and standard deviation (std) across countries and the mean of Inter-Quartile Range 
(MIQR). Last column reports the variability allowances used to specify the coupling among country-level estimates. See equation 29 and related discussions 
above.  

Parameter Name Mean StDev MIQR Variability 

Factor, σk 

fb Base Fatality Rate for Unit Acuity** 5.74E-04 7.30E-06 1.27E-05 1.00E-05 

nST Baseline Daily Fraction Susceptible 
Seeking Tests 

8.36E-04 5.70E-04 1.72E-04 0.0005 

mT Confirmation Impact on Contact 1.73E-01 1.24E-01 9.90E-02 0.1 

αC Covid Acuity** 5.92E+00 1.21E-03 1.29E-02 0.01 

λ Dread Factor in Risk Perception* 6.14E+03 1.28E+04 3.74E+03 10 0.8 
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sDH Impact of Population Density on 
Hospital Availability 

1.70E-01 1.62E-01 9.23E-02 0.1 

sHF Impact of Treatment on Fatality Rate 4.58E-01 2.17E-01 6.65E-02 0.1 

lIFR Learning and Death Reduction Rate 7.07E-01 7.42E-01 1.67E-01 0.5 

cMin Min Contact Fraction 7.91E-02 4.99E-02 2.28E-02 0.03 

mIT Multiplier Recent Infections to Test 4.49E+01 2.38E+01 9.47E+00 30 

ma Multiplier Transmission Risk for 
Asymptomatic** 

2.93E-01 2.55E-03 1.29E-02 0.02 

T0 Patient Zero Arrival Time 9.90E+01 2.98E+01 4.59E+00 Uniform 

β  Reference Force of Infection 4.07E-01 2.19E-01 3.34E-02 0.2 

rH Reference COVID Hospitalization 
Fraction Confirmed 

6.32E-01 1.25E-01 8.65E-02 0.1 

sf Sensitivity of Fatality Rate to 
Acuity** 

2.14E+00 2.35E-03 6.42E-03 0.005 

sC Sensitivity of Contact Reduction to 
Utility 

3.17E+00 5.27E+00 1.35E+00 6 

sa Strength of Adherence Fatigue 1.24E+00 1.07E+00 1.91E-01 0.5 

τRD Time to Downgrade Risk* 2.45E+02 1.88E+02 6.43E+01 10 0.3  

τRU Time to Upgrade Risk* 3.83E+01 5.34E+01 1.33E+01 10 0.2  

a Total Asymptomatic Fraction ** 4.99E-01 9.15E-03 1.28E-02 0.03 

wR Weight on Reported Probability of 
Infection 

4.52E-01 2.62E-01 2.05E-01 0.2 

sW Sensitivity to Weather 2.64E+00 (not applicable for global parameter) 

*Given the wide range and potential long tail for these parameters the Log10 transformation is used 

in specifying the dispersion penalty (equation 27) and variability factors are reported as 10σ , where 

σ is used in equation 27. 
** These parameters are expected to be less variable across countries and thus are assigned small 
variability allowances compared to their mean. 

 

Excess mortality penalty 

Finally, we include a likelihood-based penalty term to allow model predictions be informed by excess 

mortality data collected by various news agencies and researchers for a subset of countries in our 

sample. These data provide snapshots of excess mortality (compared to a historical baseline) for a 

window of time in each country. Subtracting from total excess mortality the COVID-19 deaths 

officially recorded in that window offers a data point for excess mortality not accounted for in official 

data (ei). We can calculate in the model the counter-part for this construct: the simulated mortality 

that is not included in the simulated reported COVID-19 deaths (�̅�𝑖). There is uncertainty in these 

excess mortality data: the historical baselines used by various sources do not adjust for demographic 

change, excess mortality may be due to factors other than COVID-19, and some of it may be due to 

changes in healthcare availability and utilization motivated by COVID-19 but not directly attributable 

to the disease (for example when surgeries are delayed, hospitalization is avoided, or heart conditions 

are ignored). Excess mortality may also be reduced due to reduced traffic accidents (in light of physical 

distancing policies) and pollution related deaths. Given these uncertainties, we use the following 

penalty function to keep the simulated unaccounted excess mortality close to data: 
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𝐿𝐸 = −∑ (
0.9𝑒𝑖−�̅�𝑖

0.2𝑒𝑖
)
4

𝑖            (30) 

This penalty could be seen as a likelihood coming from the probability distribution 𝑝(𝑥) =
exp−𝑥

4

1.8128
 

defined for all values of x. It assumes that in the most likely case for excess mortality, 90% of 

unaccounted mortality should be attributed to COVID-19 deaths, but that there is significant 

uncertainty around this, so some 20% variation across this figure is quite plausible (70%-110% of 

data). However, numbers outside of this range start to impose increasingly large penalties, so that very 

large deviation becomes unlikely. 

Combining these three components, we obtain the full likelihood function used in the analysis: 

𝐿𝐿 = 𝐿𝐶 + 𝐿𝐸 + ∑ 𝐿𝑇(𝑡)𝑡=𝑇
𝑡=𝑡0

         (31) 

For each country we include the LT component from the first day they have reached 0.1% of their 

cumulative cases to-date, or a minimum of 50 cumulative cases. This excludes very early rates that are 

both unreliable and which, given very small estimated model predictions for infection, could lead to 

unreasonably large likelihood contributions. 

Numerical Methods 

The model includes a large number of parameters to be estimated: a general parameter for the impact 

of weather, 2 general parameters for 𝜀𝑗 , and 22 parameters for each country that are coupled together 

based on the random effects framework described above. Out of those 1 parameter (per country) is 

for 𝜀𝑖 and the other 21 are informing various features of disease transmission, testing, hospitalization, 

and risk perception and response. With a sample of 92 countries, this would lead to 2027 parameters 

to be estimated. A direct optimization approach to this problem suffers from potential risk of getting 

stuck in local optima, and direct use of MCMC methods to find the promising regions of parameter 

space suffers from the curse of dimensionality. We therefore designed the following 4-step procedure 

to find more reliable solutions to both problems and the synthetic data exercise in S3 provides some 

evidence on the effectiveness of the method. 

1) We estimate the model with the full parameter vector for a smaller number of countries with 

larger outbreaks (3-5 countries). We use the Powell direction search method implemented in 

Vensim™ simulation software for this step. The method is a local search approach though it 

has features that allows it to escape local optima in some cases. We restart the optimization 

from various random points in the feasible parameter space and track the convergence of 

those restarts to unique local peaks. We stop this process when we are repeatedly landing on 

the same local peaks in the parameter space. This procedure showed that local peaks do exist, 

but they are not many; for example, within 100 restarts we may find 2-4 distinct peaks, with 

one being distinctly better than others. This quasi-global peak provides a coherent set of 

starting points for ϕ and �̅� for next steps. 

2) We go through iterations of the following two steps: A) Conduct country-specific 

optimizations with 50 restarts to find the vector of θi given the ϕ and �̅� from first optimization 

or from the step B. B) Conduct a global optimization, including all countries but fixing θi and 

optimizing on ϕ (and �̅�; though that is simply the mean across country level parameters from 
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previous round). We stop when iterations offer little improvement from one round to the next 

(less than 0.05% improvement in log-likelihood). 

3) We conduct a full optimization allowing all parameters (θi, ϕ and �̅�) to change, starting from 

the point found in the last iteration of step 2. This step finds the exact peak on the likelihood 

landscape which is the best-fitting parameter set for the model. 

4) For the MCMC, theoretically one should conduct the sampling from all model parameters in 

the full model. However, our experiments showed that the large dimensionality of the 

parameter space requires an infeasible number of samples to achieve adequate mixing and 

ensure reliable credible regions for parameters and projections. To overcome this challenge 

we note that the parameters of different countries are connected to each other only through 

ϕ and �̅�, and these general parameters are rather insensitive to dynamics in each country. The 

insensitivity is due to the fact that a single country only contributes about 1% to the general 

parameters’ values, and within a typical MCMC the country-level parameters often can’t 

change more than 10% before the resulting samples become highly unlikely. Therefore, one 

can conduct an approximate country-level MCMC by fixing the general parameters at those 

from step 3, and only sampling from the θi for each country. The MCMC algorithm used is 

one designed for exploring high dimensional parameter spaces using differential evolution and 

self-adaptive randomized subspace sampling (11). Using this method we obtain good mixing 

and stable outcomes (Robin-Brooks-Gelman PSFR convergence statistic remaining under 1.1) 

after about 600,000 samples (the burn-in period). We continue the MCMC for each country 

for another 400,000 samples and then randomly take a subsample of those points after the 

burn-in period for the next step. 

5) The resulting subsamples for different countries from step 4 are assembled together to create 

a final sample of parameters for the full model to conduct projections and sensitivity analysis 

at the global scale. Uncertainties in the handful of global parameters is not identified in this 

procedure, but can be quantified by assessing the sensitivity of the global likelihood surface to 

changes in those parameters. 

The process above is automated using a Python script that controls the simulation software (Vensim). 

We conduct the analysis using a parallel computing feature of Vensim on a Windows server with 48 

cores. After compiling the simulation model into C++ code (which speeds up calculations 

significantly), and using a simulation time step of 0.25 days, it takes about 60 hours to complete the 

estimation for 91 countries, and almost two weeks to complete the full suite of sensitivity analyses 

reported in the paper. Full analysis code is available online at https://github.com/tseyanglim/

CovidGlobal. 

  

https://github.com/tseyanglim/CovidGlobal
https://github.com/tseyanglim/CovidGlobal
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S3 VALIDATION OF ESTIMATION FRAMEWORK 

The complexity of model and the large number of parameters involved complicates the assessment of 

estimation method based on theoretical considerations alone. We therefore use a synthetic data 

experiment to build confidence in the estimation framework. Specifically, we first simulate the model 

using known parameters without using historical deaths and cases to provide a ‘ground-truthed’ set of 

synthetic data. We then apply the exact estimation framework used on the actual data to infer the 

parameters of the model from this synthetic dataset. Finally, we assess how well the estimated 

parameters correspond to the “true” values and how inclusive the estimated credible intervals are of 

the true parameters. The ability of the estimation framework to find the true parameter values, and 

consistent credible intervals, would increase our confidence that parameters estimated using actual 

data are also not particularly biased and that the credible intervals are informative. While repeating 

this procedure for multiple sets of synthetic data, with various parameterizations, is desirable, the 

computational costs in our setting make such an approach infeasible. Nevertheless, the large number 

of parameters estimated in a single full calibration exercise provides ample opportunities to test the 

precision of the method in the range of parameter values relevant in the actual data. The three steps 

of the process are discussed below. 

Generation of synthetic data 

We used the model specified above, with the parameters estimated in the baseline analysis from actual 

data, to generate the synthetic data. Given the deterministic nature of the model, it would be easy for 

the estimation process to identify the model parameters should we use the exact outcome of the 

baseline simulation. To test the model in a more realistic scenario, therefore, we inject two different 

random noise time series into the model, effectively turning the data generation simulation model into 

a stochastic one with underlying noise processes not accurately captured in the estimation model 

(because of the autocorrelation in the driving noise). Specifically, we make the following two 

modifications to the model equations: 

𝑟𝑆𝑃 = 𝐶𝐼𝑊(
𝑆

𝑁
)𝑁𝑃𝐼          (1b) 

Where   
𝑑𝑁𝑃𝐼

𝑑𝑡
=
𝑁𝑃𝐼

∗−𝑁𝑃𝐼

𝑡𝐶𝑟𝑟
  

𝑁𝑃𝐼
∗ = 1 + 𝑁𝐺𝜎𝑁𝐼√

2−
𝑑𝑡
𝑡𝐶𝑟𝑟
𝑑𝑡
𝑡𝐶𝑟𝑟

    

And 

𝑓(.) = 𝑓𝑏𝛼(.)
𝑠𝑓𝑠𝐻𝐹(. )𝑔𝐴𝑔𝑁𝑃𝐷          (15b) 

Where NP. are the noise terms changing infection and IFR rates. 𝑁𝑃𝐷 is formulated similar to 𝑁𝑃𝐼 , 
with parameters tCrr and σND. NG is a standard Gaussian random number generator producing a new 

independent draw every time step of the simulation (dt) for each of the two noise streams separately 

and independently.  
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These equations specify two first order autocorrelated Normally distributed noise streams. The 

autocorrelation time constant, tCrr, is set to 10 days for both streams of noise. The σNI and σND 

parameters are set to 0.1 (i.e. leading to standard deviation of noise around infections and deaths being 

10% of the model generated baselines). As in the real world, the substantial correlation time leads to 

significant swings in the infection and death rates beyond those explained by model mechanisms. 

We also add a “measurement” noise to both daily infections and deaths in synthetic data by drawing 

Negative Binomial random samples from the estimated distributions for each country at any given 

time and using those (rather than expected values) as the data in this estimation exercise. 

To best replicate the features of actual data, the model uses actual country level data for test rates 

(which are exogenous inputs driving simulations) and various country level statistics such as 

population, population density, and age structure.  

We record the data generated from this simulation for confirmed cases and deaths, corresponding to 

the data we have available to estimate the actual model. For each country we only record the data for 

the days in which we have a corresponding actual data point. We also record excess mortality counts 

for the subset of countries and periods for which we have such data. These three data items (two time 

series for confirmed infections and deaths and point estimates for excess mortalities in a subset of 

countries) are the inputs into the estimation process. 

Estimation using synthetic data 

The synthetic data generated in the previous step is available on the project’s GitHub repository. This 

data is then used, following the estimation process discussed in S2, to find the model parameters. This 

step requires no other assumptions and follows the exact process used in the main analysis. Note that 

we start the estimation with uninformed (uniform with large ranges) priors on all parameters. 

Results and comparisons 

Figure S5 reports the estimated parameters, their 95% credible intervals, and the true parameters 

across all 1932 (92 countries x 21 parameters each) country-level parameters of the model that impact 

outcomes. Overall, the estimation process successfully identifies the vast majority of parameters. For 

example the median distance between estimated and true values, as a percentage of the length of 

estimated 95% credible interval, is 21%. Moreover, the credible intervals envelope the true values 

rather consistently. Specifically, the 50% CI includes the true value in 32% of cases and this measure 

increases to 49%, 60%, 67%, and 75% for 80%, 90%, 95%, and 98% CIs respectively. The theoretical 

vs. actual intervals are showed in Figure S4. 

https://github.com/tseyanglim/CovidGlobal
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Figure S4- Theoretical vs. actual fraction of parameters enveloped by different Credible Interval percentiles.  

While not identical to the expected theoretical values, these coverage levels are close, especially in 

the context of very large parameter spaces and complex estimation exercises where finding reliable 

CIs is often harder than estimating the parameters. Figure S5 also shows that some parameters are 

more likely to have imprecise confidence intervals than others. In fact, much of the imprecision in 

confidence intervals are due to two parameters, Base Fatality Rate for Unit Acuity and Covid Acuity 

Relative to Flu end up outside 95% confidence interval for all countries, despite estimated value being 

numerically very close to original value. We can’t rule out the existence of a local optima in the new 

estimated value driving the results. Moreover, for some parameters (e.g. fb , and 𝛽) the baseline 

estimated values could fall outside the 95% confidence intervals and are closer to the true values. 

These instances could point to asymmetric likelihood surfaces or the possibility that the MCMC 

chains may require larger samples for getting at true confidence intervals.   Overall these results add 

to our confidence that the estimated credible intervals are in the right range, though some may be 

somewhat tighter than they should be.
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Figure S5-Country-level parameter estimates and 95% credible intervals from synthetic estimation exercise (blue circles and bars) compared with true values 
(red cross signs) across all parameters. Numbers on the right represent the fraction of true values enveloped by the 95% interval. 
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S4 DATA PRE-PROCESSING 

Getting contemporaneous, comprehensive, national-level data on Covid-19 is a challenge. The most 

widely-cited data aggregators, such as the Johns Hopkins Center for Systems Science and 

Engineering’s COVID-19 database (12), OurWorldInData portal (13), and the US-focused COVID 

Tracking Project (14), get their data from the same few official sources, such as the US Centers for 

Disease Control and Prevention (CDC), the European CDC (ECDC), and the World Health 

Organization (WHO). These official agencies in turn get their data from national and subnational 

public health authorities, which ultimately rely on reports from hospitals, clinics, and private and 

public health labs. 

As a result, idiosyncrasies in the ground-level data collection processes permeate virtually all sources 

of aggregate data. Most notably, data collection involves time lags, which can differ from source to 

source. Daily death counts could reflect the date of actual death or the date a death is registered or 

reported; different UK government sources, for instance, use each of these metrics.2 Daily infection 

or case counts could include the total new cases reported on a given date, or the total cases confirmed 

from that date; the latter would result in some ‘backfill’ whereby case counts for previous days can 

continue to increase for some time as delayed confirmations come in. Daily counts of tests conducted 

could report samples collected, samples processed, results reported, or a mix of these; the US CDC, 

for instance, reports a mix of testing by date of sample collection and date of sample delivery to the 

CDC.3 Aside from differences in unit of measure (people vs. tests vs. samples), there may be different 

time lags involved as well. In addition to these idiosyncrasies, testing data in particular is also patchy 

for many countries, even as testing has become more widespread. The WHO does not report country-

by-country testing, nor does the JHU Covid map outside the US. Furthermore, there are sometimes 

irregular delays in the reporting of test results, which can create occasional unexpected spikes in 

reported numbers of tests, infections, or both.4 

Depending on the specifics of how daily infection and test counts are reported, there can in some 

cases be a disjunction between the two. Because confirmed case counts largely depend on positive test 

results, test and infection counts should be correlated – ceteris paribus, a day with a lot of samples 

collected for testing should see more confirmed cases attributed to it, while a day with no sample 

collection should see no cases. But since cases may not be reported by the date of the test, and tests 

may not be reported by the date of sample collection, officially reported numbers can get out of sync 

in either direction. 

This problem is most salient when there are clear weekly cycles in daily rates. In most of the world, 

particularly western countries, daily test rates are far lower on weekends than during the week. As a 

result, infection numbers show a clear weekly cyclical component as well. But the weekly cycles in 

testing and infection numbers for a given country do not always line up. Our model explicitly accounts 

for the effect of testing on reported infections, but we do not explicitly model the country-level 

                                                 

2 https://blog.ons.gov.uk/2020/03/31/counting-deaths-involving-the-coronavirus-covid-19/ 
3 https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/previous-testing-in-us.html 
4 See e.g. https://www.wcvb.com/article/massachusetts-coronavirus-reporting-delay-due-to-quest-lab-it-
glitch/32288903# 

https://blog.ons.gov.uk/2020/03/31/counting-deaths-involving-the-coronavirus-covid-19/
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/previous-testing-in-us.html
https://www.wcvb.com/article/massachusetts-coronavirus-reporting-delay-due-to-quest-lab-it-glitch/32288903
https://www.wcvb.com/article/massachusetts-coronavirus-reporting-delay-due-to-quest-lab-it-glitch/32288903
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idiosyncrasies of reporting and how they vary between test data and infections. Instead we account 

for any such lags in pre-processing of the data to align testing and case data. 

The weekly cycle occurs in many countries’ death rate data as well, where it presents a different 

problem. A weekly cycle in testing is a behaviourally realistic part of the data-generation process, as 

many labs, clinics, or other testing sites for instance may be closed on weekends. As testing provides 

the window on the state of confirmed infections, a comparable cycle in confirmed cases is to be 

expected as well. By linking case confirmations to testing, our model explicitly accounts for this limited 

visibility on the true state of the epidemic. However, a weekly cycle in death rates almost certainly 

reflects different limitations of the data-generation process, typically to do with hospital staffing,5 

which we do not explicitly model. As such we need to address any weekly cycle in death rates through 

data pre-processing as well. 

