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Abstract9

In an epidemic, individuals can widely differ in the way they spread the infection, for instance10

depending on their age or on the number of days they have been infected for. The latter allows11

to take into account the variation of infectiousness as a function of time since infection. In the12

absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical in-13

terventions (e.g. social distancing) are of great importance to mitigate the pandemic. We propose14

a model with a double continuous structure by host age and time since infection. By applying15

optimal control theory to our age-structured model, we identify a solution minimizing deaths and16

costs associated with the implementation of the control strategy itself. This strategy depends on17

the age heterogeneity between individuals and consists in a relatively high isolation intensity over18

the older populations during a hundred days, followed by a steady decrease in a way that depends19

on the cost associated to a such control. The isolation of the younger population is weaker and20

occurs only if the cost associated with the control is relatively low. We show that the optimal con-21

trol strategy strongly outperforms other strategies such as uniform constant control over the whole22

populations or over its younger fraction. These results bring new facts the debate about age-based23

control interventions and open promising avenues of research, for instance of age-based contact24

tracing.25
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1 Introduction27

Following its emergence in December 2019, COVID-19 has become an international public health28

emergency [1]. The infection is similar to that caused by influenza virus regarding clinical presentation29
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and transmission mechanism [1]. Contrary to seasonal influenza, COVID-19 has become pandemic30

by spreading rapidly among completely naive host populations, i.e. with no pre-existing immunity31

[2–5]. At the start of the pandemic, no pharmaceutical interventions such as vaccines or treatments32

were available and, based on earlier epidemics, it will take several months before their deployment.33

For this reason, developing non-pharmaceutical intervention strategies, such as social distancing, is of34

great importance to mitigate the pandemic [6].35

Generally, age structure is a key determinant of such acute respiratory diseases, e.g. when it comes36

to infection severity. For example, children are considered to be responsible for most of the transmis-37

sion of influenza [7], but the related hospitalization and mortality burden is largely carried by people38

of ages over 65 years [8, 9]. While much remains unknown about the COVID-19 epidemics, evidence39

to date suggests that mortality among people who have been tested positive for the coronavirus is sub-40

stantially higher at older ages and near zero for young children [3, 10]. Moreover, the infectiousness41

of an individual has been reported to vary as a function of time since infection [11], which is known42

to affect epidemic spread [12–14].43

Here we propose an epidemiological model for the disease stage-progression [13] structured both44

by the continuous age of the host population and the continuous age of infection. This formulation45

differs from the existing literature where only one type of structure is considered at a time [15–18],46

and is particularly suited to investigate an infection such as COVID-19, with strong host and infect age47

effects. Indeed, in addition to taking into account the host population’s age structure, as well as the48

gradient of disease severity from mild to critical symptoms, the model readily captures the variation49

in infectiousness as a function of the time since infection. From a theoretical point of view, age-50

structured models have been proposed to investigate the spread of acute respiratory diseases [19–23].51

However, in a context of acute respiratory diseases with contact patterns, very few models consider52

both structures as continuous variables, see for instance [18, 24].53

In a context of non-pharmaceutical interventions, we adopt a modeling approach based on the54

optimal control theory to determine the best strategy to implement during a finite time interval. In the55

context of age-structured models, this approach allows one to determine the optimal strategies of age-56

specific social distancing taking into consideration the cost of implementing such strategies [25–29].57

Here, more specifically, we look for the intevention that significantly reduces morbidity associated58

with COVID-19 at a minimal cost. In the same context, mathematical modeling using optimal control59

theory has been carried out to identify optimal strategies involving non-pharmaceutical interventions60

to control infectious diseases such as influenza and COVID-19 [30–33]. However, none of these61

models take into account the age structure of the host population or the variation of the infectiousness62

with the time since infection.63

In Section 2, we first introduce the mathematical model. The model parameters and outputs are64

then defined in Section 3. In Section 4, we characterize the optimal control strategy that minimizes the65

number of deaths as well as the cost due to the implementation of the control strategy itself. Section 566

contains the main body of the results. We first analyse the epidemic spread without any intervention,67
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before comparing the performance of the optimal control in terms of deaths and hospitalizations for68

different costs of the control measure. Finally, the optimal control is compared to two other strategies69

using the same amount of resources to control the outbreak. The article ends by a Discussion in70

Section 6.71

2 The age-structured model of COVID-1972

2.1 Model overview73

At time t ∈ [0,T ], the density of individuals of age a ∈ [0,amax] that are susceptible to the infection is74

denoted by S(t,a). These individuals can become infected with a rate called the force of infection and75

denoted λ (t,a). We assume that a fraction p of these individuals are paucisymptomatic, which means76

they will develop very mild to no symptoms, and enter group Ip. Note that this class can also be inter-77

preted as the fraction of the population that will not isolate themselves during their infection. Other78

individuals are assumed to develop more symptomatic infections, either severe Is with proportion q(a)79

depending on the age a, or mild Im with proportion 1−q(a).80

Each of the three infected host populations are structured in time since infection, so that Iv(t,a, i),81

v∈ {p,s,m}, denotes the density at time t of individuals of age a that have been infected for a duration82

i ∈ R+. Upon infection, all exposed individuals are assumed to remain non-infectious during an83

average period ilat . Next, they enter an asymptomatic period during which they are infectious. Only84