To deal with these challenges, we developed a multi-step algorithm to pre-process our data before 

feeding it into the model for calibration. The algorithm is described below. It was implemented in 

Python, largely using the Pandas and NumPy packages, and the code is available in full at: 

https://github.com/tseyanglim/CovidGlobal. 

 

The algorithm proceeds country-by-country, following these steps on each country. 

1) Examine daily cumulative test data; if data are insufficient (6 or fewer data points), drop country 

from the dataset. 

 

2) Interpolate any missing daily cumulative test data points using a piecewise cubic Hermite 

interpolating polynomial (PCHIP) spline. If the first reported infection is before the first reported 

cumulative test, also extrapolate cumulative tests back to the date of first reported infection. 

a. Extrapolation to the date of first reported infection is necessary since both in the model 

and, to a large extent, in reality, reported infections require testing for confirmation. 

b. PCHIP spline interpolation yields a continuous monotonic function with a continuous 

first derivative, thus avoiding generating any anomalous rapid change in daily test rate. 

c. We used the implementation of PCHIP interpolation from the widely used SciPy package 

for Python.6 

 

3) Calculate daily test rate as daily cumulative tests less the preceding day’s cumulative test total: 

 

                                                 

5 It may be argued that there are weekly cycles in large-scale human behaviour that may drive some true weekly cyclicality 
in the true rates of infection and death, and as such it may be wrong to consider such cycles to be artefacts of the data-
generation process. However, we find this unlikely for a few reasons. First, weekly cycles in human interactions, largely 
driven by the work and school week and weekend, will have been significantly attenuated by widespread adoption of social 
distancing measures around the world. Second and more importantly, variation in incubation period and time before 
development of symptoms means that any true cyclicality in the timing of initial infection will be further attenuated in the 
timing of symptom development. By the same logic, wide variability in the delay from symptom development to death 
means there should be minimal cyclicality, if any, in the timing of deaths, meaning any such cycles visible in the data are 
due to measurement and reporting lags. 
6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html 

https://github.com/tseyanglim/CovidGlobal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
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𝑇𝑒𝑠𝑡𝑅𝑎𝑡𝑒𝑡 = 𝐶𝑚𝑙𝑡𝑇𝑒𝑠𝑡𝑡 − 𝐶𝑚𝑙𝑡𝑇𝑒𝑠𝑡𝑡−1      (32) 

 

4) Examine the original daily cumulative test data to estimate how much of the calculated daily test 

rate is based on interpolated vs. original data. 

a. Daily test rates calculated based on mostly original data should be expected to include any 

weekly cycles or occasional irregularities that would also be reflected in daily infection 

counts. Conversely, daily test rates calculated from cumulative test counts that are largely 

interpolated would not be expected to fully reproduce any such cycles or irregularities, 

since the interpolation produces a relatively smooth function. 

b. As a rule of thumb, we examine the cumulative test data for the second half of the time 

from the first test to the latest test. If fewer than half the days in that window have original 

cumulative test data, we consider the test data to be ‘sparse’, requiring further processing. 

 

5) If the test data are not sparse, account for any potential lag or other reporting delay differences 

between daily test rate and daily infection rate using a time-shift algorithm to estimate any such 

lags or delays from the data and shift the test rate time series accordingly. The time-shift algorithm 

ensures that any weekly cycles present in the daily infection rate data are reflected in the daily test 

rate data and aligned as best as possible on date, thereby accounting for the fact that model-

generated reported infections depends on testing but with no time lag between test and result. 

a. First, identify the weekly component of the time series of daily infection rate and daily test 

rate using a seasonal-trend decomposition based on LOESS (STL) procedure.7 

i. STL deconstructs time series data into several components, including a trend and 

a seasonal component over a specified period (weekly, in this case) as well as a 

residual. STL is an additive decomposition, and has the advantage of allowing the 

seasonal component to change over time (rather than being a fixed pattern 

repeated exactly across the whole time series). 

ii. We used the STL implementation from the Statsmodels package for Python.8 

b. Shift the time series over a one-week range (from -2 to +4 days of lag between test and 

infection reporting), calculating the cross-correlation between the weekly seasonal 

component of the daily infection rate data and the daily test rate data for each time shift. 

c. Identify the time shift within this range that maximizes the cross-correlation between the 

infection rate and test rate data, and shift the test rate data accordingly. 

 

6) If the test data are sparse, the spline interpolation will generally cut out some of any weekly 

cyclicality that may be present. Visual inspection of daily test rates for countries with sparse test 

data also shows large, irregular spikes in reported tests are not uncommon, without necessarily 

having concomitant irregular spikes in reported daily infection rates. As such, rather than 

attempting to eliminate differences in reporting lags through the time-shift algorithm described 

above, we instead apply a data-smoothing algorithm to both daily test rate and daily infection rate, 

                                                 

7 Cleveland R.B., Cleveland W.S., McRae J.E., Terpenning I. (1990) STL: A seasonal-trend decomposition procedure based 
on Loess. J Off Stat 6: 3-73 
8 https://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.STL.html 

https://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.STL.html
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in order to reduce any cyclicality and irregular spikes. This smoothing allows the calibration of the 

main model to focus on matching the underlying trends in the data. 

 

7) In all cases, whether daily cumulative test data are sparse or not and whether infection and test 

rate data are smoothed or not, since weekly cycles in death data are reflective of reporting lags not 

captured in the model, daily death rate data is smoothed using the same algorithm. 

 

8) The smoothing algorithm used is designed first to conserve the total number of reported cases 

(tests, infections, or deaths), and second to preserve some degree of variation in the time series, 

as some noise may be informative and retaining some is important to the calibration of the model. 

a. Starting from when the time series of daily rate (test or infection) exceeds a specified 

minimum value (5/day), calculate the rolling mean of the daily rate, using a centred moving 

window of 11 days. 

b. Calculate the residual between each day’s data point and the rolling mean for that day, and 

divide by the square root of the rolling mean, to get an adjusted deviation value: 

 

𝐴𝑑𝑗𝐷𝑒𝑣𝑡 =
𝑉𝑎𝑙𝑢𝑒𝑡−𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛𝑡

√𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛𝑡
         (33) 

 

i. Dividing by the square root of the rolling mean reflects a heuristic assumption that 

each daily rate (of infections, deaths, or tests) behaves as a Poisson process (StDev 

of Pois() = 0.5). 

ii. The functional result of this adjustment is that both absolute and relative magnitudes 

of deviations from the rolling mean are given some weight – large relative 

deviations when absolute values are small (and data are noisier) are not ignored, 

but neither do they outweigh larger absolute (but smaller relative) deviations that 

occur when the mean is large, which is important since most of the time series data 

are growing significantly over the time horizon of the model. 

c. Calculate thresholds for identifying dips and peaks in the data based on the median of the 

adjusted deviations, ± one median absolute deviation (MAD) of the adjusted deviations: 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝐴𝑑𝑗𝐷𝑒𝑣̃ ±𝑀𝑒𝑑(|𝐴𝑑𝑗𝐷𝑒𝑣𝑖 − 𝐴𝑑𝑗𝐷𝑒𝑣̃ |)    (34) 

 

i. Using the median absolute deviation to determine thresholds for peaks and dips is 

robust to outliers in the deviations, which do arise occasionally in the data. 

ii. A threshold width of one MAD is relatively narrow for outlier detection, but by 

inspection of the data, is about right for identifying most of the peaks and dips 

caused by weekly cycles in test, infection, and death rates, as well as larger outliers. 

d. Once thresholds are calculated, iterate through the data points in the time series first 

forward in time from oldest to newest, filling in any ‘dips’ (data points with adjusted 

deviations below the lower threshold), then backward in time from newest to oldest, 

smoothing out any ‘peaks’ (data points with adjusted deviations above the upper 

threshold) that remain. Repeat the process until all data points’ adjusted deviations are 

within the originally calculated thresholds for the time series. 
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i. We infer that the underlying processes generating dips and peaks are somewhat 

different. Dips are generally the result of weekly cycles in the data, e.g. lower rates 

of testing or longer lags in death reporting that occur on weekends. Peaks arise to 

some extent due to the same weekly processes, e.g. some deaths that occur on 

weekends only being recorded at the start of the next week. However, some peaks, 

especially larger ones, may result from irregular random delays in reporting, such 

as large batches of tests being held up due to logistical issues and then getting 

processed all at once. As such the smoothing procedure for dips vs. peaks is 

slightly different. 

e. The dip-filling step fills a fraction of each dip (specified as a smoothing factor) by 

redistributing data counts based on a multinomial draw from the subsequent few days 

following each dip. 

i. First, calculate the amount to fill based on the deviation and the smoothing factor 

specified, in this case 0.67: 

 

𝐹𝑖𝑙𝑙𝐴𝑚𝑡𝑡 = 𝑆𝑚𝐹𝑎𝑐𝑡𝑜𝑟 × (𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛𝑡 − 𝑉𝑎𝑙𝑢𝑒𝑡)     (35) 

 

ii. Calculate the amount redistributed from each of the following few (7) days 

𝑋𝑡+1, 𝑋𝑡+2, …𝑋𝑡+𝑘 , 𝑘 = 7, based on a multinomial distribution as follows: 

 

𝑋𝑡+1, 𝑋𝑡+2, …𝑋𝑡+7 = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐹𝑖𝑙𝑙𝐴𝑚𝑡𝑡; 𝑝𝑡+1, 𝑝𝑡+2, … 𝑝𝑡+7)   (36) 

 

Where 𝑝𝑡+1, 𝑝𝑡+2, … 𝑝𝑡+7 are calculated as: 

 

𝑝𝑡+𝑖 =
𝐴𝑑𝑗𝐷𝑒𝑣𝑡+𝑖−𝐴𝑑𝑗𝐷𝑒𝑣𝑡,𝑚𝑖𝑛.0

∑ (𝐴𝑑𝑗𝐷𝑒𝑣𝑡+𝑖−𝐴𝑑𝑗𝐷𝑒𝑣𝑡,𝑚𝑖𝑛.0)
7
1

       (37) 

 

iii. This formulation allows some redistribution from any of the subsequent few days 

whose adjusted deviations exceed the focal day’s adjusted deviation, but with more 

redistribution from days with higher adjusted deviations. 

f. The peak-smoothing step similarly redistributes a fraction of each peak, specified by the 

smoothing factor, to the preceding several days based on another multinomial draw. 

i. First, calculate the amount to redistribute similarly to the dip-filling step: 

 

𝐷𝑖𝑠𝑡𝐴𝑚𝑡𝑡 = 𝑆𝑚𝐹𝑎𝑐𝑡𝑜𝑟 × (𝑉𝑎𝑙𝑢𝑒𝑡 − 𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛𝑡)     (38) 

 

ii. Calculate the amount redistributed to each of the preceding several (14) days 

𝑌𝑡−1, 𝑌𝑡−2, … 𝑌𝑡−𝑘, 𝑘 = 14, based on a multinomial distribution as follows: 

 

𝑌𝑡−1, 𝑌𝑡−2, … 𝑌𝑡−14 = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐷𝑖𝑠𝑡𝐴𝑚𝑡𝑡; 𝑝𝑡−1, 𝑝𝑡−2, … 𝑝𝑡−14)  

 (36) 

 

Where 𝑝𝑡−1, 𝑝𝑡−2, … 𝑝𝑡−14 are calculated as: 
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𝑝𝑡−𝑖 =
𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛𝑡−𝑖

∑ 𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛𝑡−𝑖
14
1

         (39) 

 

iii. This formulation redistributes peaks to preceding days based on the calculated 

rolling mean counts of those days, on the assumption that the irregular delays that 

generate random spikes in counts are essentially random and equally likely to affect 

any given unit of data over a several-day span. As such, the probability that a unit 

showing up in a spike due to such delays comes from a given preceding day is 

simply proportional to the expected count for that day, as approximated by the 

rolling mean. 

g. By filling dips first before smoothing peaks, the combined algorithm largely addresses any 

peaks that are due primarily to weekly cycles during the dip-filling stage, such that 

remaining peaks that get smoothed tend to be the larger, irregular ones. 
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S5 EXTENDED RESULTS 

 

Quality of fit measures 

Table S3 reports two quality of fit metrics for different countries and different time series. The first 

four columns report Mean Absolute Error Normalized by Mean (MAEN) and the last four report the 

R-Squared measures. Errors for cumulative infection and deaths are followed by those for the new 

cases and deaths (flow variables). 

Table S3- Measures of fit between data and simulations for different countries. Mean Absolute Error Normalized by Mean (MAEN) and R-Squared are 
reported for cumulative and new cases and deaths.  

 MAEN R-Squared 

 Cumulative Flow Cumulative Flow 

Country Infection Death Infection Death Infection Death Infection Death 
 

Argentina 0.0934 0.0525 0.239 0.198 0.999 0.999 0.899 0.84 

Australia 0.0277 0.288 0.483 0.65 0.998 0.97 0.691 0.72 

Austria 0.239 0.335 0.576 0.59 0.991 0.962 0.852 0.943 

Bahrain 0.11 0.388 0.421 0.947 0.988 0.944 0.414 0.0946 

Bangladesh 0.0208 0.028 0.161 0.14 0.999 0.999 0.799 0.808 

Belarus 0.109 0.123 0.182 0.494 0.996 0.972 0.918 0.466 

Belgium 0.328 0.363 0.533 0.356 0.965 0.964 0.612 0.816 

Bolivia 0.0515 0.0793 0.325 0.363 0.992 0.997 0.703 0.77 

Bulgaria 0.0881 0.202 0.455 0.374 0.992 0.973 0.724 0.917 

Canada 0.224 0.111 0.293 0.191 0.977 0.994 0.841 0.915 

Chile 0.0728 0.0399 0.354 0.289 0.993 0.997 0.529 0.764 

Colombia 0.0901 0.0421 0.207 0.173 0.999 0.997 0.868 0.853 

CostaRica 0.057 0.064 0.464 0.332 0.999 0.996 0.372 0.717 

Croatia 0.117 0.226 0.347 0.4 0.989 0.968 0.861 0.972 

Cuba 0.0414 0.163 0.341 1.16 0.998 0.958 0.583 0.35 

Cyprus 0.0795 0.441 0.452 1.32 0.99 0.781 0.649 0.257 

CzechRepublic 0.178 0.0789 0.303 0.19 0.997 0.998 0.882 0.941 

Denmark 0.0802 0.172 0.342 0.357 0.993 0.964 0.765 0.865 

DominicanRepublic 0.0711 0.142 0.383 0.298 0.994 0.996 0.464 0.67 

Ecuador 0.0576 0.0651 0.593 0.659 0.996 0.985 0.0681 0.153 

ElSalvador 0.103 0.155 0.521 0.304 0.997 0.995 0.363 0.78 

Estonia 0.0724 0.157 0.322 0.937 0.997 0.899 0.844 0.515 

Ethiopia 0.0365 0.0424 0.238 0.26 0.999 0.998 0.806 0.789 

Finland 0.426 0.0647 0.43 0.515 0.962 0.991 0.602 0.737 

France 0.325 0.895 0.577 2.16 0.919 0.794 0.376 0.265 

Germany 0.233 0.0288 0.298 0.267 0.98 0.992 0.87 0.807 

Ghana 0.183 0.149 0.701 1.35 0.995 0.992 0.383 0.106 

Greece 0.0696 0.0436 0.379 0.205 0.993 1 0.793 0.961 

Hungary 0.0975 0.105 0.332 0.218 0.998 0.997 0.823 0.976 

Iceland 0.0558 0.241 0.405 1.87 0.996 0.887 0.737 0.0427 

India 0.0316 0.0141 0.147 0.116 1 1 0.915 0.929 

Indonesia 0.0867 0.0358 0.225 0.176 0.999 0.998 0.813 0.829 

Iran 0.0768 0.0476 0.306 0.207 0.989 0.997 0.689 0.72 

Iraq 0.0897 0.118 0.233 0.314 0.994 0.984 0.855 0.572 

Ireland 0.161 0.209 0.403 0.353 0.971 0.966 0.571 0.934 

Israel 0.113 0.16 0.653 0.453 0.968 0.979 0.336 0.395 

Italy 0.356 0.019 0.336 0.185 0.965 0.998 0.873 0.951 

Jamaica 0.119 0.159 0.339 0.742 0.997 0.995 0.735 0.485 

Japan 0.386 0.258 0.38 0.461 0.989 0.982 0.731 0.467 

Kazakhstan 0.0458 0.109 0.578 0.468 0.996 0.996 0.157 0.676 
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Kenya 0.0498 0.0869 0.359 0.389 0.998 0.986 0.646 0.65 

Kuwait 0.0412 0.139 0.24 0.392 0.996 0.992 0.621 0.373 

Latvia 0.113 0.758 0.302 0.671 0.999 0.92 0.881 0.779 

Lithuania 0.0828 0.205 0.355 0.435 0.993 0.99 0.777 0.85 

Luxembourg 0.251 0.43 0.716 0.731 0.993 0.954 0.416 0.443 

Madagascar 0.163 0.11 0.561 0.789 0.996 0.999 0.594 0.46 

Malawi 0.332 0.132 0.802 0.649 0.998 0.988 0.421 0.687 

Malaysia 0.0712 0.131 0.251 0.554 0.999 0.982 0.889 0.599 

Maldives 0.0853 0.446 0.403 1.32 0.993 0.974 0.52 0.00805 

Malta 0.0713 0.373 0.397 0.763 0.993 0.97 0.704 0.559 

Mexico 0.127 0.041 0.378 0.189 0.999 0.997 0.353 0.689 

Morocco 0.0627 0.0689 0.292 0.214 0.995 0.996 0.782 0.88 

Mozambique 0.032 0.0886 0.383 0.89 0.998 0.996 0.551 0.232 

Nepal 0.0732 0.236 0.335 0.378 0.993 0.972 0.685 0.639 

Netherlands 0.242 0.155 0.232 0.206 0.991 0.987 0.953 0.909 

NewZealand 0.338 0.216 0.72 1.87 0.851 0.688 0.71 0.178 

Nigeria 0.494 0.116 0.603 0.428 0.987 0.988 0.275 0.571 

NorthMacedonia 0.0823 0.0547 0.349 0.247 0.997 0.998 0.748 0.907 

Norway 0.0411 0.0825 0.375 0.623 0.995 0.975 0.646 0.715 

Pakistan 0.0998 0.025 0.362 0.276 0.982 0.998 0.611 0.777 

Panama 0.0944 0.0882 0.387 0.386 0.981 0.982 0.528 0.245 

Paraguay 0.0871 0.0511 0.229 0.177 0.999 0.998 0.863 0.925 

Peru 0.319 0.0694 0.541 0.425 0.987 0.987 0.174 0.47 

Philippines 0.0588 0.0305 0.28 0.274 0.995 0.999 0.682 0.704 

Poland 0.126 0.129 0.303 0.223 0.991 0.997 0.867 0.928 

Portugal 0.372 0.543 0.373 0.398 0.963 0.982 0.867 0.83 

Qatar 0.164 0.239 0.347 0.916 0.983 0.974 0.829 0.306 

Romania 0.0623 0.0489 0.355 0.204 0.993 0.998 0.675 0.845 

Russia 0.0284 0.0197 0.0551 0.076 1 0.999 0.989 0.983 

Rwanda 0.102 0.239 0.562 1.39 0.99 0.979 0.412 0.161 

SaudiArabia 0.0669 0.0821 0.39 0.243 0.988 0.992 0.683 0.755 

Senegal 0.0494 0.0601 0.353 0.664 0.995 0.991 0.545 0.333 

Serbia 0.281 0.177 0.548 0.558 0.909 0.928 0.916 0.833 

Singapore 0.199 2.25 0.68 3.64 0.966 0.837 0.4 0.0197 

Slovakia 0.155 0.0833 0.386 0.367 0.994 0.995 0.755 0.821 

Slovenia 0.289 0.582 0.423 0.617 0.994 0.931 0.818 0.83 

SouthAfrica 0.196 0.117 0.282 0.21 0.99 0.998 0.842 0.909 

SouthKorea 0.0722 0.136 0.346 0.599 0.987 0.969 0.849 0.409 

Spain 0.22 0.167 0.418 0.344 0.986 0.985 0.672 0.733 

SriLanka 0.0977 1.17 0.361 0.963 0.996 0.784 0.809 0.567 

Sweden 0.377 0.121 0.808 0.397 0.546 0.967 0.00298 0.669 

Switzerland 0.137 0.347 0.528 0.414 0.996 0.993 0.608 0.866 

Thailand 2.92 5.44 2.19 5.7 0.881 0.994 0.151 0.621 

Togo 0.13 0.163 0.561 1.54 0.991 0.985 0.176 0.0396 

Tunisia 0.687 0.821 0.844 0.92 0.963 0.907 0.329 0.618 

Turkey 0.212 0.0809 0.637 0.243 0.852 0.98 0.106 0.909 

UAE 0.122 0.195 0.408 0.382 0.986 0.981 0.534 0.484 

UK 0.292 0.282 0.383 0.283 0.976 0.966 0.767 0.839 

Ukraine 0.0565 0.0664 0.237 0.19 0.996 0.996 0.84 0.896 

Uruguay 0.0481 0.0878 0.276 1.08 0.993 0.988 0.952 0.366 

USA 0.0716 0.0306 0.23 0.146 0.991 0.999 0.936 0.857 

Zambia 0.0841 0.106 0.725 0.808 0.994 0.984 0.258 0.386 
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Figure S6 shows the visualization of fit between data and simulations for all the countries in our sample. 

These graphs include data and model outputs for reported new cases (blue; left axis in thousands per day) 

and deaths (red; right axis in thousands per day) starting from the beginning of the epidemic in each country 

until 22 December 2020. 

 
Figure S6- Comparison of data and simulation. New cases in blue (left axis, in thousands per day) and new deaths (red, right axis). 
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Estimates for true magnitude of epidemic 

Estimates for true cumulative cases (blue; left axis in millions) and deaths (red; right axis in thousands) across 

different countries up to 22 December 2020 are reported in Figure S7. 

 

 
Figure S7- Estimates and 95% credible intervals for true magnitude of epidemic. Cumulative cases (blue, left axis in millions) and cumulative deaths (red, right axis, in 
thousands) 
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Excess deaths 

Figure S8 shows the ratio of estimated excess deaths, i.e. COVID-19 fatalities not reported as such, 

to reported excess deaths, i.e. deaths over historical baseline not accounted for by reported COVID-

19 deaths, for the countries for which such data are available. 

 
 

Figure S8- Ratio of estimated excess deaths to reported excess deaths for countries for which this data was available.  
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Maximum reproduction number 

Figure S9 shows the initial reproduction number (RE) occurring in each country. Reproduction numbers 

are changing dynamically and transient dynamics may lead to larger than equilibrium numbers if 

maximum RE values were used. We therefore use the 90th percentile of simulated reproduction number 

in this graph. Also note the large credible intervals for these estimates. This range is partly driven by 

what exact point of the curve is represented by the 90th percentile. It is also due to the inherent 

uncertainty when both reproduction number and behavioral and policy responses are estimated: one 

can have smaller initial RE and smaller response functions, or larger values for both, and stay consistent 

with the data, specially because early in the epidemic ascertainment rates are very low and data is not 

very informative about the true magnitude. Moreover, given the recording of RE values at their (often 

initial) high values, they may reflect non-representative subpopulations or events. For example the 

high impact of weather conditions on transmission rates could notably alter Maximum RE for some 

countries depending on weather conditions at the time of first wave.  

 
Figure S9- Maximum reproduction number RE for each country’s outbreak  
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Time to herd immunity 

Figure S10 shows estimated time to herd immunity across nations. These estimates are based on time 

it takes before 60% of population has been infected by COVID-19. Depending on the basic 

reproduction number in each location and the heterogeneity in contacts, the 60% threshold will not 

be an exact value for most countries, but offers a reasonable intuition for the ranges of time involved 

and could be adjusted with a linear scaling to other thresholds. Two estimates are offered, one for the 

estimated number based on current true infection rates, and another based on the peak infection rates 

experienced in that country. The two may be the same if the current rates are the peak rates.  

 
Figure S10- Time to 80% cumulative infection based on current infection rates (blue circles) and peak infection rates to-date (red squares) in days (log scale). 
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Parameter estimates 

Figure S11 reports most likely estimates for the vector of country-specific parameters (θi). The figure 

also includes 95% credible intervals for these parameter estimates. 

 



42 

 
Figure S11- Parameter estimates and 95% credible regions for country-specific parameters. 
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Future projections 

Figure S12 reports country-level projections for new cases and deaths based on the scenario I (no changes 

in estimated parameters; no vaccination; testing fixed at values observed for 22 December 2020; consistent 

with those reported in Figure 7 in the main paper).  

In scenarios II and IV in the main paper (not shown here) we change responsiveness through: 

- Increasing Time to Downgrade Risk (𝜏𝑅𝐷) by 20% 

- Shifting Sensitivity of Contact Reduction to Utility (sC) by 20%. 

- Increasing Dread Factor in Risk Perception (𝜆) by 20%.  

Note that these changes primarily change contacts as a function of perceived risk, but do not necessarily 

entails fewer contacts overall. Vaccination scenario setups are discussed in vaccination sector (under S1). 

 
Figure S12- Country level projections until Spring 2021 in scenario I. Daily cases (in thousands, blue, left axis) and daily deaths (red, right axis) are graphed.
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S6 OUT OF SAMPLE PREDICTION TEST 

We conducted an out of sample prediction test of the model by comparing the quality of fit for model 

projections for future data not used in model estimation against the version of the model using that 

data. We calculate the quality of fit for projections of that model (the “early model”) for data later 

released for the period 30 September 2020-22 December 2020. Those projections are reported in 

Figure S13 and are directly comparable with Figure S6. Note that we use the actual testing rates to 

drive the model for this prediction interval. Inspection of this graph points to various outcomes across 

countries, ranging from close fit for the prediction interval to a few with major discrepancies. For 

example, the model was able to predict the emergence of a second wave, before it was detectable in 

the infection data, for Belarus, Russia, and UK and the model predicted the third waves in Iran, Israel 

and USA well. On the other hand, among others, we overestimated the Fall trajectory of epidemic in 

India and under-estimated that in Turkey. 

The discrepancies arise from both the baseline gaps between the model and data and emerging features 

of the epidemic in the prediction interval. The baseline gaps typically appear because our method 

enforces a strong coupling among countries. For instance, keeping IFR parameters similar across 

countries, the model cannot explain the unexpectedly low fatality rates in Qatar and Singapore (which 

could be due to outbreaks among younger immigrant worker communities). Moreover, the model is 

unable to accommodate changes in responses that are not detectable in the historical data (e.g. missing 

the magnitude of the “second wave” when first wave is not yet complete and thus the parameters for 

risk perception and response are not fully identifiable).  
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Figure S13-Predictions from the model fitted with data until 30 September 2020 for the 30 September 2020-22 December 2020 interval. The start of 
prediction interval is marked with a horizonal blue line. Red numbers represent the fraction of data falling within the 95% prediction intervals. 
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Assessing the quality of fit requires some benchmark to compare against. Defining external 

benchmarks in the case of current model is complicated because, to our knowledge, no other model 

has attempted to simultaneously match infection and fatality data across this large set of nations and 

offer future projections. Therefore, we focus on an internal benchmark using quality of fit for the 

version of the model using the data from the prediction interval for estimation. Specifically, we 

compare the fit measures from the early model (MAEN scores for reported infection rates and death 

rates) against the same fit measures coming from the model estimated until 22 December 2020. The 

updated version uses the data in the prediction interval and thus is likely to have a better fit than the 

early version of the model. The ratio of MAEN values between these two models informs the speed 

with which fit quality deteriorates, with values closer to one suggesting robust long-term predictions. 

Overall the mean fit ratio is 0.516, loosely speaking suggesting that projections lose their accuracy by 

about a half over 1.5 months. Table S4 reports those values across different nations.  

Table S4- Quality of fit for future projections compared to when data is available. Mean Absolute Error Normalized by Mean (MAEN) for daily infection 
rates in the early model, current model (which uses data from prediction interval of 30 September 2020-22 December 2020), and the ratio of current model’s 
MAEN to the early one.  

Mean fit ratio: 0.516 

Infection MAEN between days 352 and 431 for different countries: 

Country Current Early Ratio Country Current Early Ratio 

Argentina 0.249 0.411 0.606 Malawi 0.845 7.94 0.106 

Australia 1.8 5.7 0.316 Malaysia 0.205 0.575 0.356 

Austria 0.58 0.673 0.861 Maldives 0.55 2.04 0.269 

Bahrain 0.523 0.708 0.739 Malta 0.346 0.686 0.504 

Bangladesh 0.18 0.408 0.442 Mexico 0.42 0.594 0.707 

Belarus 0.106 0.542 0.195 Morocco 0.258 0.395 0.653 

Belgium 0.48 0.758 0.633 Mozambique 0.374 2.34 0.16 

Bolivia 0.309 1.53 0.202 Nepal 0.34 0.524 0.649 

Bulgaria 0.424 0.793 0.535 Netherlands 0.17 0.498 0.342 

Canada 0.188 0.376 0.5 NewZealand 0.83 0.948 0.876 

Chile 0.357 1.86 0.192 Nigeria 0.413 0.786 0.526 

Colombia 0.188 0.421 0.445 NorthMacedonia 0.326 0.744 0.439 

CostaRica 0.491 0.665 0.738 Norway 0.378 0.601 0.629 

Croatia 0.295 0.688 0.429 Pakistan 0.304 0.841 0.361 

Cuba 0.307 0.534 0.576 Panama 0.364 0.764 0.477 

Cyprus 0.429 0.922 0.466 Paraguay 0.182 0.588 0.31 

CzechRepublic 0.301 0.582 0.516 Peru 0.746 1.21 0.617 

Denmark 0.3 0.823 0.365 Philippines 0.172 0.758 0.227 

DominicanRepublic 0.369 0.475 0.776 Poland 0.271 0.508 0.534 

Ecuador 0.457 0.926 0.494 Portugal 0.293 0.484 0.606 

ElSalvador 0.979 0.925 1.06 Qatar 0.321 0.517 0.621 

Estonia 0.292 0.622 0.471 Romania 0.363 0.364 0.998 
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Ethiopia 0.191 0.582 0.328 Russia 0.0383 0.133 0.289 

Finland 0.322 0.597 0.54 Rwanda 0.491 0.669 0.734 

France 0.614 0.689 0.891 SaudiArabia 0.631 0.839 0.752 

Germany 0.233 0.501 0.466 Senegal 0.39 0.727 0.537 

Ghana 0.833 1.04 0.8 Serbia 0.509 0.91 0.56 

Greece 0.34 0.635 0.535 Singapore 0.554 4.04 0.137 

Hungary 0.293 0.448 0.654 Slovakia 0.375 0.678 0.554 

Iceland 0.401 1.08 0.373 Slovenia 0.412 0.621 0.663 

India 0.147 1.02 0.145 SouthAfrica 0.227 0.347 0.655 

Indonesia 0.194 0.373 0.521 SouthKorea 0.223 0.716 0.311 

Iran 0.3 0.369 0.815 Spain 0.366 1.31 0.279 

Iraq 0.155 1.12 0.139 SriLanka 0.313 0.968 0.323 

Ireland 0.345 0.573 0.603 Sweden 0.936 0.932 1 

Israel 1.23 1.54 0.798 Switzerland 0.535 0.847 0.632 

Italy 0.26 0.512 0.508 Thailand 0.703 3.87 0.182 

Jamaica 0.256 1.12 0.229 Togo 0.422 0.661 0.639 

Japan 0.231 0.624 0.37 Tunisia 0.871 0.852 1.02 

Kazakhstan 0.459 1.98 0.232 Turkey 0.729 0.89 0.819 

Kenya 0.368 0.499 0.737 UAE 0.438 1.19 0.368 

Kuwait 0.36 1.27 0.283 UK 0.274 0.509 0.539 

Latvia 0.279 0.82 0.34 Ukraine 0.231 0.296 0.781 

Lithuania 0.357 0.542 0.659 Uruguay 0.24 0.821 0.293 

Luxembourg 0.687 0.798 0.86 USA 0.248 0.413 0.6 

Madagascar 1.85 5.07 0.365 Zambia 0.547 6.18 0.0885 
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S7 SENSITIVITY ANALYSIS  

Impact of Cross-country Parameter Variances 

Setup- Our estimation method uses a random effects framework, which couples the parameters across 

different countries, specifying them as instances of some underlying distribution with a given variance. 

Those variance factors, explained in S2, were specified to incorporate the authors’ judgement on how 

different each parameter may be across different countries, based on the nature of those parameters. 

For instance, parameters representing physiological or virological constructs should generally vary less 

than those representing socio-cultural and behavioral responses. In principle, one could propose other 

variance factors. Assuming very large variances would essentially decouple the models for different 

countries, while shrinking variances towards zero will force all parameters to be the same across 

countries. In this section we assess the sensitivity of results to changes in those variance factors. 

Specifically, we re-do the analysis when all variance factors are scaled by a factor of 4, or 0.25. We re-

estimate the model in each case and measure how much the following 12 outcome measures 

(organized into 3 groups) change compared to the baseline estimates as a result: 

a) Country level projections for 1) Actual to reported case ratio; 2) Actual to reported death ratio; 3) 

Projected infection rate at the end of Winter 2021; 4) Projected death rate at the end of winter 

2021; 

b) Country level MAEN values for daily infection rates and death rates; 

c) Aggregate (across all countries) cumulative infections, deaths, and IFR, both on 22 December 

2020 and at the end of June 2021. 

The first two groups of measures are country specific, so we report them for all countries, followed 

by their averages, and then the aggregate outcomes.  

Results- In Table S5 and Table S6 results from these two experiments are reported. As expected, 

increasing allowed variances enables the model to offer a better fit to data (i.e. reduces MAEN values, 

thus mostly negative values for fit statistics in the first experiment). Other sensitivities remain relatively 

small for most countries, showing few systematic changes in model’s predictions as in response to 

changes in the cross-country parameter variances. However, trajectories for a handful of countries are 

sensitive to these variance factors: Australia, Bolivia, Bulgaria, Costa Rica, Croatia, El Salvador, Ghana, 

Hungry, Iraq, Maldives, Mozambique, New Zealand, North Macedonia, Paraguay, Poland, Portugal, 

Qatar, Rwanda, Singapore, Slovakia, Thailand, Togo. In these cases one would expect a separate 

country-specific estimation to give results that may be qualitatively different from those we find, and 

thus caution should be exercised. 
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Table S5- Impact of increasing assumed cross-country parameter variances by a factor of four. All reported outcomes measure percentage change in the given 
metric from baseline analysis.  

Sensitivities to 4x change in variances 
Country Case 

Undercount 
Ratio 

Death 
Undercount 
Ratio 

Final 
Infection 
Rate 

Final Death 
Rate 

MAEN 
Infection 

MAEN 
Death 

Argentina -2.4 1.51 -27.8 -16.3 -0.598 -2.66 

Australia 6.54 0.789 -50.3 -42 2.49 -1.59 

Austria 2.63 0.651 -2.88 -1.32 2.45 -0.305 

Bahrain 5.76 -0.985 -5.13 -10 -4.97 -0.321 

Bangladesh 6.1 4.42 3.17 3.65 -1.54 -0.712 

Belarus -1.66 -3.49 -18.4 -37.2 -13 -16 

Belgium 4.09 2.05 -13.9 -14.6 4.32 -6.1 

Bolivia 5.57 4.14 19.1 9.16 -0.33 -0.893 

Bulgaria 8.34 11.9 -66 -46.2 -3.14 -22.2 

Canada 6.7 1.05 15 -4.68 -1.15 -3.25 

Chile 0.313 0.54 -0.0162 0.796 1.16 0.591 

Colombia 5.15 3.15 0.141 2.24 4.86 -1.09 

CostaRica -0.241 -0.176 -3.48 -4.25 0.194 -0.298 

Croatia -11.8 1.1 38.1 0.771 -7.22 -13 

Cuba 7.23 6.38 87.6 -1.47 -1.66 0.218 

Cyprus -1.57 3.07 10.7 23.8 1.09 0.377 

CzechRepublic 7.3 1.7 -1.66 -11.8 -4.06 -3.12 

Denmark -1.15 1.15 -7.63 -2.69 0.428 -2.93 

DominicanRepublic 3.83 2.53 -3.73 -3.39 -3.87 1.22 

Ecuador -2.44 -0.457 0.773 6.77 -1.21 -0.779 

ElSalvador 13.7 3.6 382 113 -3.69 -5.77 

Estonia -1.18 4.28 8.43 3.91 0.817 -0.0563 

Ethiopia 18.4 8.4 19.4 34.8 -0.683 -4.19 

Finland 2.53 -0.747 13.9 8.82 -9.07 -2.22 

France 8.58 0.654 -21.3 -25.6 -3.83 -2.8 

Germany 13 4.94 8.23 -1.72 -1.53 -6.32 

Ghana 0.0961 -2.99 883 111 -1.21 -1.51 

Greece 10.6 6.14 -6.19 -9.94 2.45 -4.32 

Hungary 7.05 8.15 -15.8 -11.7 -6.2 -17.9 

Iceland 2.05 0.375 -22.8 -9.36 -1.8 0.348 

India -1.16 0.507 -5.71 -2.22 -0.93 -1.02 

Indonesia 10 1.42 33.7 1.88 -0.47 -3.17 

Iran 6.56 1.76 -7.62 -13.2 -0.223 0.033 

Iraq -0.25 -0.115 -78.7 20 -0.507 -0.305 

Ireland 7 6.63 89.5 43.8 2.51 -11.6 

Israel 9.8 3.51 -26.9 -26.5 -7.7 -0.895 

Italy 5.97 -0.44 -1.51 -8.66 -6.67 -8.15 

Jamaica 3.13 0.218 -21.5 -14.6 -6.78 -0.978 

Japan -0.977 -1.84 8.04 -5.16 2.87 -0.776 

Kazakhstan -0.859 0.344 15.9 4.75 -0.22 -3.47 

Kenya -3.65 -0.158 -20.8 -5.16 -0.158 -2.52 

Kuwait 2.05 3.51 -48.2 -45.2 -3.62 -0.351 

Latvia 5.58 4.18 -7.61 -14.6 -4.86 -3.08 

Lithuania 1.5 0.727 -3.58 2.33 0.646 -2.17 

Luxembourg 5.02 3.85 7.44 -7.68 -1.84 -3.58 

Madagascar -9.76 -11.6 17.9 28.1 1.94 -0.36 

Malawi -4.34 -2.08 40.9 -14.7 -2.95 -9.22 

Malaysia 10.3 -1.89 -1.39 0.931 -3.8 -3.55 

Maldives -2.84 5.95 6.46 18 -2.01 1.42 

Malta 8.72 -0.132 -3.44 0.666 -8.25 -3.44 

Mexico 8.31 -2.17 1.96 -15 -0.358 -1.11 

Morocco 5.98 2.1 -5.88 -6.73 -0.46 -1.18 

Mozambique -20.1 -10.1 -65.2 -39.3 -3.78 -0.717 
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Nepal 5.87 4.08 4.76 -7.05 -2.08 -3.19 