Im and Is develop significant symptoms after an average time since infection isympt , which can allow85

them to self-isolate to limit transmission. During their infection, individuals can recover at a rate86

hv(a, i) (v ∈ {p,m,s}) that depends on the severity of the infection and the time since infection i.87

Severely infected individuals of age a may also die from the infection at rate γ(a, i).88

The infection life cycle is shown in Figure 1. The total size of the host population of age a at time89

t is90

N(t,a) = S(t,a)+R(t,a)+
∫

∞

0
(Ip(t,a, i)+ Im(t,a, i)+ Is(t,a, i))di. (1)

2.2 Age-structured transmission and severity91

We use two components to model the infection process. First, we define the transmission probability92

βv(a, i) (v ∈ {p,m,s}) for each contact between an infected of age a and a susceptible person, which93

depends on the time since infection i. Second, we introduce the kernel K(a,a′) that represents the94

average number of contacts by unit of time between an individual of age a′ and an individual of age95

a. Here, this contact matrix is informed by data from an earlier study conducted in France [34]. The96

force of infection underwent by susceptible individuals of age a at time t is then given by97

λ (t,a,c) = (1− c(t,a))
∫ amax

0
K(a,a′)

∫
∞

0

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
di da′.

(2)
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Figure 1: The model flow diagram. Susceptible hosts of age a at time t (S(t,a)) are exposed to the
virus with a force of infection λ (t,a). A fraction p of exposed individuals, which are infected since
time i, will never develop symptoms and enter the group of paucisymptomatic infections (Ip(t,a, i)).
The rest will develop symptomatic infections, either severe (Is(t,a, i)) with proportion q(a) depending
on age a of individuals, or mild (Im(t,a, i)). Exposed individuals remain non-infectious for a duration
ilat after infection. Next, they become asymptomatic infectious and only symptomatic infected will
develop symptoms at time isympt after infection. Infected individuals recover at rate hv(a, i). Only
severely infected of age a die from the infection at rate γ(a, i). Notations are shown in Table 1.

Here, c(t,a) is the percentage of reduction of contacts towards people with age a, due to public98

measures, at time t. The total force of infection at time t in the whole population is computed as99 ∫ amax
0 λ (t,a,c)da.100

The dynamics of newly infected individuals (i.e. i = 0) in each group is thus defined by101 
Is(t,a,0) = (1− p)q(a)λ (t,a,c)S(t,a),
Im(t,a,0) = (1− p)(1−q(a))λ (t,a,c)S(t,a),
Ip(t,a,0) = pλ (t,a,c)S(t,a).

(3)

We assume that only severe infections Is lead to hospitalization and we denote by102

H(t) =
∫ amax

0

∫
∞

isympt

Is(t,a, i)di da (4)

the total population hospitalized at time t, where isympt is the average time to symptoms onset. Each
individual of age a dies at a rate µ(a,H(t)) at time t, defined by

µ (a,H(t)) = µnat(a)+µadd (a,H(t)) .

In the latter equation, µnat denotes the natural mortality rate when hospitals are not saturated. Further,103

we assume that this rate increases significantly as soon as the number of severe cases exceeds the104

healthcare capacity Hsat and µadd is such additional death rate due to hospital saturation (see Section105

3.2).106

We apply the same reasoning by assuming that the disease-related mortality can increase because
of hospital saturation. Therefore, severely infected individuals of age a infected since time i die at
time t at rate γ(a, i,H(t)) defined by

γ(a, i,H(t)) = (γdir(a)+ γindir(a,H(t)))1[isympt ,ismax]
(i).
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Here, γdir and γindir are mortality rates directly and indirectly due to the COVID-19 respectively (see107

Section 3.2). The disease-related mortality occurs after the emergence of symptoms and before the108

mean final time of infection for severe cases, i.e. for i ∈ [isympt , ismax].109

Finally, infected individuals of age a infected since time i recover at rates hs(a, i), hm(a, i) and110

hp(a, i) for severe, mild and paucisymptomatic infections respectively.111

The boundary conditions (3) are coupled with the following equations:112 

∂S
∂ t

(t,a) = −µ(a,H(t))S(t,a)−λ (t,a,c)S(t,a),(
∂ Is

∂ t
+

∂ Is

∂ i

)
(t,a, i) = − [µ(a,H(t))+ γ(a, i,H(t))+hs(a, i)] Is(t,a, i),(

∂ Im

∂ t
+

∂ Im

∂ i

)
(t,a, i) = − [µ(a,H(t))+hm(a, i)] Im(t,a, i),(

∂ Ip

∂ t
+

∂ Ip

∂ i

)
(t,a, i) = − [µ(a,H(t))+hp(a, i)] Ip(t,a, i),

∂R
∂ t

(t,a) = ∑
v∈{s,m,p}

∫
∞

0
hv(a, i)Iv(t,a, i)di−µ(a,H(t))R(t,a),

(5)

for any (t,a, i) ∈ (0,T ]× [0,amax]×R+, with initial conditions (at t = 0):