Netherlands -0.153 3.17 -4.7 -15.2 -17.4 -3.14 

NewZealand 2.52 -13.6 -24.4 -29.2 -5.02 -7.2 

Nigeria 2.96 1.02 -27.6 -28.2 0.401 0.138 

NorthMacedonia 2.42 3.39 -14.6 -3.5 -3.11 -3.8 

Norway 1.6 1.58 -11 -9.97 0.0685 -2.2 

Pakistan 14.8 3.45 18.9 -0.586 0.482 -5.33 

Panama 1.36 0.608 8.6 5.81 -1.02 -2.92 

Paraguay 28.4 3.56 -45.4 -63.6 1.4 -2.88 

Peru -0.539 -1.06 27.7 30 0.736 0.308 

Philippines -1.03 -0.0881 24.5 30 -0.0283 -1.88 

Poland 3.48 9.08 -20.9 -21.4 3.81 -15.6 

Portugal 24.3 -0.662 -49.4 -66.7 2 -29.3 

Qatar 0.149 3.89 -50.7 -32.9 -9.35 3.78 

Romania 0.458 0.485 5.1 3.72 1.87 -2.34 

Russia -0.149 0.186 -7.83 -6.79 -3.05 -0.208 

Rwanda 4.32 -0.00907 -34.6 -29.5 -0.834 -0.494 

SaudiArabia -6.25 4.24 -4.14 4.87 -3.88 2.26 

Senegal 2.66 1.03 5.4 2.5 -1.32 -0.238 

Serbia 17.9 7.21 -29 -20.5 2.59 -4.21 

Singapore 13.1 6.47 344 167 -39.2 -8.7 

Slovakia 9.65 0.864 -44.2 -50.3 -0.368 -3.87 

Slovenia 1.57 8.69 -4.1 7.36 -3.13 -4.98 

SouthAfrica 11.9 3 -14.8 -11.3 1.34 -6.72 

SouthKorea 25.2 3.89 -12.8 -13.9 -2.6 -5.92 

Spain 3.52 0.503 -9.22 1.67 -4.95 -2.09 

SriLanka 8.71 9.87 21 18.5 -2.96 -1.03 

Sweden -5.71 0.964 12.3 12.9 1.56 2.37 

Switzerland -4.17 2.43 -0.919 5.64 0.00177 -3.64 

Thailand 17.8 -2.4 100 131 -30.5 -40.4 

Togo -8.88 -4.63 189 -32.9 -3.3 -0.166 

Tunisia 40.9 21.2 72.7 18.8 -3 -1.88 

Turkey 3.9 -5.47 -6.91 -42.2 0.335 -5.23 

UAE 3.35 0.36 -25.6 -31.4 -17.4 -10 

UK -0.541 2.77 4.79 -1.36 -4.06 -14.8 

Ukraine 1.53 0.371 -3.97 -19 -1.38 -1.23 

Uruguay 0.629 0.0577 -10.4 -1.42 0.927 -0.185 

USA -1.65 1.15 -2.69 0.315 -6.02 -0.526 

Average 4.31 1.78 16.9 -1.49 -2.7 -3.98 
  

Global Percentage Changes and Elasticities 

  Cases Early Deaths 
Early 

IFR Early Cases Proj. Deaths Proj. IFR Proj. 

Global 3.31 0.892 -2.14 3.55 -0.917 -4.41 

 

 

Table S6- Impact of decreasing assumed cross-country parameter variances by a factor of four. All reported outcomes measure percentage change in the given 
metric from baseline analysis. 

Sensitivities to 0.25x change in variances 
Country Case 

Undercount 
Ratio 

Death 
Undercount 
Ratio 

Final 
Infection 
Rate 

Final Death 
Rate 

MAEN 
Infection 

MAEN 
Death 

Argentina 0.0032 -1.36 81 72.6 0.919 -0.0141 

Australia 3.01 -2.07 62 40.5 -0.812 1.58 

Austria -4.18 -4.18 17.4 4.89 -2.17 4.15 

Bahrain -4.72 -1.82 7.7 9.64 3.71 -0.432 

Bangladesh -8.91 -3.49 -4.02 -4.68 19.4 12.1 
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Belarus 0.182 5.85 14.4 13.5 0.671 15.2 

Belgium -2.66 -5.38 13.8 5.09 -5.81 7.07 

Bolivia -5.01 -1.56 -52 -26 -1.35 7.59 

Bulgaria -7.48 -12.2 404 73.1 4.82 32.5 

Canada -8.34 -2.11 -5.7 15.1 -0.343 19.7 

Chile 0.638 -1.1 -3 -2.84 -0.304 -0.582 

Colombia -7.24 -3.38 -1.81 -4.02 -6.18 0.364 

CostaRica -8.21 -5.22 54.9 208 -0.475 -3.69 

Croatia 2.38 -2.77 -65.2 -55.4 4.45 14 

Cuba -9.97 2.21 11.2 29.2 5.01 5.26 

Cyprus 3.52 -3.83 7.45 -4.84 -1.31 -0.502 

CzechRepublic -2.58 1.85 -2.27 8.77 12.3 3.07 

Denmark 1.45 -1.47 6.75 4.58 0.531 7.28 

DominicanRepublic 2.59 2.72 -5.52 -7.23 10.3 5.39 

Ecuador 5.13 2.67 -32.5 -31.4 1.85 1.56 

ElSalvador 4.71 -0.495 26.8 12.6 8.22 4.38 

Estonia 4.31 -5.45 19.2 -0.147 0.186 1.23 

Ethiopia -10.6 -3.01 -23.4 -23 1.95 7.59 

Finland -2.05 5 6.41 14.1 14.4 7.5 

France -12.6 -13.3 28 23.1 -2.97 -18.3 

Germany -7.69 -4.65 -5.2 -0.402 -0.297 3.5 

Ghana 47.1 35.7 -58.8 -39.9 -7.31 13.7 

Greece -6.14 -1.51 4.37 9.37 -4 9.83 

Hungary -12.8 -14.1 145 54.5 6.25 48.9 

Iceland -2.75 5.01 55.8 43.6 1.76 2.24 

India 2.68 -0.794 -0.0667 0.299 5.87 1.84 

Indonesia 9.53 10.9 -12.6 0.469 3.93 4.27 

Iran -12.2 -1.77 18.2 40.9 4.42 2.03 

Iraq -1.54 0.124 1280 220 0.0163 1.18 

Ireland -8.19 -4.05 -14.3 -8.38 -1.83 9.61 

Israel -2.57 -2.86 17.4 14.6 11.2 1.71 

Italy -5.05 0.128 0.804 6.79 4.64 7.65 

Jamaica -7.29 -3.05 26.5 -25.2 14.1 5.11 

Japan 2.06 5.34 27.5 11.5 -7.99 1.91 

Kazakhstan 2.14 1.06 -43.5 -36.2 1.14 7.05 

Kenya -2.51 -4.49 24 9.31 0.0898 3.43 

Kuwait -3 -7.44 -51.5 -43.3 10.6 3.69 

Latvia -2.96 -6.57 29.7 7.88 17.5 5.12 

Lithuania -1.68 -4.73 8.72 -6.46 -1.22 8.81 

Luxembourg -2.47 -1.47 2.31 13.5 1.9 5.21 

Madagascar 1.74 15.6 -55.9 -37.2 2.21 6.21 

Malawi -4.68 3.35 -19.4 3.6 -1.32 6.77 

Malaysia -6.36 8.01 -31.9 -28.8 6.76 6.84 

Maldives 12.5 -5.48 191 -2.97 8.62 -0.978 

Malta -0.808 -2.83 0.0203 -18 15.9 4.25 

Mexico 4.45 12 3.91 17.3 -2.08 6.14 

Morocco -15.1 1.06 12 5.07 0.934 5.96 

Mozambique 0.515 13.9 103 117 0.995 6.68 

Nepal -6.76 -0.677 -0.023 -1.49 5.02 11.9 

Netherlands -2.32 -2.01 -3.84 -1.02 7 8.4 

NewZealand -7.31 24.3 269 73.5 7.28 13.6 

Nigeria 4.01 0.931 -1.94 33.3 -0.171 -1.5 

NorthMacedonia -18.1 -3.59 241 162 4.72 6.86 

Norway -3.18 -2.46 9.2 19.1 -0.327 2.96 

Pakistan -7.15 -4.5 -19 -2.03 9.23 9.83 

Panama 2.54 5.11 -8.52 -6.08 4.57 12 

Paraguay -7.1 -0.318 21.3 38 -1.29 2.99 

Peru 0.943 2.62 -40.2 -38.6 0.246 2.4 

Philippines 13.4 2.05 70.1 54.9 4.43 6.87 

Poland -13.9 -12.8 212 138 2.88 32.8 
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Portugal -15 -2.65 19.5 49.1 -9.08 11.8 

Qatar -8.86 -7.39 -13.9 -18 1.52 -2.18 

Romania -2.37 -0.667 -13.2 -1.71 -3.38 6.69 

Russia 0.622 -0.501 16.1 15.4 14.3 1.72 

Rwanda -11.1 0.649 144 111 9.8 2.37 

SaudiArabia 2.87 -2.52 -26 -8.98 -5.29 5.63 

Senegal -4.36 -3.47 -4.1 -6.93 0.538 0.731 

Serbia -8.06 -4.08 8.66 18.4 1.51 6.16 

Singapore 12 24.9 -91.6 -72.7 24.4 24.5 

Slovakia -12.2 2.86 84.1 129 0.854 7.3 

Slovenia -7.98 -9.61 43.6 13.8 0.709 6.76 

SouthAfrica -13.6 -2.55 -6.48 2.99 -3.25 17.9 

SouthKorea -20 -5.71 9.12 27.1 4.94 9.99 

Spain 11.4 1.46 -38.8 -47.9 18.8 9.43 

SriLanka -11.5 0.297 -10.1 -29.5 2.93 5.82 

Sweden 9.33 -8.45 -21.5 -33 -2.01 3.42 

Switzerland 1.58 -6.69 3.85 -16.2 0.784 11.8 

Thailand 10.6 9.39 -1.08 71.8 49.9 38.5 

Togo -11.3 -9 463 -28.9 6.87 -0.477 

Tunisia -12.2 6.43 58.7 -2.13 0.903 -0.345 

Turkey -1.71 -1.53 -4.86 -2.57 1.65 6.99 

UAE 5.22 1.05 16.4 12.7 18.1 -1.96 

UK -10.6 -4.67 10.4 24.9 -11.3 23.7 

Ukraine -0.855 -0.811 -1.31 11.8 1.05 1.14 

Uruguay -0.885 0.233 2.91 7.16 -0.93 -0.215 

USA 1.52 -0.786 -4.56 -3.82 9.35 2.71 

Average -2.54 -0.301 39.1 15.1 3.69 6.87 

  

Global Percentage Changes and Elasticities 

  Cases Early Deaths 
Early 

IFR Early Cases Proj. Deaths Proj. IFR Proj. 

Global -1.83 -1.02 0.318 -1.57 0.275 2.07 

 

 

Sensitivity to Parametric Assumptions  

Setup- We conducted sensitivity analysis changing all the major pre-specified (i.e. not estimated) 

model parameters to assess 1) How sensitive key results are to those parametric assumptions. 2) How 

overall model fit to data changes with changing those general parameters. In this analysis we changed 

each parameter by +/- 5%, and calculated the elasticities of the 12 outcome measures discussed in the 

previous section with respect to each parameter. Those elasticities are calculated as fractional change 

in the outcome measure divided by fractional change in the input parameter. As such, they are 

dimensionless, with values below one indicating minor to modest sensitivities. 

Table S7 reports the parameters over which we conducted the sensitivity analysis, their base values, 

and an overview of the results where averages over country-level outcomes and fit measures are 

reported (first row) along with aggregate outcomes (second row; for a total of 12 outcomes per 

parameter in two rows). We report full country-level sensitivity results for the reported outcomes 

online, in the GitHub repository for the research. All reported numbers are elasticity values. 

Results- Overall elasticities remain modest (Table S7) but also include more notable cases where 

results for a specific country are rather sensitive to one parameter or the other. Note that the 

mechanisms generating these elasticities are complex, as they emerge from new calibration of the 
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model and thus incorporate various compensatory mechanisms and feedback effects. Thus we do not 

attempt to explain detailed country-level elasticities (reported on GitHub). With that caveat in mind, 

we provide an overview of the results here and tables on GitHub provide more in-depth outcomes.  

The average residence time in hospitals has an impact on death rates and IFR, as increasing the 

residence time reduces available beds and exacerbates hospital shortages but also increased disease 

period in hosptial allows for more infection inside hospitals (note that in the sensitivity analysis the 

change in hospital residence time is not coupled with changing the disease duration outside of 

hospital). Increasing incubation period may modestly increase death under-count ratio and projected 

death rates, but slightly reduce projected infection rates; results for infection and death numbers are 

sensitive for a few countries due to shifts in overall parameters as a result of changing incubation 

period. Impact of Onset-to-detection delay is somewhat similar. Post-detection resolution time slightly 

increases cases and deaths as people spend more time in infectious states. Relative risk of transmission 

by presymptomatics would increase undercounts, infections and deaths, with a stronger impact on 

case under-count (thus reducing IFR). Increasing this parameter would also slightly increase the gap 

between the model and case data (MAEN). Finally, increasing the sensitivity of COVID test would 

reduce undercounts in cases and deaths and thus bring down total cases and deaths by stronger 

behavioral responses.  
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Table S7- Overview of parametric sensitivity results, reported as elasticities (fractional change in outcome divided by fractional change in 
input parameter). Each parameter is followed by its base value, and two rows of outcomes identified on the top. First row includes averages of elasticities for 
4 outcomes and 2 fit measures across 92 countries. Second row includes elasticity measures calculated over all simulated populations on 22 December 2020 and 
30 June 2021. 

Parameter Ave Case 
Undercount 
Ratio 

Ave Death 
Undercount 
Ratio 

Ave 
6/30/21 
Infection 
Rate 

Ave 
6/30/21 
Death Rate 

Ave 
MAEN 
Infection 
Rate 

Ave 
MAEN 
Death Rate 

Dec 22 Cml. 
Cases  

Dec 22 Cml. 
Deaths 

Historical 
IFR 

6/30/21 
Cml. Cases 

6/30/21 
Cml. 
Deaths 

6/30/21 
Cml. IFR 

Hospitalized Resolution 
Time (20 days) 

-0.00889 0.0105 0.355 0.501 -0.00379 0.0116 

0.0173 -0.0227 -0.0456 -0.0574 -0.0684 -0.0163 

Incubation Period (5 days) 0.142 0.00899 0.0789 0.192 0.0117 -0.0163 

0.231 0.105 -0.104 0.207 0.141 -0.0688 

Onset to Detection Delay (5 
days) 

0.12 0.0298 0.135 0.219 0.00522 -0.0257 

0.169 0.0254 -0.117 0.182 0.0836 -0.1 

Post-Detection Phase 
Resolution Time (10 days) 

0.000354 -0.0037 0.00163 0.0044 -0.0002 0.00281 

-0.0069 -0.00299 0.00388 -0.00112 0.00556 0.00741 

Relative Risk of 
Transmission by 
Presymptomatic (1) 

0.259 -0.00558 -0.398 -0.558 0.0125 0.0334 

0.19 0.0162 -0.189 0.12 -0.043 -0.175 

Sensitivity of COVID Test 
(0.7) 

-0.421 -0.509 -0.183 -0.398 0.0395 -0.0364 

-0.287 -0.51 -0.241 -0.316 -0.488 -0.159 

 

Country level outcome elasticities for model parameters 

See the online Github repository at https://github.com/tseyanglim/CovidGlobal for country-level 

outcome tables. 

Sensitivity of results to exclusion of major countries  

We repeated the analysis in three additional setups, excluding the top five countries by population 

(India, USA, Indonesia, Pakistan, Nigeria), by true infections to date (USA, Mexico, Iran, Peru, 

Indonesia), and by reported infections to date (USA, Russia, India, UK, Spain) from the estimation 

and analysis. These analyses inform the sensitivity of overall findings to data from specific countries.  

In each case we report the percentage of change in the country level and aggregate outcome measures 

(those defined and discussed above). Table S8 summarizes the results; full country-level outcome 

tables are available on the online Github repository at https://github.com/tseyanglim/CovidGlobal. 

Results- Overall, the impact of excluding the top countries from analysis on historical fit and outcome 

measures is modest: fit quality does not change by more than 1.2% in 95% of country-outcome 

combinations. Moreover, the historical under-reporting ratios remain largely unchanged (changing by 

no more than 1.3% overall for 95% of country-outcome combinations). Cases and deaths summed 

up over the sample naturally change when excluding the larger countries or those with more infections 

(the bottom rows for each analysis). Long-term country level projections (items 3 and 4 in odd rows) 

change little (less than 2%) for most countries, however, a few show notable variations, suggesting 

high sensitivity to their response functions such that minor changes in parameters (which change due 

to the coupling with other nations) could significantly alter future projected outcomes. Those 

https://github.com/tseyanglim/CovidGlobal
https://github.com/tseyanglim/CovidGlobal
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countries with significant sensitivity include: Australia, Cuba, El Salvador, Iceland, Kuwait, New 

Zealand, and Togo. 

 

Table S8-Sensitivity of outcomes (in percentage change from baseline) to exclusion of top five countries by true infection, population, and reported infection. Each 
analysis is specified by the removed countries and followed by two rows of outcomes identified on the top. First row includes averages of 4 outcomes and 2 fit 
measures across 92 countries. Second row includes measures calculated over all simulated populations on 22 December 2020 and 30 June 2021. 

Removed Countries Ave Case 
Undercount 
Ratio 

Ave Death 
Undercount 
Ratio 

Ave 
6/30/21 
Infection 
Rate 

Ave 
6/30/21 
Death Rate 

Ave 
MAEN 
Infection 
Rate 

Ave 
MAEN 
Death Rate 

Dec 22 Cml. 
Cases  

Dec 22 Cml. 
Deaths 

Historical 
IFR 

6/30/21 
Cml. Cases 

6/30/21 
Cml. 
Deaths 

6/30/21 
Cml. IFR 

Top True Infections: USA, 
Mexico, Iran, Peru, 
Indonesia 

-0.011 0.0164 0.0743 -0.117 -0.0969 0.0701 

-33.5 -38.2 -5.94 -32.4 -35.2 -4.43 

Top Populations: India, 
USA, Indonesia, Pakistan, 
Nigeria 

-0.0178 0.00581 0.0606 0.0535 -0.0374 0.0373 

-22.8 -27.9 -6.95 -24.8 -25.9 -1.96 

Top Reported Infections: 
USA, Russia, India, UK, 
Spain 

0.183 0.0948 0.19 0.0557 0.0315 -0.176 

-28.4 -34.9 -9.4 -27.5 -32 -5.91 
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S8 COMPLETE MODEL DOCUMENTATION 

Below we provide complete model equations and units. The model, in the .mdl format, which can be 

opened using the Vensim simulation software, or the free Vensim model reader) is available with this 

appendix as well, and online at https://github.com/tseyanglim/CovidGlobal. Most of the equations 

are self-explanatory. The “[…]” notation is used to subscript variables over a set of members. For 

example, the subscript “Rgn” is used to identify different countries. Therefore [Rgn] indicates that a 

variable is defined separately for each member of the set “Rgn”. Other subscript ranges used in the 

equations are: 

expnt: Used for numerically solving the probability of missing symptoms equation. 

pdim: Used for setting policy levels for a few variables. 

Priors: Used for implementing the random effects estimation components. Each estimated parameter 

is mapped into an element of this subscript to simplify vector-based calculations. 

Series: The data series (Infection, Death, Recovery). 

TstSts: The test status including those confirmed (‘Tested’) and those unconfirmed (‘Notest’). 

Variables units are provided for most equations. Those missing units are ones subscripted over 

different variable types or using equations that (utilizing power or log functions) cannot have 

consistent units. 

Complete equations and units 

1) a[Rgn] = XIDZ ( Potential Test Demand from Susceptible Population[Rgn] , Positive Candidates Interested in 

Testing Poisson Subset Adj[Rgn] , 1)  Units: dmnl 

2) AbsPrcErr[Rgn,Series] = if then else ( DataIncluded[Rgn] = 0, :NA:, ZIDZ ( abs ( FlowResiduals[Rgn,Series] ) , 

DataFlowOverTime[Rgn,Series] ) )  Units: dmnl 

3) AbsStd[Priors] = 0.2, 0.3, 0.1, 0.2, 0.0002, 0.2, 10, 0.03, 6, 0.1, 0.1, 0.1, 0.8, 0.1, 1e-05, 10, 0.01, 0.005, 0.01, 10, 10, 

10, 0.01, 0.5, 0.5 Units: **undefined** 

4) Active Test Rate[Rgn] = if then else ( Time < New Testing Time , DataTestRate[Rgn] , External Test Rate[Rgn] ) 

 Units: Person/Day 

5) ActiveAve[PriorEndoAve] = INITIAL( InputAve[PriorEndoAve] * ( 1 - SW EndoAve ) + SW EndoAve * 

CalcAve[PriorEndoAve] ) 

6) ActiveAve[PMT] = InputAve[PMT]  Units: **undefined** 

7) Activities Allowed by Government[Rgn] = 1 Units: dmnl [0,1,0.01] 

8) Additional Asymptomatic Fraction Init[Rgn] = Additional Asymptomatic Relative to Symptomatic Init[Rgn] / ( 1 + 

Additional Asymptomatic Relative to Symptomatic Init[Rgn] )  Units: dmnl 

9) Additional Asymptomatic Post Detection[Rgn] = Weighted Infected Post Detection Gate[Rgn] * Additional 

Asymptomatic Relative to Symptomatic[Rgn] / ( 1 + Additional Asymptomatic Relative to Symptomatic[Rgn] ) 

 Units: Person 

10) Additional Asymptomatic Relative to Symptomatic[Rgn] = ZIDZ ( Total Asymptomatic Fraction Net[Rgn] - exp ( - 

Covid Acuity[Rgn] ) , 1 - Total Asymptomatic Fraction Net[Rgn] )  Units: dmnl 

11) Additional Asymptomatic Relative to Symptomatic Init[Rgn] = INITIAL( ZIDZ ( Total Asymptomatic Fraction 

Init Net[Rgn] - exp ( - Covid Acuity Relative to Flu Init Net[Rgn] * Flu Acuity ) , 1 - Total Asymptomatic Fraction 

Init Net[Rgn] ) ) Units: dmnl 

12) Adherence Fatigue Time = 100 Units: Day 

13) AdvCntrs[Rgn] = 1 Units: dmnl 

14) All Recovery[Rgn] = Recovery of Confirmed[Rgn] + Recovery of Untested[Rgn] + sum ( Hospital 

Discharges[Rgn,TstSts!] )  Units: Person/Day 

https://github.com/tseyanglim/CovidGlobal


57 

15) Allocated Fraction COVID Hospitalized[Rgn] = min ( 1, ( - Expected Positive Poisson Covid Patients[Rgn] + Sqrt 

( Expected Positive Poisson Covid Patients[Rgn] ^ 2 + 4 * Effective Hospital Capacity[Rgn] * Effective Hospital 

Capacity[Rgn] ) ) / ( 2 * Effective Hospital Capacity[Rgn] ) )  Units: dmnl 

16) Allocated Fration NonCOVID Hospitalized[Rgn] = SMOOTHI ( Allocated Fraction COVID Hospitalized[Rgn] ^ 

2, Hospital Adj T , 1)  Units: dmnl 

17) alp[Rgn,Infection] = min ( maxAlp , ialp * alpR[Rgn] )  

18) alp[Rgn,Death] = min ( 1, dalp * alpR[Rgn] )  

19) alp[Rgn,Test] = min ( 1, talp * alpR[Rgn] )  Units: dmnl 

20) alpR[Rgn] = 1 Units: dmnl 

21) AntiVaxxerFrac[Rgn] = 0 Units: dmnl 

22) Area of Region[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 5) Units: Km*Km 

23) Average Acuity Hospitalized[Rgn,Tested] = Average Acuity of Positively Tested[Rgn] * XIDZ ( ( 1 - Probability of 

Missing Acuity Signal at Hospitals[Rgn,Tested] * Fraction Poisson not Hospitalized[Rgn,Tested] ^ 2) , 1 - Fraction 

Poisson not Hospitalized[Rgn,Tested] , 2 * Probability of Missing Acuity Signal at Hospitals[Rgn,Tested] )  

24) Average Acuity Hospitalized[Rgn,Notest] = ZIDZ ( Average Acuity of Untested Poisson Subset[Rgn] * ( 1 - 

Probability of Missing Acuity Signal at Hospitals[Rgn,Notest] * Fraction Poisson not Hospitalized[Rgn,Notest] ^ 2) 

, 1 - Fraction Poisson not Hospitalized[Rgn,Notest] )  Units: dmnl 

25) Average Acuity in Susceptible[Rgn] = ZIDZ ( Sympthoms in Susceptible[Rgn] , Susceptible[Rgn] )  Units: 

dmnl 

26) Average Acuity Not Hospitalized[Rgn,Notest] = ZIDZ ( Average Acuity Not Hospitalized Poisson[Rgn,Notest] * 

Infectious not Tested or in Hospitals Poisson[Rgn] , "Infected Unconfirmed Post-Detection"[Rgn] )  

27) Average Acuity Not Hospitalized[Rgn,Tested] = Average Acuity Not Hospitalized Poisson[Rgn,Tested]  Units: 

dmnl 

28) Average Acuity Not Hospitalized Poisson[Rgn,Tested] = Max ( 0, Probability of Missing Acuity Signal at 

Hospitals[Rgn,Tested] * Average Acuity of Positively Tested[Rgn] * Fraction Poisson not Hospitalized[Rgn,Tested] 

)  

29) Average Acuity Not Hospitalized Poisson[Rgn,Notest] = Max ( 0, Probability of Missing Acuity Signal at 

Hospitals[Rgn,Notest] * Average Acuity of Untested Poisson Subset[Rgn] * Fraction Poisson not 

Hospitalized[Rgn,Notest] )  Units: dmnl 

30) Average Acuity of Positively Tested[Rgn] = Covid Acuity[Rgn] * XIDZ ( ( 1 - Prob Missing Symptom[Rgn] * 

Fraction Interested not Tested[Rgn] ^ 2) , 1 - Fraction Interested not Tested[Rgn] , 2 * Prob Missing 

Symptom[Rgn] )  Units: dmnl 

31) Average Acuity of Untested Poisson Subset[Rgn] = ZIDZ ( Poisson Subset Reaching Test Gate[Rgn] * Covid 

Acuity[Rgn] - Positive Tests of Infected[Rgn] * Average Acuity of Positively Tested[Rgn] , Poisson Subset Not 

Tested Passing Gate[Rgn] )  Units: dmnl 

32) b[Rgn] = ZIDZ ( Testing on Living[Rgn] - Positive Candidates Interested in Testing Poisson Subset Adj[Rgn] - 

Potential Test Demand from Susceptible Population[Rgn] , Positive Candidates Interested in Testing Poisson 

Subset Adj[Rgn] )  Units: dmnl 

33) Base Fatality Rate for Unit Acuity[Rgn] = 0.0006 Units: dmnl 

34) Base Fatality Rate for Unit Acuity Net[Rgn] = INITIAL( Base Fatality Rate for Unit Acuity[Rgn] * ( 1 - SW 

Gen[BsFtRt] ) + SW Gen[BsFtRt] * InputAve[BsFtRt] ) Units: dmnl [0,0.01] 

35) BaseError = 5 Units: Person 

36) Baseline Cumulative Cases for Learning = 0.005 Units: dmnl 

37) Baseline Daily Fraction Susceptible Seeking Tests[Rgn] = 0.001 Units: 1/Day 

38) Baseline Fatality Multiplier[Rgn] = INITIAL( Demographic Impact on Fatality Relative to China[Rgn] * Base 

Fatality Rate for Unit Acuity Net[Rgn] * Liver Disease Impact on Fatality[Rgn] * Obesity Impact on Fatality[Rgn] * 

Chronic Impact on Fatality[Rgn] ) Units: dmnl [0,0.1] 

39) Baseline Risk of Transmission by Asymptomatic[Rgn] = INITIAL( Baseline Transmission Multiplier for Untested 

Symptomatic * Multiplier Transmission Risk for Asymptomatic Net[Rgn] ) Units: dmnl 

40) Baseline Transmission Multiplier for Untested Symptomatic = 1 Units: dmnl 

41) Bed per Square Kilometer[Rgn] = INITIAL( Nominal Hospital Capacity[Rgn] / Area of Region[Rgn] ) Units: 

Person/(Km*Km) 
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42) Beds per Thousand Population[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 11)

 Units: dmnl 

43) CalcAve[Priors] = INITIAL( sum ( RegionalInputs[Priors,Rgn!] ) / ELMCOUNT(Rgn) ) Units: 

**undefined** 

44) cft[Rgn,p2] = lnymix[Rgn,p2]  

45) cft[Rgn,p3] = lnymix[Rgn,p3] - lnymix[Rgn,p2]  

46) cft[Rgn,p4] = ( ln ( min ( 100, Max ( 1e-06, ZIDZ ( lnymix[Rgn,p4] - lnymix[Rgn,p2] , lnymix[Rgn,p3] - 

lnymix[Rgn,p2] ) / ln ( 2) ) ) ) )  Units: dmnl 

47) Chng Cml Dth Untst Untrt[Rgn] = Deaths of Symptomatic Untested[Rgn] - Post Mortem Test Rate[Rgn] * Frac 

Post Mortem from Untreated[Rgn]  Units: Person/Day 

48) Chronic Death Rate[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 17) Units: 

dmnl 

49) Chronic Impact on Fatality[Rgn] = INITIAL( ( Chronic Death Rate[Rgn] / MeanChronic ) ^ Sens Chronic Impact 

Net[Rgn] ) Units: dmnl 

50) Cml Death Frac In Hosp[Rgn] = XIDZ ( Cumulative Deaths at Hospital[Rgn,Tested] + Cumulative Deaths at 

Hospital[Rgn,Notest] , Cumulative Deaths[Rgn] , 1)  Units: dmnl 

51) Cml Death fraction in hospitals large enough = sum ( if then else ( Cml Death Frac In Hosp[Rgn!] < 

MinHspDTresh , 1, 0) )  Units: dmnl 

52) Cml Death Hsp Inc[Rgn,Tested] = Hospitalized Infectious Deaths[Rgn,Tested] + PostMortemCorrection[Rgn]  

53) Cml Death Hsp Inc[Rgn,Notest] = Hospitalized Infectious Deaths[Rgn,Notest] - PostMortemCorrection[Rgn] 

 Units: Person/Day 

54) Cml Known Death Frac Hosp[Rgn] = XIDZ ( Cumulative Deaths at Hospital[Rgn,Tested] , Cumulative 

Deaths[Rgn] , 1)  Units: dmnl 

55) CmltErrPW = 2 Units: dmnl 

56) CmltPenaltyScl = 0 Units: dmnl 

57) CmltToInclude[Series] = 0, 0, 0 Units: dmnl 

58) Confirmation Impact on Contact[Rgn] = 0.002 Units: dmnl 

59) Confirmed Recovered[Rgn] = INTEG( Recovery of Confirmed[Rgn] , 0)  Units: Person 

60) Constant Data File :IS: 'CovidModelInputs - ConstantData.vdf' 

61) Contacts Relative to Normal[Rgn] = min ( Voluntary Reduction in Contacts[Rgn] , Activities Allowed by 

Government[Rgn] )  Units: dmnl 

62) Continue without Testing[Rgn] = Reaching Testing Gate[Rgn] - Symptomatic Infected to Testing[Rgn] - Untested 

symptomatic Infected to Hospital[Rgn]  Units: Person/Day 

63) Count Missed Death[Rgn] = if then else ( Excess Death Start Count[Rgn] = :NA:, 0, if then else ( Time >= Excess 

Death Start Count[Rgn] :AND: Time <= Excess Death End Count[Rgn] , Cml Death Hsp Inc[Rgn,Notest] + 

Chng Cml Dth Untst Untrt[Rgn] , 0) )  Units: Person/Day 

64) Covid Acuity[Rgn] = Flu Acuity * Covid Acuity Relative to Flu Net[Rgn]  Units: dmnl 

65) Covid Acuity Relative to Flu[Rgn] = 6 Units: dmnl 

66) Covid Acuity Relative to Flu Init Net[Rgn] = INITIAL( Covid Acuity Relative to Flu[Rgn] * ( 1 - SW Gen[Acty] ) + 

SW Gen[Acty] * InputAve[Acty] ) Units: dmnl 

67) Covid Acuity Relative to Flu Net[Rgn] = Average Acuity in Susceptible[Rgn] / ( 1 - Additional Asymptomatic 

Fraction Init[Rgn] )  Units: dmnl 

68) Covid Poisson Fraction in Hospital[Rgn] = ZIDZ ( Total Covid Hospitalized[Rgn] , Infectious not Tested or in 

Hospitals Poisson[Rgn] + Infectious Confirmed Not Hospitalized[Rgn] + Total Covid Hospitalized[Rgn] ) 

 Units: dmnl 

69) CRW[Rgn]  Units: dmnl 

70) Cumulative Cases[Rgn] = INTEG( New Cases[Rgn] , 0)  Units: Person 

71) Cumulative Confirmed Cases[Rgn] = INTEG( SimFlowOverTime[Rgn,Infection] , 0)  Units: Person 

72) Cumulative Confirmed Recovered[Rgn] = Confirmed Recovered[Rgn] + Cumulative Recovered at 

Hospitals[Rgn,Tested]  Units: Person 

73) Cumulative Death Fraction[Rgn] = ZIDZ ( Cumulative Deaths[Rgn] , Cumulative Deaths[Rgn] + Cumulative 

Recoveries[Rgn] )  Units: dmnl 

74) Cumulative Deaths[Rgn] = INTEG( Death Rate[Rgn] , 0)  Units: Person 
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75) Cumulative Deaths at Hospital[Rgn,TstSts] = INTEG( Cml Death Hsp Inc[Rgn,TstSts] , 0)  Units: Person 

76) Cumulative Deaths of Confirmed[Rgn] = INTEG( SimFlowOverTime[Rgn,Death] , 0)  Units: Person 

77) Cumulative Deaths of Confirmed Untreated[Rgn] = INTEG( Deaths of Confirmed[Rgn] + Post Mortem Test 

Untreated[Rgn] , 0)  Units: Person 

78) Cumulative Deaths Untested Untreated[Rgn] = INTEG( Chng Cml Dth Untst Untrt[Rgn] , 0)  Units: Person 

79) Cumulative Fraction Total Cases Hospitalized[Rgn] = ZIDZ ( sum ( Cumulative Deaths at Hospital[Rgn,TstSts!] + 

Cumulative Recovered at Hospitals[Rgn,TstSts!] + Hospitalized Infectious[Rgn,TstSts!] ) , Cumulative Cases[Rgn] ) 

 Units: dmnl 

80) Cumulative Missed Death[Rgn] = INTEG( Count Missed Death[Rgn] , 0)  Units: Person 

81) Cumulative Negative Tests[Rgn] = INTEG( Negative Test Results[Rgn] , 0)  Units: Person 

82) Cumulative Recovered at Hospitals[Rgn,TstSts] = INTEG( Hospital Discharges[Rgn,TstSts] , 0)  Units: Person 

83) Cumulative Recoveries[Rgn] = INTEG( All Recovery[Rgn] , 0)  Units: Person 

84) Cumulative Tests Conducted[Rgn] = INTEG( SimTestRate[Rgn] , 0)  Units: Person 

85) Cumulative Tests Data[Rgn] = INTEG( TstInc[Rgn] , 0)  Units: Person 

86) Current Test Rate per Capita[Rgn] = INITIAL( if then else ( DataLastTestRate[Rgn] = :NA:, 0, 

DataLastTestRate[Rgn] / Population[Rgn] ) ) Units: 1/Day 

87) dalp = 0.1 Units: dmnl 

88) Data Excess Deaths[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 15) Units: 

Person 

89) DataAttentionTime[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 9) Units: 

Day 

90) DataCmltDeath[Rgn]  Units: Person 

91) DataCmltInfection[Rgn]  Units: Person 

92) DataCmltOverTime[Rgn,Infection] :RAW: := DataCmltInfection[Rgn]  

93) DataCmltOverTime[Rgn,Death] :RAW: := DataCmltDeath[Rgn]  

94) DataCmltOverTime[Rgn,Test] = DataCmltTest[Rgn]  Units: Person 

95) DataCmltTest[Rgn]  Units: Person 

96) DataFlowDeath[Rgn]  Units: Person/Day 

97) DataFlowInfection[Rgn]  Units: Person/Day 

98) DataFlowOverTime[Rgn,Infection] :RAW: := DataFlowInfection[Rgn]  

99) DataFlowOverTime[Rgn,Death] :RAW: := DataFlowDeath[Rgn]  

100) DataFlowOverTime[Rgn,Test] :RAW: := DataTestRate[Rgn]  Units: Person/Day 

101) DataFlowRecovery[Rgn] :RAW:  Units: Person/Day 

102) DataIncluded[Rgn] = if then else ( Max ( Cumulative Deaths[Rgn] , Max ( Cumulative Confirmed Cases[Rgn] , 

DataCmltOverTime[Rgn,Infection] ) ) > ThrsInc[Rgn] , 1, 0) * DataLimitFromTime[Rgn]  Units: dmnl 

103) DataLastTestRate[Rgn] = INITIAL( GET DATA AT TIME ( DataTestRate[Rgn] , min ( LastTestDate[Rgn] , New 

Testing Time ) ) ) Units: Person/Day 

104) DataLimitFromTime[Rgn] = if then else ( Time > StopDataUseTime[Rgn] , 0, 1)  Units: dmnl 

105) DataTestCapacity[Rgn]  Units: Person/Day 

106) DataTestRate[Rgn]  Units: Person/Day 

107) Day of First Case Report in JHU Database = 99 Units: Day 

108) Days per Year = 365 Units: Day/Year 

109) Death Rate[Rgn] = Deaths of Confirmed[Rgn] + Deaths of Symptomatic Untested[Rgn] + sum ( Hospitalized 

Infectious Deaths[Rgn,TstSts!] )  Units: Person/Day 

110) DeathFractionCounted[Rgn] = if then else ( DataCmltOverTime[Rgn,Death] = :NA:, 0, ZIDZ ( 

DataCmltOverTime[Rgn,Death] , Cumulative Deaths[Rgn] ) )  Units: dmnl 

111) Deaths of Confirmed[Rgn] = Tested Untreated Resolution[Rgn] * Fatality Rate Untreated[Rgn,Tested]  Units: 

Person/Day 

112) Deaths of Symptomatic Untested[Rgn] = Infectious not Tested or in Hospitals Poisson[Rgn] / "Post-Detection 