S(0,a) = S0(a), R(0,a) = 0, Is(0,a, i) = Is,0(a, i), Im(0,a, i) = Im,0(a, i), Ip(0,a, i) = IA,0(a, i)

for each (a, i) ∈ [0,amax]×R+. The initial conditions of infected populations are detailed in Section
3.3. Using (3) and an integration over i of (5), one may observe that the total population N defined by
(1) is strictly decreasing since it satisfies the following inequality:

∂N
∂ t

(t,a)≤−µnat(a)N(t,a), ∀a ∈ [0,amax], ∀t ≥ 0.

This is due to the fact that population aging and births are neglected in this model since we consider a113

time horizon of only one year. Further, basic properties of the model such as existence and positiveness114

of solutions is out of the primary scoop of our study. However, these can be specifically addressed115

using an integrated semigroup approach and Volterra integral formulation (see [35–38] and references116

therein).117

3 Epidemiological outputs, model parameters and initial conditions118

In this section we briefly describe some useful epidemiological outputs, the shape of age dependent119

parameters considered for the simulations of model (3)-(5), and the initial conditions. All state vari-120

ables and other parameters are summarized in Table 1.121

3.1 Epidemiological outputs122

In addition to the total number of hospitalized cases H(t) at time t defined by (4), we define additional123

epidemiological outputs such as the number of non-hospitalized cases (NH(t)), the cumulative number124
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of deaths due to COVID-19 directly (Dcum
dir (t)) and indirectly (Dcum

indir(t)) respectively by125

NH(t) =
∫ amax

0

[∫ isympt

0
Is(t,a, i)di+

∫
∞

0
(Im(t,a, i)+ Ip(t,a, i))di

]
da, (6)

and126

Dcum
dir (t) =

∫ t

0
Ddir(s)ds, Dcum

indir(t) =
∫ t

0
Dindir(s)ds, (7)

where Ddir(t) and Dindir(t) are the number of deaths at time t respectively defined by127

Ddir(t) =
∫ amax

0

∫ ismax

isympt

γdir(a)Is(t,a, i)di da,

Dindir(t) =
∫ amax

0
µadd(a,H(t))N(t,a)da+

∫ amax

0
γindir(a,H(t))

∫ ismax

isympt

Is(t,a, i)di da.

Note that non-hospitalized cases NH defined by (6) are composed of the paucisymptomatic, the mildly
infected, and the severely infected but not yet hospitalized populations. We can also note that every
output aforementioned implicitly depends on parameter c which we will omit when no confusion
is possible. However, in order to compare different public health measures we will explicitly write
this dependence. The relative performance between two strategies c1 and c2, denoted by ∆(c1,c2), is
estimated by assessing the cumulative number of deaths in the whole population during the T days of
control period with the strategy c1 relatively to deaths with the strategy c2. Formally we have

∆(c1,c2) = 1−
Dcum

dir (c1,T )+Dcum
indir(c1,T )

Dcum
dir (c2,T )+Dcum

indir(c2,T )
.

Hence, a relative performance ∆(c1,c2) = 0.1 implies that the strategy c1 reduces the number of deaths128

by 10% relatively to c2.129

3.2 Setting model parameters130

We assume mortality rates indirectly due to the COVID-19 to grow as the number of hospitalisations131

H exceeds a healthcare capacity threshold Hsat . The natural mortality rate increases by µadd(a,H) in132

the whole population and by γindir(a,H) for severely infected individuals of age a. These rates are133

respectively defined by logistic functions that are arbitrarily chosen as:134

µadd(a,H(t)) =
10−2 µnat(a)

1+99 exp
(
−10

(
H(t)
Hsat
−1
)) , γindir(a,H(t)) =

γdir(a)

1+99 exp
(
−10

(
H(t)
Hsat
−1
)) . (8)

This choice of functional parameters implies that

µadd(a,0)≈ 0, γindir(a,0)≈ 0, µadd(a,Hsat) = 10−4
µnat(a), γindir(a,Hsat) = 10−2

γdir(a)

so that those additional mortalities are negligible when hospitals are not saturated (Figure 2 b,c). In
case of saturation, the following estimates hold:

lim
H→∞

µadd(a,H) = 10−2
µnat(a), lim

H→∞
γindir(a,H) = γdir(a)

6
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(a) (b) (c)

Figure 2: (a) Transmission probabilities of paucisymptomatic infections βp, symptomatic severe βs

and mild infections βm. (b)-(c) Mortality rates due to the healthcare system saturation, with a maximal
healthcare capacity Hsat = 5×103.

for each a ∈ [0,amax], meaning that the natural mortality rate is only increased by 1%, while the135

disease-induced mortality rate γ is doubled. Indeed, according to [39], 50% of patients in critical care136

will die in case of no saturation of hospitals. Here, we then make the assumption that this percentage137

will grow to 100% in case of over-saturation of hospitals.138

The infectiousness of an individual aged a, which is infected since time i, is given by βv(a, i)139

(v ∈ {s,m, p}). Based on estimates described in [11], we assume that βv does not depends on age a,140

i.e., βv(a, i) = βv(i). This assumption is only for parameterization purpose and does not impact the141

general formulation of the model proposed here (this is discussed later in Section 6). Next, we set142

βv(i) = α×ξv(i)×β (i), for v∈ {s,m, p}. Here, as explained below, α is a scaling parameter obtained143

from the value of the basic reproduction number R0. Parameter β is assumed to be identical to that144

reported in [11] and to follow a Weibull distribution β ∼W (3,5.65). Parameters ξv(i) are factors145

capturing the reduction of the transmission probability. For paucisymptomatic individuals, these are146

assumed to be constant (ξp(i) = ξp), while the reduction factor in more symptomatic infections (severe147

and mild) is assume to vary after symptom onset to capture admission in a healthcare facility or self-148

isolation at home. More precisely, we assume that149

ξs(i) =

1 if i ∈ [0, isympt ],

e− ln(10)(i−isympt) if i > isympt

and ξm(i) =

1 if i ∈ [0, isympt ],

e− ln(2)(i−isympt) if i > isympt .
(9)

These two functions are chosen arbitrarily by assuming that individuals do not isolate before symp-150

toms onset (i ≤ isympt), and that isolation is stronger when symptoms are more severe (Figure 2 (a)).151

We therefore assume that the transmission probability β is divided by 10 (respectively 2) every day152

after the average time of symptoms onset for individuals severely (resp. mildly) infected.153

Finally, we assume that recover rates hv(a, i), v∈{s,m, p}, of infected individuals of age a infected154

since time i are independent of the age a and take the following form:155

hs(·, i) = 1[ismax,∞](i), hm(·, i) = hp(·, i) = 1[immax,∞](i), ∀i ∈ R+. (10)
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That is, one can recover from severe (resp. mild and paucisymptomatic) infections only after a time156

since infection ismax (resp. immax) corresponding to the mean duration of infection.157

3.3 Initial conditions158

According to the French public health agency [44], there were 130 confirmed cases of COVID-19 in
France on March 1st, 2020, which we will consider as t = 0 in our model. Since tests in France were
initially performed based on severe symptoms, we assume that all those cases are severe infections.
Thus, we set

∫ ismax
isympt

∫ amax
0 Is,0(a, i)da di = 130 as the initial severely infected individuals, which is as-

sumed to be uniformly distributed with respect to the time since infection i on the interval [0, ismax].
Using estimates from [44, 45] on the age distribution of hospitalised people, we derive an estimation
of Is,0(a, i) for each (a, i) ∈ [0,amax]×R+. Next, following the life cycle (Figure 1), we obtain an
estimation of the total initial infected population by Is,0(a,i)

(1−p)q(a) . From there, we deduce the initial mildly
and paucisymptomatic infected populations respectively by

Im,0(a, i) =
1−q(a)

q(a)
Is,0(a, i) and IA,0(a, i) =

p
q(a)(1− p)

Is,0(a, i).

The initial susceptible population size S0 comes from the French National Institute of Statistics and159

Economic Studies [42].160

4 Optimal intervention161

In this section, following well established methodology in optimal control theory [25–28, 46], we
search for the optimal control effort function c∗ that minimizes the objective functional J : L∞(R+×
[0,amax]) 3 c 7−→ J(c) ∈ R, where

J(c) = Dcum
dir (c,T )+Dcum

indir(c,T )+
∫ T

0

∫ amax

0
B(a)c2(t,a)da dt,

where Dcum
dir , Dcum

indir are cumulative number of deaths defined by (7) and B(a) is the cost associated with162

the implementation of such control c for the age class a. Our aim is to find the function c∗ satisfying163

J(c∗) = min
c∈U

J(c) (11)

wherein the set U is defined by

U = {c ∈ L∞(R+× [0,amax]) : 0≤ c(·, ·)≤ cmax},

with cmax ≤ 1 a positive constant. That is to say, the function c∗ will minimize the cumulative number164

of deaths during T days, as long as the cost of the control strategy is not too large.165

8
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State variables

S Susceptible individuals
Is Severely infected individuals
Im Mildly infected individuals
Ip Paucisymptomatic infected individuals
R Recovered individuals

Model parameters

Param. Description (unit) Values [source]

t,T time and final time of simulations (days) t ∈ [0,T ] (ad hoc)
a,amax age and maximal age of individuals (years) a ∈ [0,amax], amax = 100 (ad hoc)
i time since infection (days) R+ (ad hoc)
ilat latency from exposed to asympt. (days) 4.2 [40]
isympt average time of symptoms onset (days) ilat +1 = 5.2 [39]
ismax mean final time of infection for severe cases

(days)
isympt +20 = 25.2 [41]

immax mean final time of infection for mild cases
(days)

isympt +17 = 22.2 [41]

S0 initial population of susceptible [42]
µnat natural death rate

(
days−1) [43]