Phase Resolution Time" * Fatality Rate Untreated[Rgn,Notest]  Units: Person/Day 

113) Delay Order = 1 Units: dmnl 

114) Demographic Impact on Fatality Relative to China[Rgn] = GET VDF CONSTANTS(Constant Data File , 

'DataConstants[Rgn]', 12) Units: dmnl 
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115) Di[Rgn,Series] = DataFlowOverTime[Rgn,Series]  Units: Person/Day 

116) Different Infectious Counted[Rgn] = "Pre-Symptomatic Infected"[Rgn] + Infected pre Detection[Rgn] + ( 

Additional Asymptomatic Post Detection[Rgn] + "Poisson Not-tested Asymptomatic"[Rgn] ) + ( Infectious not 

Tested or in Hospitals Poisson[Rgn] - "Poisson Not-tested Asymptomatic"[Rgn] ) + Infectious Confirmed Not 

Hospitalized[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] )  Units: Person 

117) Discount Rate Annual = 0.03 Units: 1/Year [1e-05,0.2] 

118) Discount Rate per Day = INITIAL( Discount Rate Annual / Days per Year ) Units: 1/Day 

119) Dread Factor in Risk Perception[Rgn] = 25 Units: dmnl [0,10000] 

120) Dread Factor in Risk Perception Net[Rgn] = if then else ( Response Policy Time On < Time , ( 1 + Response 

Policy Weight ) * Dread Factor in Risk Perception[Rgn] , Dread Factor in Risk Perception[Rgn] ) * Impact of 

Adherence Fatigue[Rgn]  Units: dmnl 

121) Dread Factor Policy = 3000 Units: dmnl 

122) Effective Hospital Capacity[Rgn] = Nominal Hospital Capacity[Rgn] * Normalized Hospital density[Rgn] ^ Impact 

of Population Density on Hospital Availability[Rgn]  Units: Person 

123) eps = 0.001 Units: Person/Day 

124) Excess Death End Count[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 14)

 Units: Day 

125) Excess Death Mean Frac = 0.9 Units: dmnl 

126) Excess Death Range Frac = 0.2 Units: dmnl 

127) Excess Death Rate Error[Rgn] = if then else ( Data Excess Deaths[Rgn] < 50, 0, ZIDZ ( Cumulative Missed 

Death[Rgn] - Excess Death Mean Frac * Data Excess Deaths[Rgn] , Excess Death Range Frac * Data Excess 

Deaths[Rgn] ) ^ 4)  Units: dmnl 

128) Excess Death Start Count[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 13)

 Units: Day 

129) Expected Positive Poisson Covid Patients[Rgn] = sum ( Potential Hospital Demand[Rgn,TstSts!] ) * "Post-

Detection Phase Resolution Time"  Units: Person 

130) expnt : (p2-p4) 

131) External Test Rate[Rgn] = Population[Rgn] * Policy Test Rate[Rgn]  Units: Person/Day 

132) Extrapolated Estimator[Rgn] = if then else ( Covid Acuity Relative to Flu Net[Rgn] > 1, cft[Rgn,p2] + cft[Rgn,p3] * 

( Covid Acuity Relative to Flu Net[Rgn] - 1) ^ cft[Rgn,p4] , lnymix[Rgn,p2] )  Units: dmnl 

133) Fatality Rate Treated[Rgn,TstSts] = min ( 1, Baseline Fatality Multiplier[Rgn] * TimeVar Impact of Treatment on 

Fatality[Rgn] * Average Acuity Hospitalized[Rgn,TstSts] ^ Sensitivity of Fatality Rate to Acuity Net[Rgn] )  Units: 

dmnl 

134) Fatality Rate Untreated[Rgn,TstSts] = min ( 1, Baseline Fatality Multiplier[Rgn] * Average Acuity Not Hospitalized 

Poisson[Rgn,TstSts] ^ Sensitivity of Fatality Rate to Acuity Net[Rgn] * Time variant change in fatality[Rgn] ) 

 Units: dmnl 

135) Final Test Rate Per Capita[Rgn] = INITIAL( Current Test Rate per Capita[Rgn] + Weight Max in Test Goal * Max 

( 0, ( Max Test Rate per Capita - Current Test Rate per Capita[Rgn] ) ) ) Units: 1/Day 

136) FINAL TIME = 444 Units: Day [50,182,1] 

137) FlowResiduals[Rgn,Series] = if then else ( DataFlowOverTime[Rgn,Series] = :NA:, :NA:, 

DataFlowOverTime[Rgn,Series] - MeanFlowOverTime[Rgn,Series] )  Units: Person/Day 

138) FlowToInclude[Series] = 1, 1, 0 Units: dmnl 

139) Flu Acuity = 1 Units: dmnl 

140) Flu Acuity Relative to Covid[Rgn] = Flu Acuity / Covid Acuity[Rgn]  Units: dmnl 

141) Frac Post Mortem from Untreated[Rgn] = SMOOTHI ( ZIDZ ( Deaths of Symptomatic Untested[Rgn] , Deaths of 

Symptomatic Untested[Rgn] + Hospitalized Infectious Deaths[Rgn,Notest] ) , Post Mortem Test Delay , 1) 

 Units: dmnl 

142) frac rampup = 0.5 Units: dmnl 

143) FracNotVaccinated Susceptible[Rgn] = Susceptible[Rgn] / ( Initial Population[Rgn] - Vaccinated[Rgn] )  Units: 

dmnl 

144) FracThresh = 0.001 Units: dmnl 

145) Fraction Covid Death In Hospitals Previously Tested[Rgn] = ZIDZ ( Hospitalized Infectious Deaths[Rgn,Tested] , 

sum ( Hospitalized Infectious Deaths[Rgn,TstSts!] ) )  Units: dmnl 
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146) Fraction Covid Hospitalized Positively Tested[Rgn] = ZIDZ ( Hospitalized Infectious[Rgn,Tested] , Total Covid 

Hospitalized[Rgn] )  Units: dmnl 

147) Fraction Infected[Rgn] = Cumulative Cases[Rgn] / Initial Population[Rgn]  Units: dmnl 

148) Fraction Interested not Tested[Rgn] = 1 - ZIDZ ( Total Test on Covid Patients[Rgn] , Positive Candidates 

Interested in Testing Poisson Subset[Rgn] )  Units: dmnl 

149) Fraction Interseted not Correctly Tested[Rgn] = 1 - ( 1 - Fraction Interested not Tested[Rgn] ) * Sensitivity of 

COVID Test  Units: dmnl 

150) Fraction of Additional Symptomatic[Rgn] = Additional Asymptomatic Relative to Symptomatic[Rgn] / ( 1 + 

Additional Asymptomatic Relative to Symptomatic[Rgn] )  Units: dmnl 

151) Fraction of Fatalities Screened Post Mortem[Rgn] = Indicated Fraction Post Mortem Testing[Rgn] * Switch for 

Government Response[Rgn]  Units: dmnl 

152) Fraction of Population Hospitalized for Covid[Rgn] = Total Covid Hospitalized[Rgn] / Population[Rgn]  Units: 

dmnl 

153) Fraction Poisson not Hospitalized[Rgn,Tested] = exp ( - Average Acuity of Positively Tested[Rgn] * ( 1 - 

Probability of Missing Acuity Signal at Hospitals[Rgn,Tested] ) )  

154) Fraction Poisson not Hospitalized[Rgn,Notest] = exp ( - Average Acuity of Untested Poisson Subset[Rgn] * ( 1 - 

Probability of Missing Acuity Signal at Hospitals[Rgn,Notest] ) )  Units: dmnl 

155) Fraction Seeking Test[Rgn] = 1 Units: dmnl 

156) Fraction Tests Positive[Rgn] = ZIDZ ( Positive Tests of Infected[Rgn] , Testing on Living[Rgn] )  Units: 

dmnl 

157) Fraction Tests Positive Data[Rgn] = min ( 1, ZIDZ ( DataFlowInfection[Rgn] , Active Test Rate[Rgn] ) )  Units: 

dmnl 

158) Global Cases = sum ( Cumulative Cases[Rgn!] )  Units: Person 

159) Global Deaths = sum ( Cumulative Deaths[Rgn!] )  Units: Person 

160) Global IFR = ZIDZ ( Global Deaths , Global Cases - sum ( Different Infectious Counted[Rgn!] ) )  Units: 

dmnl 

161) Government Response Start Time[Rgn] = INITIAL( DataAttentionTime[Rgn] + Day of First Case Report in JHU 

Database ) Units: Day 

162) Herd Immunity Fraction = 0.6 Units: dmnl 

163) Hospital Adj T = 1 Units: Day 

164) Hospital Admission Infectious[Rgn,TstSts] = Hospital Admits All[Rgn,TstSts]  Units: Person/Day 

165) Hospital Admit Ratio[Rgn,TstSts] = XIDZ ( Hospital Admits All[Rgn,TstSts] , Potential Hospital 

Demand[Rgn,TstSts] , 1)  Units: dmnl 

166) Hospital Admits All[Rgn,Tested] = Hospital Demand from Tested[Rgn] * Allocated Fraction COVID 

Hospitalized[Rgn]  

167) Hospital Admits All[Rgn,Notest] = Hospital Demand from Not Tested[Rgn] * Allocated Fraction COVID 

Hospitalized[Rgn]  Units: Person/Day 

168) Hospital Demand from Not Tested[Rgn] = Poisson Subset Not Tested Passing Gate[Rgn] * ( 1 - exp ( - Average 

Acuity of Untested Poisson Subset[Rgn] * ( 1 - PMAS Unconfirmed for Hospital Demand[Rgn] ) ) )  Units: 

Person/Day 

169) Hospital Demand from Tested[Rgn] = Positive Tests of Infected[Rgn] * ( 1 - exp ( - Average Acuity of Positively 

Tested[Rgn] * ( 1 - PMAS Confirmed for Hospital Demand[Rgn] ) ) )  Units: Person/Day 

170) Hospital Discharges[Rgn,TstSts] = ( 1 - Fatality Rate Treated[Rgn,TstSts] ) * Hospital Outflow Covid 

Positive[Rgn,TstSts]  Units: Person/Day 

171) Hospital Outflow Covid Positive[Rgn,TstSts] = Hospitalized Infectious[Rgn,TstSts] / Hospitalized Resolution 

Time  Units: Person/Day 

172) Hospitalized CFR Cumulative[Rgn,TstSts] = ZIDZ ( Cumulative Deaths at Hospital[Rgn,TstSts] , Cumulative 

Deaths at Hospital[Rgn,TstSts] + Cumulative Recovered at Hospitals[Rgn,TstSts] )  Units: dmnl 

173) Hospitalized Infectious[Rgn,TstSts] = INTEG( Hospital Admission Infectious[Rgn,TstSts] - Hospitalized 

Infectious Deaths[Rgn,TstSts] - Hospital Discharges[Rgn,TstSts] , 0)  Units: Person 

174) Hospitalized Infectious Deaths[Rgn,TstSts] = Fatality Rate Treated[Rgn,TstSts] * Hospital Outflow Covid 

Positive[Rgn,TstSts]  Units: Person/Day 

175) Hospitalized Resolution Time = 20 Units: Day 
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176) Hospitalized True CFR[Rgn] = ZIDZ ( sum ( Hospitalized Infectious Deaths[Rgn,TstSts!] ) , sum ( Hospital 

Outflow Covid Positive[Rgn,TstSts!] ) )  Units: dmnl 

177) Hospitalized True CFR Cumulative[Rgn] = ZIDZ ( sum ( Cumulative Deaths at Hospital[Rgn,TstSts!] ) , sum ( 

Cumulative Deaths at Hospital[Rgn,TstSts!] + Cumulative Recovered at Hospitals[Rgn,TstSts!] ) )  Units: 

dmnl 

178) ialp = 0.1 Units: dmnl 

179) Impact of Adherence Fatigue[Rgn] = Recent Relative Contacts[Rgn] ^ ( Strength of Adherence Fatigue[Rgn] * if 

then else ( Time to Stop Adherence Fatigue > Time , 1, SWadhFtg ) )  Units: dmnl 

180) Impact of Population Density on Hospital Availability[Rgn] = 0.72 Units: dmnl 

181) Impact of Treatment on Fatality Rate[Rgn] = 0.32 Units: dmnl 

182) Incubation Period = 5.6 Units: Day 

183) Indicated fraction negative demand tested[Rgn] = 1 - exp ( Flu Acuity * ( Prob Missing Symptom[Rgn] - 1) ) 

 Units: dmnl 

184) Indicated fraction positive demand tested[Rgn] = 1 - exp ( Covid Acuity[Rgn] * ( Prob Missing Symptom[Rgn] - 1) ) 

 Units: dmnl 

185) Indicated Fraction Post Mortem Testing[Rgn] = Fraction Covid Death In Hospitals Previously Tested[Rgn] ^ 

Sensitivity Post Mortem Testing to Capacity[Rgn]  Units: dmnl 

186) Indicated Risk of Life Loss[Rgn] = Perceived Hazard of Death[Rgn] / Discount Rate per Day  Units: dmnl 

187) Infected pre Detection[Rgn] = INTEG( Onset of Symptoms[Rgn] - Continue without Testing[Rgn] - Symptomatic 

Infected to Testing[Rgn] - Untested symptomatic Infected to Hospital[Rgn] , 0)  Units: Person 

188) "Infected Unconfirmed Post-Detection"[Rgn] = INTEG( Continue without Testing[Rgn] - Deaths of Symptomatic 

Untested[Rgn] - Recovery of Untested[Rgn] , 0)  Units: Person 

189) Infection Rate[Rgn] = Infectious Contacts[Rgn] * ( Susceptible[Rgn] / Population[Rgn] ) * Weather Effect on 

Transmission[Rgn]  Units: Person/Day 

190) InfectionUFractionCounted[Rgn] = if then else ( DataCmltOverTime[Rgn,Infection] = :NA:, 0, ZIDZ ( 

DataCmltOverTime[Rgn,Infection] , Cumulative Cases[Rgn] ) )  Units: dmnl 

191) Infectious Confirmed Not Hospitalized[Rgn] = INTEG( Positive Testing of Infected Untreated[Rgn] - Deaths of 

Confirmed[Rgn] - Recovery of Confirmed[Rgn] , 0)  Units: Person 

192) Infectious Contacts[Rgn] = ( "Pre-Symptomatic Infected"[Rgn] * Transmission Multiplier Presymptomatic[Rgn] + 

Infected pre Detection[Rgn] * Transmission Multiplier Pre Detection[Rgn] + ( Additional Asymptomatic Post 

Detection[Rgn] + "Poisson Not-tested Asymptomatic"[Rgn] ) * Baseline Risk of Transmission by 

Asymptomatic[Rgn] + ( Infectious not Tested or in Hospitals Poisson[Rgn] - "Poisson Not-tested 

Asymptomatic"[Rgn] ) * Baseline Transmission Multiplier for Untested Symptomatic + Infectious Confirmed Not 

Hospitalized[Rgn] * Transmission Multiplier for Confirmed[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] * 

Transmission Multiplier for Hospitalized[Rgn,TstSts!] ) ) * Reference Force of Infection[Rgn] * Contacts Relative to 

Normal[Rgn]  Units: Person/Day 

193) Infectious not Tested or in Hospitals Poisson[Rgn] = "Infected Unconfirmed Post-Detection"[Rgn] - Additional 

Asymptomatic Post Detection[Rgn]  Units: Person 

194) Initial Population[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 1) Units: 

Person 

195) INITIAL TIME = 30 Units: Day 

196) InpAveErr = INITIAL( sum ( InpAveErrCmp[PriorEndoAve!] * PriorCounts[PriorEndoAve!] ) ) Units: 

**undefined** 

197) InpAveErrCmp[PriorEndoAve] = INITIAL( ( abs ( CalcAve[PriorEndoAve] - InputAve[PriorEndoAve] ) / Max ( 

1e-06, CalcAve[PriorEndoAve] ) * SW EndoAve ) ) Units: **undefined** 

198) InputAve[Priors] = 1, 1.8, 0.47, 1, 0.0009, 0.81, 58, 0.017, 6.2, 0.1, 0.24, 0.4, 2.27, 0.52, 0.00055, 0.76, 5.9, 2.07, 0.55, 

1e-06, 1e-06, 1e-06, 0.28, 0, 0 Units: **undefined** 

199) IrD : Travel,InformalDeath 

200) Known death fraction in hospitals large enough = sum ( if then else ( Cml Known Death Frac Hosp[Rgn!] < 

MinHspDTreshAdv , 1, 0) * AdvCntrs[Rgn!] )  Units: dmnl 

201) lastTestData[Rgn] = INITIAL( GET DATA Last TIME ( DataTestRate[Rgn] ) ) Units: Day 

202) LastTestDate[Rgn] = INITIAL( GET DATA Last TIME ( DataTestRate[Rgn] ) ) Units: Day 

203) Learning and Death Reduction Rate[Rgn1] = 0 Units: dmnl 
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204) Liver Disease Impact on Fatality[Rgn] = INITIAL( ( Liver Disease Rate[Rgn] / MeanLiver ) ^ Sens Liver Impact 

Net[Rgn] ) Units: dmnl 

205) Liver Disease Rate[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 18) Units: 

dmnl 

206) lnymix[Rgn,expnt] = - ln ( Max ( 1e-06, 1 - Ymix[Rgn,expnt] ) )  Units: dmnl 

207) lnymix 0[Rgn,expnt] = - ln ( Max ( 1e-06, 1 - Ymix[Rgn,expnt] ) )  Units: dmnl 

208) Max Test Rate per Capita = 0.001 Units: 1/Day 

209) Max Time Data Used = 550 Units: Day 

210) maxAlp = 1 Units: dmnl 

211) MaxData[Rgn] = INITIAL( GET DATA MAX ( DataCmltOverTime[Rgn,Infection] , 0, 500) ) Units: Person 

212) MaxRTresh = 8 Units: dmnl 

213) MaxVacRate[Rgn] = INITIAL( if then else ( Vaccination Period < 10, 0, Initial Population[Rgn] * ( 1 - 

AntiVaxxerFrac[Rgn] ) / ( Vaccination Period - frac rampup * Vaccination Period / 2) ) ) Units: 

Person/Day 

214) MeanChronic = GET VDF CONSTANTS(Constant Data File , 'MeanChronic', 1) Units: dmnl 

215) MeanFlowOverTime[Rgn,Infection] = Post Mortem Test Rate[Rgn] + Positive Tests of Infected[Rgn]  

216) MeanFlowOverTime[Rgn,Death] = Recorded Deaths[Rgn]  

217) MeanFlowOverTime[Rgn,Test] = Total Simulated Tests[Rgn]  Units: Person/Day 

218) MeanLiver = GET VDF CONSTANTS(Constant Data File , 'MeanLiver', 1) Units: dmnl 

219) MeanObesity = GET VDF CONSTANTS(Constant Data File , 'MeanObesity', 1) Units: dmnl 

220) Min Contact Fraction[Rgn] = 0.04 Units: dmnl 

221) Min Excess Death Attributable to COVID = 0.5 Units: dmnl 

222) Min Fatality Multiplier = 0.1 Units: dmnl 

223) Min Vaccination Time = 10 Units: Day 

224) MinAdjT = 1 Units: Day 

225) MinHspDTresh = 0.2 Units: dmnl 

226) MinHspDTreshAdv = 0.8 Units: dmnl 

227) MinSuscTresh = 0.7 Units: dmnl 

228) MinTimeDwngRisk = 5 Units: Day 

229) Mu[Rgn,Series] = Max ( eps , MeanFlowOverTime[Rgn,Series] )  Units: Person/Day 