µadd additional death rate
(
days−1) defined by (8)

Hsat maximal healthcare capacity 5×103 [44]
βs,βm,βp transmission probabilities (unitless) computed in Section 3.2
ξs,ξm,ξp infectiousness reduction factors (unitless) defined by (9) and ξp = 0.1 [11]
hs,hm,hp recovery rates per infection

(
days−1) defined by (10)

K matrix of social contacts
(
days−1) [34]

c, cmax public health measure and its upper bound
(unitless)

c ∈ [0,cmax], cmax = 0.95 (assumed)

γdir mortality rate directly due to the COVID-19(
days−1) [39]

γindir mortality rate indirectly due to the COVID-19(
days−1) defined by (8)

p proportion of paucisymptomatic (unitless) variable
q proportion of symptomatic requiring

hospitalisation (unitless)
[39]

B cost of the control measure (unitless) variable

Table 1: Model variables and parameters
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Let (S, Is, Im, Ip,R) be a given solution of (3)-(5) then let λ and H be respectively defined by (2)166

and (4). After some computations (Appendix B), we find that the adjoint system of (5) reads as167 

∂ zS
∂ t (t,a)

∂ zR
∂ t (t,a)(

∂ zIs
∂ t +

∂ zIs
∂ i

)
(t,a, i)(

∂ zIm
∂ t +

∂ zIm
∂ i

)
(t,a, i)(

∂ zIp
∂ t +

∂ zIp
∂ i

)
(t,a, i)


=


µ(a,H(t))zS(t,a)−µadd(a,H(t))
µ(a,H(t))zR(t,a)−µadd(a,H(t))

(µ(a,H(t))+hs(a, i))zIs(t,a, i)−µadd(a,H(t))− γ(a, i,H(t))(1− zIs(t,a, i))
(µ(a,H(t))+hm(a, i))zIm(t,a, i)−µadd(a,H(t))
(µ(a,H(t))+hp(a, i))zIp(t,a, i)−µadd(a,H(t))



−


ζ2(t,a)

∫
∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′ di
0

ζ1(t,a)1[isympt ,∞)(i)+βs(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hs(a, i)
βm(a, i)

∫ amax
0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hm(a, i)

βp(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hp(a, i)


(12)

with final conditions zS(T,a) = zR(T,a) = 0, zu(T,a, i) = 0 and limi→∞ zu(t,a, i) = 0, for any u ∈
{Is, Im, Ip} and (a, i) ∈ [0,amax]×R+, while ζk (k ∈ {1,2,3}) satisfy the system:ζ1(t,a)

ζ2(t,a)
ζ3(t,a)

=


∂ µ

∂H (a,H(t))(S(t,a)(1− zs(t,a))+R(t,a)(1− zR(t,a)))
[1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0)− (1− c(t,a))zS(t,a)

zR(t,a)



+


∫

∞

0

∂ µ

∂H
(a,H(t))(Is(t,a, i)(1− zIs(t,a, i))+ Im(t,a, i)(1− zIm(t,a, i)))di

0
0



+


∫

∞

0

(
∂ µ

∂H
(a,H(t))Ip(t,a, i)(1− zIp(t,a, i)+

∂γ

∂H
(a, i,H(t))Is(t,a, i)(1− zIs(t,a, i))

)
di

0
0

 .

(13)

Finally, the Hamiltonian H of (11) is given by (B.1). Then, solving
∂H

∂c
= 0, it comes that168

c∗(t,a) = max(0,min(ĉ(t,a),1)), (14)

for every (t,a) ∈ [0,T ]× [0,amax], where

ĉ(t,a) =
S(t,a)λ0(t,a)

[
(1− p)(1−q(a))zIm(t,a,0)+(1− p)q(a)zIs(t,a,0)+ pzIp(t,a,0)

]
2B(a)

,

with λ0 defined by (A.4).169
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We also assume that the cost B(a) of the control measure over individuals aged a ∈ [0,amax] is
proportional to their density in the initial susceptible population S0, i.e.

B(a) =
B∗S0(a)∫ amax

0 S0(u)du
,

where B∗ ∈ R+ is a variable parameter characterizing the relative cost in implementing the strategy.170

Additionally, one may consider the age distribution of the economic cost on the shape of the function171

B. For example, the economic cost can be assumed more important for the working population (i.e.172

age group 20−60) compared to the older. Though, in absence of relevant references on this topic we173

stand with our primary assumption.174

The state system (3)-(5) and the adjoint system (12)-(13) together with the control characteriza-175

tion (14) form the optimality system to be solved numerically. Since the state equations have initial176

conditions and the adjoint equations have final time conditions, we cannot solve the optimality system177

directly by only sweeping forward in time. Thus, an iterative algorithm, forward-backward sweep178

method, is used [47]. In other words, finding c∗ numerically, involves first solving the state vari-179

ables (3)-(5) forward in time, then solving the adjoint variables (12)-(13) backward in time, and then180

plugging the solutions for the relevant state and adjoint variables into (14), subject to bounds on the181

control function. Finally, the proof of the existence of such control is standard and is mostly based182

on the Ekeland’s variational principle [48]. Therefore, existence of the optimal control to the above183

problem is assumed and we refer to [25] for more details.184

5 Results185

5.1 The basic reproduction number R0186

An explicit expression of the R0 of model (3)-(5) is difficult to obtain in general. We show in Ap-
pendix A that it is possible to write R0 = α × r(U), where α is the scaling parameter introduced in
Section 3.2, and r(U) is the spectral radius of the next generation operator U defined on L1(0,amax)

by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax).

where S0 is the initial susceptible population, K is the contact matrix and ω(a, i) is the infectiousness
of individuals of age a infected since time i (Appendix A). We set R0 = 3.3 [49, 50] and it follows that

α =
R0

r
(
U
) .