230) Multiplier Recent Infections to Test[Rgn] = 45 Units: dmnl 

231) Multiplier Transmission Risk for Asymptomatic[Rgn] = 0.3 Units: dmnl 

232) Multiplier Transmission Risk for Asymptomatic Net[Rgn] = INITIAL( Multiplier Transmission Risk for 

Asymptomatic[Rgn] * ( 1 - SW Gen[MTrAsym] ) + SW Gen[MTrAsym] * InputAve[MTrAsym] ) Units: dmnl 

233) NBL1[Rgn,Series] = if then else ( DataFlowOverTime[Rgn,Series] = 0, - ln ( 1 + alp[Rgn,Series] * Mu[Rgn,Series] ) 

/ alp[Rgn,Series] , 0)  Units: dmnl 

234) NBL2[Rgn,Series] = if then else ( DataFlowOverTime[Rgn,Series] > 0, GAMMA LN ( Di[Rgn,Series] + 1 / 

alp[Rgn,Series] ) - GAMMA LN ( 1 / alp[Rgn,Series] ) - GAMMA LN ( Di[Rgn,Series] + 1) - ( Di[Rgn,Series] + 1 / 

alp[Rgn,Series] ) * ln ( 1 + alp[Rgn,Series] * Mu[Rgn,Series] ) + Di[Rgn,Series] * ( ln ( alp[Rgn,Series] ) + ln ( 

Mu[Rgn,Series] ) ) , 0)  Units: dmnl 

235) NBL3[Rgn,Series] = if then else ( Di[Rgn,Series] > 0, - GAMMA LN ( Di[Rgn,Series] + 1) - ( Di[Rgn,Series] + 1 / 

alp[Rgn,Series] ) * ln ( 1 + alp[Rgn,Series] * Mu[Rgn,Series] ) + Di[Rgn,Series] * ( ln ( alp[Rgn,Series] ) + ln ( 

Mu[Rgn,Series] ) ) , 0)  Units: dmnl 

236) NBLLFlow[Rgn,Series] = ( NBL1[Rgn,Series] + NBL2[Rgn,Series] ) * FlowToInclude[Series] * DataIncluded[Rgn] 

 Units: dmnl 

237) Negative Test Results[Rgn] = Testing on Living[Rgn] - Positive Tests of Infected[Rgn]  Units: Person/Day 

238) New Cases[Rgn] = Infection Rate[Rgn] + Patient Zero Arrival[Rgn]  Units: Person/Day 

239) New Testing Time = 1000 Units: Day 

240) Nominal Hospital Capacity[Rgn] = INITIAL( Initial Population[Rgn] * Beds per Thousand Population[Rgn] / 1000 

) Units: Person 

241) Normalized Hospital density[Rgn] = INITIAL( Bed per Square Kilometer[Rgn] / Reference Hospital Density )

 Units: dmnl 

242) Not too few susceptibles = sum ( if then else ( SuscFrac[Rgn!] < MinSuscTresh , 1, 0) )  Units: dmnl 
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243) NSeed = 1 Units: dmnl 

244) numTrial[Rgn,UsedSeries] = INITIAL( Max ( 1.01, 1 / alp[Rgn,UsedSeries] ) ) Units: dmnl 

245) Obesity Impact on Fatality[Rgn] = INITIAL( ( Obesity Rates[Rgn] / MeanObesity ) ^ Sens Obesity Impact 

Net[Rgn] ) Units: dmnl 

246) Obesity Rates[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 16) Units: dmnl 

247) Onset of Symptoms[Rgn] = DELAY N ( Infection Rate[Rgn] , Incubation Period ,0, Delay Order )  Units: 

Person/Day 

248) Onset to Detection Delay = 5 Units: Day 

249) OtherVaccination[Rgn] = Vaccination On[Rgn] * min ( Total Vaccination Rate[Rgn] * ( 1 - FracNotVaccinated 

Susceptible[Rgn] ) , RemainingFractionForVaccine[Rgn] * ( Initial Population[Rgn] - Vaccinated[Rgn] - 

Susceptible[Rgn] ) / Min Vaccination Time )  Units: Person/Day 

250) Overall Death Fraction[Rgn] = ZIDZ ( Death Rate[Rgn] , All Recovery[Rgn] )  Units: dmnl 

251) Patient Zero Arrival[Rgn] = if then else ( Time < Patient Zero Arrival Time[Rgn] :AND: Time + TIME STEP >= 

Patient Zero Arrival Time[Rgn] , PatientZero / TIME STEP , 0)  Units: Person/Day 

252) Patient Zero Arrival Time[Rgn] = 1 Units: Day [0,200] 

253) PatientZero = 1 Units: Person 

254) payoff = 0 Units: dmnl 

255) pdim : tstP,dfcP,dgtP,scuP 

256) Perceived Hazard of Death[Rgn] = ( Weight on Reported Probability of Infection[Rgn] * Reported Hazard of 

Death[Rgn] + ( 1 - Weight on Reported Probability of Infection[Rgn] ) * True Hazard of death[Rgn] )  Units: 

1/Day 

257) Perceived Risk of Life Loss[Rgn] = INTEG( ( Indicated Risk of Life Loss[Rgn] - Perceived Risk of Life Loss[Rgn] ) 

/ if then else ( Indicated Risk of Life Loss[Rgn] > Perceived Risk of Life Loss[Rgn] , Time to Upgrade Risk[Rgn] , 

Time to Downgrade Risk With Vaccine[Rgn] ) , 0)  Units: dmnl 

258) PG1 : PG 

259) PMAS Confirmed for Hospital Demand[Rgn] = ( 1 - Reference COVID Hospitalization Fraction Confirmed[Rgn] ) 

^ ( 1 / Average Acuity of Positively Tested[Rgn] )  Units: dmnl 

260) PMAS Unconfirmed for Hospital Demand[Rgn] = PMAS Confirmed for Hospital Demand[Rgn] + ( 1 - PMAS 

Confirmed for Hospital Demand[Rgn] ) * Untested PMAS Gap with Tested[Rgn]  Units: dmnl 

261) "Poisson Not-tested Asymptomatic"[Rgn] = Infectious not Tested or in Hospitals Poisson[Rgn] * exp ( - Average 

Acuity Not Hospitalized Poisson[Rgn,Notest] )  Units: Person 

262) Poisson Subset Not Tested Passing Gate[Rgn] = Poisson Subset Reaching Test Gate[Rgn] - Positive Tests of 

Infected[Rgn]  Units: Person/Day 

263) Poisson Subset Reaching Test Gate[Rgn] = Reaching Testing Gate[Rgn] / ( 1 + Additional Asymptomatic Relative 

to Symptomatic[Rgn] )  Units: Person/Day 

264) Policy Test Rate[Rgn] = if then else ( Time < New Testing Time , Current Test Rate per Capita[Rgn] , Final Test 

Rate Per Capita[Rgn] )  Units: 1/Day 

265) Population[Rgn] = Infected pre Detection[Rgn] + "Infected Unconfirmed Post-Detection"[Rgn] + 

Susceptible[Rgn] + Recovered Unconfirmed[Rgn] + Confirmed Recovered[Rgn] + Infectious Confirmed Not 

Hospitalized[Rgn] + "Pre-Symptomatic Infected"[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] ) + sum ( 

Cumulative Recovered at Hospitals[Rgn,TstSts!] )  Units: Person 

266) PopulationCheck[Rgn] = Recovered Unconfirmed[Rgn] + Confirmed Recovered[Rgn] + sum ( Cumulative 

Recovered at Hospitals[Rgn,TstSts!] ) + Different Infectious Counted[Rgn] + Susceptible[Rgn]  Units: Person 

267) Positive Candidates Interested in Testing Poisson Subset[Rgn] = Poisson Subset Reaching Test Gate[Rgn] * 

Fraction Seeking Test[Rgn]  Units: Person/Day 

268) Positive Candidates Interested in Testing Poisson Subset Adj[Rgn] = Max ( 0.001 * Potential Test Demand from 

Susceptible Population[Rgn] , Positive Candidates Interested in Testing Poisson Subset[Rgn] )  Units: 

Person/Day 

269) Positive Testing of Infected Untreated[Rgn] = Positive Tests of Infected[Rgn] * Fraction Poisson not 

Hospitalized[Rgn,Tested]  Units: Person/Day 

270) Positive Tests of Infected[Rgn] = Positive Candidates Interested in Testing Poisson Subset[Rgn] * ( 1 - Fraction 

Interseted not Correctly Tested[Rgn] )  Units: Person/Day 

271) Post Mortem Test Delay = 1 Units: Day 
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272) Post Mortem Test Rate[Rgn] = Post Mortem Tests Total[Rgn] * Sensitivity of COVID Test  Units: 

Person/Day 

273) Post Mortem Test Untreated[Rgn] = Post Mortem Test Rate[Rgn] * Frac Post Mortem from Untreated[Rgn] 

 Units: Person/Day 

274) Post Mortem Testing Need[Rgn] = SMOOTHI ( ( Deaths of Symptomatic Untested[Rgn] + Hospitalized 

Infectious Deaths[Rgn,Notest] ) * Fraction of Fatalities Screened Post Mortem[Rgn] , Post Mortem Test Delay , 0) 

 Units: Person/Day 

275) Post Mortem Tests Total[Rgn] = min ( Post Mortem Testing Need[Rgn] , Active Test Rate[Rgn] )  Units: 

Person/Day 

276) "Post-Detection Phase Resolution Time" = 10 Units: Day 

277) PostMortemCorrection[Rgn] = min ( Hospitalized Infectious[Rgn,Notest] / MinAdjT , Post Mortem Test 

Rate[Rgn] * ( 1 - Frac Post Mortem from Untreated[Rgn] ) )  Units: Person/Day 

278) Potential Hospital Demand[Rgn,Notest] = Hospital Demand from Not Tested[Rgn]  

279) Potential Hospital Demand[Rgn,Tested] = Hospital Demand from Tested[Rgn]  Units: Person/Day 

280) Potential Test Demand from Susceptible Population[Rgn] = ( Susceptible[Rgn] + Recovered Unconfirmed[Rgn] + 

Cumulative Recovered at Hospitals[Rgn,Notest] ) * ( Baseline Daily Fraction Susceptible Seeking Tests[Rgn] * 

Fraction Seeking Test[Rgn] + Multiplier Recent Infections to Test[Rgn] / Population[Rgn] * Recent Detected 

Infections[Rgn] )  Units: Person/Day 

281) "Pre-Symptomatic Infected"[Rgn] = INTEG( Infection Rate[Rgn] + Patient Zero Arrival[Rgn] - Onset of 

Symptoms[Rgn] , 0)  Units: Person 

282) PriorCounts[PriorEndoAve] = INITIAL( if then else ( PriorEndoAve < 26, 1, 0) ) Units: dmnl 

283) PriorEndoAve : 

UpAdj,DwnAdj,RFI,RfSkTs,WRpPIn,MInfTs,MnCnFrc,SnCnRdUt,CfImCn,ImPDnHs,ImTrFt,DrdFac,MxHsFr,B

sFtRt,SnsWth,Acty,SnFtAc,TtAsyFr,ObsImp,ChrImp,LivImp,MTrAsym,HspLrng,AdhrFtg 

284) PriorErrs[Rgn,Priors] = INITIAL( ZIDZ ( ActiveAve[Priors] - RegionalInputs[Priors,Rgn] , ( AbsStd[Priors] * 

StdScale ) ) ^ 2 / 2 ) Units: **undefined** 

285) PriorGen : BsFtRt,SnsWth,Acty,SnFtAc,TtAsyFr,ObsImp,ChrImp,LivImp,MTrAsym 

286) Priors : 

UpAdj,DwnAdj,RFI,PMT,RfSkTs,WRpPIn,MInfTs,MnCnFrc,SnCnRdUt,CfImCn,ImPDnHs,ImTrFt,DrdFac,Mx

HsFr,BsFtRt,SnsWth,Acty,SnFtAc,TtAsyFr,ObsImp,ChrImp,LivImp,MTrAsym,HspLrng,AdhrFtg 

287) Prob Missing Symptom[Rgn] = Max ( 0, ln ( Y[Rgn] ) / Flu Acuity + 1)  Units: dmnl 

288) Probability of Missing Acuity Signal at Hospitals[Rgn,Tested] = ZIDZ ( ln ( Max ( 1e-06, 1 - ZIDZ ( Hospital 

Admits All[Rgn,Tested] , Positive Tests of Infected[Rgn] ) ) ) , Average Acuity of Positively Tested[Rgn] ) + 1 

289) Probability of Missing Acuity Signal at Hospitals[Rgn,Notest] = ZIDZ ( ln ( Max ( 1e-06, 1 - ZIDZ ( Hospital 

Admits All[Rgn,Notest] , Poisson Subset Not Tested Passing Gate[Rgn] ) ) ) , Average Acuity of Untested Poisson 

Subset[Rgn] ) + 1 Units: dmnl 

290) PseudoCFR  Units: dmnl 

291) R Effective Reproduction Rate[Rgn] = ZIDZ ( Infection Rate[Rgn] , Total Weighted Infected Population[Rgn] ) * 

Total Disease Duration  Units: dmnl 

292) RandFlowTime = 1000 Units: Day 

293) Reaching Testing Gate[Rgn] = Infected pre Detection[Rgn] / Onset to Detection Delay  Units: 

Person/Day 

294) Realistic R0 = sum ( if then else ( R Effective Reproduction Rate[Rgn!] > MaxRTresh , 1, 0) )  Units: dmnl 

295) Recent Detected Infections[Rgn] = SMOOTHI ( Positive Tests of Infected[Rgn] , Time to Respond with Tests , 0) 

 Units: Person/Day 

296) Recent Relative Contacts[Rgn] = SMOOTHI ( Contacts Relative to Normal[Rgn] , Adherence Fatigue Time , 1) 

 Units: dmnl 

297) Recorded Deaths[Rgn] = Post Mortem Test Rate[Rgn] + Deaths of Confirmed[Rgn] + Hospitalized Infectious 

Deaths[Rgn,Tested]  Units: Person/Day 

298) Recovered Unconfirmed[Rgn] = INTEG( Recovery of Untested[Rgn] , 0)  Units: Person 

299) Recovery of Confirmed[Rgn] = Tested Untreated Resolution[Rgn] * ( 1 - Fatality Rate Untreated[Rgn,Tested] ) 

 Units: Person/Day 
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300) Recovery of Untested[Rgn] = ( "Infected Unconfirmed Post-Detection"[Rgn] / "Post-Detection Phase Resolution 

Time" ) - Deaths of Symptomatic Untested[Rgn]  Units: Person/Day 

301) Reference COVID Hospitalization Fraction Confirmed[Rgn] = 0.7 Units: dmnl 

302) Reference Force of Infection[Rgn] = 0.6 Units: 1/Day [0,2] 

303) Reference Hospital Density = 6.06 Units: Person/(Km*Km) 

304) RegionalInputs[UpAdj,Rgn] = INITIAL( Log ( Time to Upgrade Risk[Rgn] , 10) ) 

305) RegionalInputs[DwnAdj,Rgn] = Log ( Time to Downgrade Risk[Rgn] , 10)  

306) RegionalInputs[RFI,Rgn] = Reference Force of Infection[Rgn]  

307) RegionalInputs[PMT,Rgn] = Sensitivity Post Mortem Testing to Capacity[Rgn]  

308) RegionalInputs[RfSkTs,Rgn] = Baseline Daily Fraction Susceptible Seeking Tests[Rgn]  

309) RegionalInputs[WRpPIn,Rgn] = Weight on Reported Probability of Infection[Rgn]  

310) RegionalInputs[MInfTs,Rgn] = Multiplier Recent Infections to Test[Rgn]  

311) RegionalInputs[MnCnFrc,Rgn] = Min Contact Fraction[Rgn]  

312) RegionalInputs[SnCnRdUt,Rgn] = Sensitivity of Contact Reduction to Utility[Rgn]  

313) RegionalInputs[CfImCn,Rgn] = Confirmation Impact on Contact[Rgn]  

314) RegionalInputs[ImPDnHs,Rgn] = Impact of Population Density on Hospital Availability[Rgn]  

315) RegionalInputs[ImTrFt,Rgn] = Impact of Treatment on Fatality Rate[Rgn]  

316) RegionalInputs[DrdFac,Rgn] = Log ( Dread Factor in Risk Perception[Rgn] , 10)  

317) RegionalInputs[MxHsFr,Rgn] = Reference COVID Hospitalization Fraction Confirmed[Rgn]  

318) RegionalInputs[BsFtRt,Rgn] = Base Fatality Rate for Unit Acuity Net[Rgn]  

319) RegionalInputs[SnsWth,Rgn] = Sensitivity to Weather Net[Rgn]  

320) RegionalInputs[Acty,Rgn] = Covid Acuity Relative to Flu Init Net[Rgn]  

321) RegionalInputs[SnFtAc,Rgn] = Sensitivity of Fatality Rate to Acuity Net[Rgn]  

322) RegionalInputs[TtAsyFr,Rgn] = Total Asymptomatic Fraction Init Net[Rgn]  

323) RegionalInputs[ObsImp,Rgn] = Sens Obesity Impact Net[Rgn]  

324) RegionalInputs[ChrImp,Rgn] = Sens Chronic Impact Net[Rgn]  

325) RegionalInputs[LivImp,Rgn] = Sens Liver Impact Net[Rgn]  

326) RegionalInputs[MTrAsym,Rgn] = Multiplier Transmission Risk for Asymptomatic Net[Rgn]  

327) RegionalInputs[HspLrng,Rgn] = Learning and Death Reduction Rate[Rgn]  

328) RegionalInputs[AdhrFtg,Rgn] = Strength of Adherence Fatigue[Rgn]  Units: **undefined** 

329) Relative Risk of Transmission by Hospitalized = 1 Units: dmnl 

330) Relative Risk of Transmission by Presymptomatic = 1 Units: dmnl 

331) RemainingFractionForVaccine[Rgn] = ( 1 - AntiVaxxerFrac[Rgn] ) - Vaccinated Fraction[Rgn]  Units: dmnl 

332) Reported Hazard of Death[Rgn] = SimFlowOverTime[Rgn,Death] / Population[Rgn]  Units: 1/Day 

333) Response Policy Time On = 1000 Units: Day 

334) Response Policy Weight = 0 Units: dmnl 

335) Rgn : 

Argentina,Australia,Austria,Bahrain,Bangladesh,Belarus,Belgium,Bolivia,Bulgaria,Canada,Chile,Colombia,CostaRica,

Croatia,Cuba,Cyprus,CzechRepublic,Denmark,DominicanRepublic,Ecuador,ElSalvador,Estonia,Ethiopia,Finland,Fr

ance,Germany,Ghana,Greece,Hungary,Iceland,India,Indonesia,Iran,Iraq,Ireland,Israel,Italy,Jamaica,Japan,Kazakhsta

n,Kenya,Kuwait,Latvia,Lithuania,Luxembourg,Madagascar,Malawi,Malaysia,Maldives,Malta,Mexico,Morocco,Moza

mbique,Nepal,Netherlands,NewZealand,Nigeria,NorthMacedonia,Norway,Pakistan,Panama,Paraguay,Peru,Philippi

nes,Poland,Portugal,Qatar,Romania,Russia,Rwanda,SaudiArabia,Senegal,Serbia,Singapore,Slovakia,Slovenia,SouthAf

rica,SouthKorea,Spain,SriLanka,Sweden,Switzerland,Thailand,Togo,Tunisia,Turkey,UAE,UK,Ukraine,Uruguay,USA

,Zambia 

336) Rgn1 : Rgn 

337) Risk threshold for response[Rgn] = if then else ( Response Policy Time On < Time , ( 1 - Response Policy Weight ) 

* Sensitivity of Contact Reduction to Utility[Rgn] , Sensitivity of Contact Reduction to Utility[Rgn] ) / Impact of 

Adherence Fatigue[Rgn]  Units: dmnl 

338) SAVEPER = 1 Units: Day [0,?] 