Using a numerical approach, we find r(U)≈ 12.074, whence α ≈ 0.575.187

5.2 Typical outbreak dynamics simulated with the model188

Numerical simulations are based on the reference values of the model parameters defined previously189

and summarized in Table 1, with R0 = 3.3.190

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2020. ; https://doi.org/10.1101/2020.06.23.20138099doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.23.20138099
http://creativecommons.org/licenses/by-nc/4.0/


We first use the model to describe the outbreak of the epidemics without any public health measure191

(i.e. c≡ 0). The peak of the epidemics is reached approximately at day t = 54 for hospitalised people,192

and day t = 48 for non-hospitalised (Figure 3a). The delay between the two peaks is due to the193

latency time isympt for symptoms onset (Table 1). The healthcare capacity is quickly exceeded (about194

twenty days) and the number of deaths increases sharply from then on. At the end of the simulation195

(t = 150 days), the total number of infections (severe, mild and paucisymptomatic) is around 90.1%196

and varies with the age class considered (Figure 3 b). Further, in each age class the proportion of197

infected individuals is larger than the theoretical herd immunity threshold given by 1−1/R0 ≈ 69.7%198

(Figure 3b). While people older than 70 are the less affected (in proportion), they however represent199

the age class with the highest cumulative number of deaths (Figure 3c). On the contrary, most of the200

infections that occur in the young population do not require hospitalisation (Figure 3d,e).201

5.3 Effect of the optimal intervention202

In this section, we investigate the interaction between the optimal intervention and the age structure203

of the population. We illustrate the optimal intervention strategy and their performance in terms of204

cumulative number of deaths for three costs of the control (relatively low B∗ = 102, intermediate205

B∗ = 103 and high B∗ = 104). Overall, the optimal control particularly targets the older populations206

compared to the younger ones (Figure 4). If the cost B∗ is relatively high, the optimal control is207

almost restricted to individuals above 55, with a significant reduction in deaths (Figure 4d,e). This208

strict lock down of older individuals lasts approximately 100 days for B∗ = 103 and 104. The relative209

performance of the optimal control c∗ compared to a doing nothing scenario (∆(c∗,0)) is at least 92%210

(resp. 82%) when the cost is B∗ = 103 (resp. 104). With a low cost of the control measure (B∗ = 102),211

the optimal control significantly extends to younger populations (Figure 4 a), with a maximum reached212

near the 4th month of the epidemics and a steady decrease until the end of the control period. At first,213

the control is over people above 35 but that after 2 or 3 months the control begin to extend to people214

less than 35. The resulting reduction in the number of deaths is very pronounced with a relative215

performance ∆(c∗,0) of at least 99%.216

5.4 Comparative analysis and practicability of the optimal control217

We investigated how the optimal strategy compares to other control strategies that use the same amount218

of ‘resources’ (that is the same cumulative cost). Assuming an relatively high cost B∗ = 103, we inves-219

tigated a uniform control strategy (denoted by cu) either over the younger fraction of the population220

(Figure 5a) or over the whole population with level cmax = 0.95 (Figure 5b). The effect of these strat-221

egy lasts about 55 days during which the epidemic is suppressed. However, once the control resources222

are exhausted, the epidemic reemerges (Figure 5c) and, in the end, the cumulative mortality over the223

time period of interest is comparable to that without any control measure (Figure 5d) and relative224

performance ∆(c∗,cu), of the optimal control c∗ relatively to the uniform control cu, is approximately225
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(a)

(b) (c)

(d) (e)

Figure 3: Epidemic simulated with default parameter values and no intervention with p= 0.5. (a)
Dynamics of epidemiological outputs over time: number of hospitalised, non hospitalised, cumulative
deaths, recovered and susceptible. (b) Age distribution of the proportion of the population that have
been infected before 150 days. (c) The number of cumulative deaths by age class and over time.
(d)-(e) Density of hospitalised and non-hospitalised people by age class over time.
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92%. With the (longer) uniform control over the younger fraction of the population, the first epidemic226

peak is slightly delayed, but a second peak appears a few months later (Figure 5c). With this strategy,227

the cumulative mortality comparable to the one without any control measure (Figure 5d).228

The optimal control is a continuous function and is then quite difficult to enforce in practice.229

However, we can derive step functions leading to practical implementations of the optimal control.230

For instance, the population is subdivided into 10-year amplitude classes and the control is updated231

every 3-weeks by keeping a constant amount of control during each 3-weeks period for each age-class.232

(Figure S1). Importantly, the constant defining the control intensity for each period is captured from233

the knowledge of the continuous optimal control strategy. The effect of such strategy is overall similar234

to the optimal control (Figure S1) with a relative performance of 91% compared to a doing nothing235

scenario.236

(a) (b) (c)

(d) (e)

Figure 4: The optimal control strategy c∗ plotted over time, age and its intensity, as well as their
performance in terms of cumulative number of deaths for three costs of the control measure. (a)
relatively low B∗ = 102, (b) intermediate B∗ = 103, (c) high B∗ = 104. (d) Number of hospitalizations.
(e) Cumulative deaths per age at final time T = 365 days. The relative performance ∆(c∗,0) of the
optimal control c∗ compared to a doing nothing scenario is at least 99% (resp. 92%, 82%) with
B∗ = 102 (resp. 103, 104). Here p = 0.5.
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(a) (b)

(c) (d)

Figure 5: Comparing optimal control with uniform control. (a) Illustration of the uniform control
over the young population and (b) independently of the age. (c) Number of hospitalizations. (d)
Cumulative deaths per age at final time T = 365 days. Here, we assume B∗ = 103. Here p = 0.5.
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6 Discussion237

Non-pharmaceutical public health interventions can be implemented either to mitigate the COVID-19238

epidemic wave, and rely on natural immunisation, or to suppress the wave long enough to develop and239

implement a vaccine or a treatment. Here, we explicitly factor in the age heterogeneity of the host240

population in the identification of the optimal allocation of the control efforts.241

We use optimal control theory to characterize an optimal strategy that significantly reduces the242

number of deaths, while being sustainable at the population level. Our formulation assume a quadratic243

cost for the control effort. We find that, with this strategy, the intensity of the control is always244

relatively high on the older fraction of the population during at least a hundred days, before decreasing245

more or less rapidly depending on the cost associated to the control. The control over the younger246

fraction of the population is weak and only occurs when the cost associated with the optimal control247

is relatively low and, even then, the level control only increases 2 or 3 months after that on the older248

fraction of the population. This late control over the younger part of the population actually mimics249

the results [31] where the control didn’t peak right away. Intuitively, if control strategies come at a250

high cost for the population, it is best to focus on the age classes that are the most at risk. Conversely,251

if the control measures are more acceptable to the population, the optimal strategy is to aim wide in252

order to completely suppress the epidemic wave.253

Information on the natural history of paucisymptomatic infections of COVID-19 remains rela-254

tively little-known [51, 52]. It is estimated that a proportion p of infected individuals will remain255

asymptomatic throughout the course of infection. However, this proportion remains largely unspeci-256

fied in the literature [51, 52]. We explored effects of the proportion p on the optimal control strategy257

c∗. Overall, the proportion of paucisymptomatic infections have marginal effect of the optimal control258

strategy (Figure S2). The optimal control remains strong over the older population from the beginning259

of the epidemic, before progressively alleviated. The control over the younger population is weaker260

and occurs only if control cost itself is low. But, the level of control over its younger fraction in-261

creases when the proportion of paucisymptomatic infections decreases. Further, for high values of262

B∗ ∈ {103,104}, the shape of the optimal control does not change with the proportion p (Figure S2).263

Indeed, the epidemics cannot be stopped and the strategy is then to reduce mortality by protecting the264

population the most at risk (here the older population). However, with low value of B∗ = 102, different265

shape of the optimal control give the same result since there is enough resources to stop the epidemics.266

Given the leverage represented by school and university closure, we investigated the effect of267

control measures over individuals aged under 25. Our results show that NPIs targeting the younger268

fraction of the population are not very efficient in reducing cumulative mortality, unless they can be269

implemented strongly and for a relatively long period. Indeed, a control only over the younger popu-270

lation barely reduces the number of deaths by 3% compared to a doing nothing scenario (Figure 5a,c).271

Note that this result could depend on the contact matrix between ages, for which there is little date in272

France (here we used the one found by [34]). Furthermore, transmission probability could vary with273
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age, as discussed below.274

The model proposed here is an extension of the classical models based on ordinary differential
equations that tackled the issue of the optimal control of COVID-19 outbreak [30–33]. Here, the
whole population is structured by age (a) and additionally by the time since infection (i) for infec-
tious individuals, which echoes the model developed in [50] using a discrete-time formulation of the
infection. With our continuous structure, we show that the number of new cases IN(t,a) at time t in
individuals of age a is given by the renewal equation