339) Sens Chronic Impact = 1e-06 Units: dmnl 

340) Sens Chronic Impact Net[Rgn] = INITIAL( Sens Chronic Impact * ( 1 - SW Gen[ChrImp] ) + SW Gen[ChrImp] * 

InputAve[ChrImp] ) Units: dmnl 
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341) Sens Liver Impact = 1e-06 Units: dmnl 

342) Sens Liver Impact Net[Rgn] = INITIAL( Sens Liver Impact * ( 1 - SW Gen[LivImp] ) + SW Gen[LivImp] * 

InputAve[LivImp] ) Units: dmnl 

343) Sens Obesity Impact = 1e-06 Units: dmnl 

344) Sens Obesity Impact Net[Rgn] = INITIAL( Sens Obesity Impact * ( 1 - SW Gen[ObsImp] ) + SW Gen[ObsImp] * 

InputAve[ObsImp] ) Units: dmnl 

345) SensCovidUntestedAdmission = 1 Units: dmnl 

346) Sensitivity of Contact Reduction to Utility[Rgn] = 15 Units: dmnl 

347) Sensitivity of Contact Reduction to Utility Policy = 10 Units: dmnl 

348) Sensitivity of COVID Test = 0.7 Units: dmnl 

349) Sensitivity of Fatality Rate to Acuity[Rgn] = 2 Units: dmnl 

350) Sensitivity of Fatality Rate to Acuity Net[Rgn] = INITIAL( Sensitivity of Fatality Rate to Acuity[Rgn] * ( 1 - SW 

Gen[SnFtAc] ) + SW Gen[SnFtAc] * InputAve[SnFtAc] ) Units: dmnl [0,3] 

351) Sensitivity Post Mortem Testing to Capacity[Rgn] = 1 Units: dmnl 

352) Sensitivity to Weather = 0.76 Units: dmnl 

353) Sensitivity to Weather Net[Rgn] = INITIAL( Sensitivity to Weather * ( 1 - SW Gen[SnsWth] ) + SW Gen[SnsWth] 

* InputAve[SnsWth] ) Units: dmnl 

354) Series : Infection,Death,Test 

355) SeriesErrorTerm[Rgn,Series] = if then else ( DataCmltOverTime[Rgn,Series] = :NA:, 0, ( abs ( 

DataCmltOverTime[Rgn,Series] - SimCmltOverTime[Rgn,Series] ) ) ^ CmltErrPW ) / ( BaseError + 

DataCmltOverTime[Rgn,Series] ) * CmltPenaltyScl * CmltToInclude[Series] * DataIncluded[Rgn]  Units: 

dmnl 

356) Sim Pseudo Case Fatality[Rgn] = ZIDZ ( Cumulative Deaths of Confirmed[Rgn] , Cumulative Confirmed 

Cases[Rgn] )  Units: dmnl 

357) SimCmltOverTime[Rgn,Infection] = Cumulative Confirmed Cases[Rgn]  

358) SimCmltOverTime[Rgn,Death] = Cumulative Deaths of Confirmed[Rgn]  

359) SimCmltOverTime[Rgn,Test] = Cumulative Tests Conducted[Rgn]  Units: Person 

360) SimFlowOverTime[Rgn,UsedSeries] = if then else ( SwitchRandFlowTime < Time , RANDOM NEGATIVE 

BINOMIAL ( -1, 1e+06, successP[Rgn,UsedSeries] , numTrial[Rgn,UsedSeries] , 0, 1, NSeed ) , 

Mu[Rgn,UsedSeries] )  Units: Person/Day 

361) SimTestRate[Rgn] = Total Simulated Tests[Rgn]  Units: Person/Day 

362) SqrdErr[Rgn,Series] = if then else ( FlowResiduals[Rgn,Series] = :NA:, :NA:, FlowResiduals[Rgn,Series] ^ 2) 

 Units: Person*Person/(Day*Day) 

363) StdScale = 1 Units: dmnl 

364) StopDataUseTime[Rgn] = INITIAL( min ( lastTestData[Rgn] , Max Time Data Used ) ) Units: Day 

365) Strength of Adherence Fatigue[Rgn] = 0 Units: dmnl 

366) successP[Rgn,UsedSeries] = 1 / ( 1 + alp[Rgn,UsedSeries] * Mu[Rgn,UsedSeries] )  Units: dmnl 

367) Susceptible[Rgn] = INTEG( - Infection Rate[Rgn] - Susceptible Vaccination[Rgn] , Initial Population[Rgn] ) 

 Units: Person 

368) Susceptible Vaccination[Rgn] = Vaccination On[Rgn] * min ( Total Vaccination Rate[Rgn] * FracNotVaccinated 

Susceptible[Rgn] , RemainingFractionForVaccine[Rgn] * Susceptible[Rgn] / Min Vaccination Time )  Units: 

Person/Day 

369) SuscFrac[Rgn] = Susceptible[Rgn] / Population[Rgn]  Units: dmnl 

370) SW EndoAve = INITIAL( if then else ( ELMCOUNT(Rgn) > 1, 1, 0) ) Units: dmnl 

371) SW Gen[PriorGen] = 0 Units: dmnl 

372) SWadhFtg = 0 Units: dmnl 

373) Switch for Government Response[Rgn] = if then else ( Time > Government Response Start Time[Rgn] , 1, 0) 

 Units: dmnl 

374) SwitchRandFlow = 0 Units: dmnl 

375) SwitchRandFlowTime = if then else ( SwitchRandFlow = 1, min ( Max Time Data Used , RandFlowTime ) , 1000) 

 Units: Day 

376) Sympthom Reduction by Infectioun[Rgn] = Average Acuity in Susceptible[Rgn] * Infection Rate[Rgn]  Units: 

Person/Day 



68 

377) Sympthom Reduction by Vaccination[Rgn] = Susceptible Vaccination[Rgn] * Average Acuity in Susceptible[Rgn] * 

Vaccination Priority Multiplier  Units: Person/Day 

378) Sympthoms in Susceptible[Rgn] = INTEG( - Sympthom Reduction by Infectioun[Rgn] - Sympthom Reduction by 

Vaccination[Rgn] , Susceptible[Rgn] * ( 1 - Additional Asymptomatic Fraction Init[Rgn] ) * Covid Acuity Relative to 

Flu Init Net[Rgn] )  Units: Person 

379) Symptomatic Fraction in Poisson[Rgn] = INITIAL( 1 - exp ( - Covid Acuity[Rgn] ) ) Units: dmnl 

380) Symptomatic Fraction Negative[Rgn] = INITIAL( 1 - exp ( - Flu Acuity ) ) Units: dmnl 

381) Symptomatic Infected to Testing[Rgn] = Positive Testing of Infected Untreated[Rgn] + Hospital Admission 

Infectious[Rgn,Tested]  Units: Person/Day 

382) t3[Rgn] = ( -9 * b[Rgn] + 1.7321 * Sqrt ( 4 * a[Rgn] ^ 3 + 27 * b[Rgn] ^ 2) ) ^ ( 1 / 3)  Units: dmnl 

383) talp = 5 Units: dmnl 

384) Tested Untreated Resolution[Rgn] = Infectious Confirmed Not Hospitalized[Rgn] / "Post-Detection Phase 

Resolution Time"  Units: Person/Day 

385) TestErrorFrac = 0.0001 Units: dmnl 

386) TestFlowErr[Rgn] = ( ( DataFlowOverTime[Rgn,Test] - MeanFlowOverTime[Rgn,Test] ) * WTestFlowErr[Rgn] ) 

^ 2 Units: dmnl 

387) Testing Capacity Net of Post Mortem Tests[Rgn] = Active Test Rate[Rgn] - Post Mortem Tests Total[Rgn] 

 Units: Person/Day 

388) Testing Demand[Rgn] = Positive Candidates Interested in Testing Poisson Subset[Rgn] * Symptomatic Fraction in 

Poisson[Rgn] + Potential Test Demand from Susceptible Population[Rgn] * Symptomatic Fraction Negative[Rgn] 

 Units: Person/Day 

389) Testing on Living[Rgn] = min ( Testing Capacity Net of Post Mortem Tests[Rgn] , Testing Demand[Rgn] ) 

 Units: Person/Day 

390) Tests on Negative Patients[Rgn] = Testing on Living[Rgn] * ZIDZ ( Indicated fraction negative demand 

tested[Rgn] * Potential Test Demand from Susceptible Population[Rgn] , Indicated fraction negative demand 

tested[Rgn] * Potential Test Demand from Susceptible Population[Rgn] + Indicated fraction positive demand 

tested[Rgn] * Positive Candidates Interested in Testing Poisson Subset[Rgn] )  Units: Person/Day 

391) Tests Per Million[Rgn] = Cumulative Tests Data[Rgn] / Initial Population[Rgn] * 1e+06Units: dmnl 

392) ThrsInc[Rgn] = Max ( FracThresh * MaxData[Rgn] , 50)  Units: Person 

393) TIME STEP = 0.25 Units: Day [0,?] 

394) Time to Adjust Testing = 30 Units: Day 

395) Time to Downgrade Risk[Rgn] = 60 Units: Day 

396) Time to Downgrade Risk Net[Rgn] = if then else ( Response Policy Time On < Time , ( 1 + Response Policy 

Weight ) * Time to Downgrade Risk[Rgn] , Time to Downgrade Risk[Rgn] )  Units: Day 

397) Time to Downgrade Risk Policy = 300 Units: Day 

398) Time to Downgrade Risk With Vaccine[Rgn] = Time to Downgrade Risk Net[Rgn] * ( 1 - ( 1 - SuscFrac[Rgn] ) * 

Vaccination On[Rgn] ) + ( 1 - SuscFrac[Rgn] ) * Vaccination On[Rgn] * MinTimeDwngRisk  Units: Day 

399) Time to Herd Immunity[Rgn] = XIDZ ( Herd Immunity Fraction * Susceptible[Rgn] , Total Weighted Infected 

Population[Rgn] / Total Disease Duration , 0)  Units: Day 

400) Time to Respond with Tests = 5 Units: Day 

401) Time to Stop Adherence Fatigue = 1000 Units: Day 

402) Time to Upgrade Risk[Rgn] = 10 Units: Day 

403) Time variant change in fatality[Rgn] = Max ( Min Fatality Multiplier , ( Max ( Baseline Cumulative Cases for 

Learning , Cumulative Cases[Rgn] / Initial Population[Rgn] ) / Baseline Cumulative Cases for Learning ) ^ ( - 

Learning and Death Reduction Rate[Rgn] ) )  Units: dmnl 

404) TimeVar Impact of Treatment on Fatality[Rgn] = Impact of Treatment on Fatality Rate[Rgn] * Time variant change 

in fatality[Rgn]  Units: dmnl 

405) Total Asymptomatic Fraction[Rgn] = 0.5 Units: dmnl 

406) Total Asymptomatic Fraction Init Net[Rgn] = INITIAL( Total Asymptomatic Fraction[Rgn] * ( 1 - SW 

Gen[TtAsyFr] ) + SW Gen[TtAsyFr] * InputAve[TtAsyFr] ) Units: dmnl 

407) Total Asymptomatic Fraction Net[Rgn] = Additional Asymptomatic Fraction Init[Rgn] + exp ( - Covid Acuity[Rgn] 

) * ( 1 - Additional Asymptomatic Fraction Init[Rgn] )  Units: dmnl 

408) Total Covid Hospitalized[Rgn] = sum ( Hospitalized Infectious[Rgn,TstSts!] )  Units: Person 
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409) Total Disease Duration = Onset to Detection Delay + "Post-Detection Phase Resolution Time" + Incubation 

Period  Units: Day 

410) Total Simulated Tests[Rgn] = Post Mortem Tests Total[Rgn] + Testing on Living[Rgn]  Units: Person/Day 

411) Total Test on Covid Patients[Rgn] = Max ( 0, min ( Positive Candidates Interested in Testing Poisson Subset[Rgn] , 

Testing on Living[Rgn] - Tests on Negative Patients[Rgn] ) )  Units: Person/Day 

412) Total to Official Cases Simulated[Rgn] = ZIDZ ( Cumulative Cases[Rgn] , SimCmltOverTime[Rgn,Infection] ) 

 Units: dmnl 

413) Total Vaccination Rate[Rgn] = if then else ( Vaccination Period < 10, 0, MaxVacRate[Rgn] * ( 1 - min ( 1, Max ( 0, ( 

frac rampup * Vaccination Period - ( Time - Vaccine Start Time ) ) / ( Vaccination Period * frac rampup ) ) ) ) ) 

 Units: Person/Day 

414) Total Weighted Infected Population[Rgn] = Infected pre Detection[Rgn] + "Pre-Symptomatic Infected"[Rgn] + 

Weighted Infected Post Detection Gate[Rgn]  Units: Person 

415) Transmission Multiplier for Confirmed[Rgn] = INITIAL( Baseline Transmission Multiplier for Untested 

Symptomatic * Confirmation Impact on Contact[Rgn] ) Units: dmnl 

416) Transmission Multiplier for Hospitalized[Rgn,TstSts] = INITIAL( Baseline Transmission Multiplier for Untested 

Symptomatic * Relative Risk of Transmission by Hospitalized * if then else ( TstSts = 1, Confirmation Impact on 

Contact[Rgn] , 1) ) Units: dmnl 

417) Transmission Multiplier Pre Detection[Rgn] = INITIAL( Baseline Transmission Multiplier for Untested 

Symptomatic * ( 1 - Total Asymptomatic Fraction Net[Rgn] ) + Total Asymptomatic Fraction Net[Rgn] * Baseline 

Risk of Transmission by Asymptomatic[Rgn] ) Units: dmnl 

418) Transmission Multiplier Presymptomatic[Rgn] = INITIAL( ( Baseline Transmission Multiplier for Untested 

Symptomatic * Relative Risk of Transmission by Presymptomatic ) * ( 1 - Total Asymptomatic Fraction Net[Rgn] ) 

+ Total Asymptomatic Fraction Net[Rgn] * Baseline Risk of Transmission by Asymptomatic[Rgn] * Relative Risk 

of Transmission by Presymptomatic ) Units: dmnl 

419) True Hazard of death[Rgn] = Death Rate[Rgn] / Population[Rgn]  Units: 1/Day 

420) TstInc[Rgn] = Active Test Rate[Rgn]  Units: Person/Day 

421) TstSts : Tested,Notest 

422) Untested PMAS Gap with Tested[Rgn] = ( 1 - Allocated Fration NonCOVID Hospitalized[Rgn] ) ^ 

SensCovidUntestedAdmission  Units: dmnl 

423) Untested symptomatic Infected to Hospital[Rgn] = Hospital Admission Infectious[Rgn,Notest]  Units: 

Person/Day 

424) UsedSeries : Infection,Death 

425) Vaccinated[Rgn] = INTEG( OtherVaccination[Rgn] + Susceptible Vaccination[Rgn] , 0)  Units: Person 

426) Vaccinated Fraction[Rgn] = Vaccinated[Rgn] / Initial Population[Rgn]  Units: dmnl 

427) Vaccination On[Rgn] = if then else ( Time < Vaccine Start Time , 0, 1)  Units: dmnl 

428) Vaccination Period = 150 Units: Day 

429) Vaccination Priority Multiplier = 1.5 Units: dmnl 

430) Vaccine Start Time = 800 Units: Day 

431) VacWinStart[Rgn] = if then else ( Vaccination Period > 1, if then else ( Time > Vaccine Start Time , 2, -1) , -1) 

 Units: dmnl 

432) Voluntary Reduction in Contacts[Rgn] = exp ( - Max ( 0, Dread Factor in Risk Perception Net[Rgn] * Perceived 

Risk of Life Loss[Rgn] - Risk threshold for response[Rgn] ) ) * ( 1 - Min Contact Fraction[Rgn] ) + Min Contact 

Fraction[Rgn]  Units: dmnl 

433) W Ave Acuity Hospitalized[Rgn] = ZIDZ ( sum ( Average Acuity Hospitalized[Rgn,TstSts!] * Hospitalized 

Infectious[Rgn,TstSts!] ) , sum ( Hospitalized Infectious[Rgn,TstSts!] ) )  Units: dmnl 

434) Weather Effect on Transmission[Rgn] = CRW[Rgn] ^ Sensitivity to Weather Net[Rgn]  Units: dmnl 

435) Weight Max in Test Goal = 0 Units: dmnl 

436) Weight on Reported Probability of Infection[Rgn] = 0.78 Units: dmnl [0,1,0.01] 

437) Weighted Infected Post Detection Gate[Rgn] = "Infected Unconfirmed Post-Detection"[Rgn] + Infectious 

Confirmed Not Hospitalized[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] ) * "Post-Detection Phase 

Resolution Time" / Hospitalized Resolution Time  Units: Person 

438) WTestFlowErr[Rgn] = if then else ( DataFlowOverTime[Rgn,Test] = :NA:, 0, 1 / Max ( 10, 

DataFlowOverTime[Rgn,Test] * TestErrorFrac ) )  Units: Day/Person 
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439) Y[Rgn] = min ( 1, Max ( 1e-06, 1 - exp ( - Extrapolated Estimator[Rgn] ) ) )  Units: dmnl 

440) Ymix[Rgn,p2] = - b[Rgn] / ( 1 + a[Rgn] )  

441) Ymix[Rgn,p3] = ( Sqrt ( a[Rgn] ^ 2 - 4 * b[Rgn] ) - a[Rgn] ) / 2 

442) Ymix[Rgn,p4] = ( -0.87358 * a[Rgn] ) / t3[Rgn] + 0.38157 * t3[Rgn]  Units: dmnl  



71 

S9 References 

1. R. Xu et al., Weather Conditions and COVID-19 Transmission: Estimates and Projections. medRxiv, 
(2020). 

2. Z. Du et al., Serial interval of COVID-19 among publicly reported confirmed cases. Emerging infectious 
diseases 26, 1341 (2020). 

3. H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Serial interval of novel coronavirus (COVID-19) 
infections. International journal of infectious diseases, (2020). 

4. H. Rahmandad, K. Hu, Modeling the rework cycle: capturing multiple defects per task. Syst Dynam Rev 
26, 291-315 (2010). 

5. W. Wang et al., Detection of SARS-CoV-2 in different types of clinical specimens. Jama 323, 1843-1844 
(2020). 

6. Y. Fang et al., Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology, 200432 (2020). 

7. R. Verity et al., Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet 
infectious diseases, (2020). 

8. WHO. (2020). 

9. Z. Wu, J. M. McGoogan, Characteristics of and important lessons from the coronavirus disease 2019 
(COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for 
Disease Control and Prevention. Jama 323, 1239-1242 (2020). 

10. W. Bank. (2020). 

11. J. A. Vrugt et al., Accelerating Markov chain Monte Carlo simulation by differential evolution with self-
adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation 
10, 273-290 (2009). 

12. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. 
The Lancet Infectious Diseases. 

13. M. Roser, H. Ritchie, E. Ortiz-Ospina, J. Hasell, in Our World in Data. (2020). 

14. Z. Lipton, J. Ellignton, K. Riely. (The Atlantic). 

 

 


	GlobalCovidEstimates-210111-V9-WithAuthor-Final
	Supplement-GlobalCovidEstimates-210115-V6-NoAuthor