IN(t,a) = S0(a)
∫

∞

0

∫ amax

0
K(a,a′)ω(a′, i)IN(t− i,a′)da′ di,

where K is the contact matrix and ω(a, i) is the infectiousness of individuals aged a which are infected275

since time i (Appendix A). For parameterisation purpouses, we assume that ω(a, i) is the product276

between the proportion of individuals of age a in the whole population and the infectiousness β (i) of277

individuals infected since time i. This is potentially a strong limitation since infectiousness β could278

depend on the age a thereby creating an additional heterogeneity in addition to that since the time279

since infection i. This issue can be particularly important since some studies suggest a low risk of280

transmission in the young population (e.g. [53]).281

Another potential limiation is the lack of gender structure in the model formulation. Given the282

observed male biased in mortality during the COVID-19 pandemic, it has been suggested that males283

are more at risk of developing severe infections [54]. This heterogeneiry could readily be introduced284

in the model.285

Contacts networks have an important role in transmission dynamic models. Epidemic models286

that determine which interventions can successfully prevent an outbreak may benefit from account-287

ing for social structure and mixing patterns. Contacts are highly assortative with age across a given288

country, but regional differences in the age-specific contacts is noticeable [55]. The current model289

could be modified to explore epidemiological dynamics in a spatially structured population with non-290

homogeneous mixing, e.g. by using a meta-population model [56].291

Another potential extension of the model would be to allow for the isolation of symptomatic cases292

and their contacts, following the method developed in [57] and applied recently to digital contact293

tracing [11]. Indeed, these measures strongly depend on the relative timing of infectiousness and294

the appearance of symptoms, and the formulation of the presented model seems suitable for that.295

However, this also raises technical challenges due to the double continuous structure. However, being296

able to identify age classes to follow in priority with contact tracing could be an asset in controling297

epidemic spread.298
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(c) (d)

Figure S1: Practicability of the age-structured optimal control. (a)-(b) Step optimal controls with
a 3-weeks update over the older and younger populations. The corresponding optimal is given by
Figure 4b. (c)-(d) Cumulative deaths per age at final time T = 365 days.
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Relative cost of the strategy B∗ = 102

p = 0 p = 0.2 p = 0.5

Relative cost of the strategy B∗ = 103
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Relative cost of the strategy B∗ = 104

p = 0 p = 0.2 p = 0.5

Figure S2: The effect of paucisymptomatic infections, through their proportion p, on the optimal
control c∗.
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A The basic reproduction number435

Here we compute the basic reproduction number R0 of the model (3)-(5). First let us set for i≥ 0 and
a ∈ [0,amax] the following functions

πs(a, i) = exp
(
−iµnat(a)−

∫ i

0
[γdir(a)1[isympt ,ismax]

(σ)+hs(a,σ)]dσ

)
,

πm(a, i) = exp
(
−iµnat(a)−

∫ i

0
hm(a,σ)dσ

)
,

πp(a, i) = exp
(
−iµnat(a)−

∫ i

0
hp(a,σ)dσ

)
,

that describe the survival probability of infected individuals (in the respective compartment), with age436

a, from their infection until the time since infection i, in case of no hospitalisation (i.e. H ≡ 0). We437

get the following Volterra formulation of the linearized system of (3)-(5):438

Is(t,a, i) =

Is,0(a, i− t) πs(a,i)
πs(a,i−t) , for t ∈ [0, i),

(1− p)q(a)λ0(t− i,a)S0(a)πs(a, i), for t ≥ i,
(A.1)

439

Im(t,a, i) =

Im,0(a, i− t) πm(a,i)
πm(a,i−t) , for t ∈ [0, i),

(1− p)(1−q(a))λ0(t− i,a)S0(a)πm(a, i), for t ≥ i
(A.2)

and440

Ip(t,a, i) =

IA,0(a, i− t) πp(a,i)
πp(a,i−t) , for t ∈ [0, i),

pλ0(t− i,a)S0(a)πp(a, i), for t ≥ i
(A.3)

where λ0 = λ (·, ·,0) is defined by441

λ0(t,a) =
∫ amax

0
K(a,a′)

∫
∞

0

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
di da′,

(A.4)
where βk, k ∈ {s,m, p} are defined in Section 3.2. Let IN(t,a) = λ0(t,a)S0(a) be the density of newly
infected of age a at time t, with c ≡ 0. Then (A.1)-(A.2)-(A.3) can be rewritten as the following
Volterra formulation:

IN(t,a) = S0(a)
∫ t

0

∫ amax

0
K(a,a′)ω(a′, i)IN(t− i,a′)da′ di+ f (t,a),

where

ω(a′, i) = βs(a′, i)(1− p)q(a′)πs(a′, i)+βm(a′, i)(1− p)(1−q(a′))πm(a′, i)+βp(a′, i)pπp(a′, i)

and f (t,a) is the density of new infections produced by the initial population. Therefore, the basic
reproduction number R0 is the spectral radius, denoted by r(U), of the next generation operator U
defined on L1

+(0,amax) by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax)
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As explained in Section 3.2, it is estimated in [11] that each average infectiousness βk (k ∈ {s,m, p})442

takes the form of a Weibull distribution W (3,5.65) so that the mean and median are equal to 5.0443

days while the standard deviation is 1.9 days. Based on this estimation, we assume that βk(a, i) =444

αβ (i)ξk(i) where β ∼W (3,5.65) and α is a positive parameter to be determined. Consequently, it445

follows that α is given by446

α =
R0

r
(
U
) , (A.5)

where U is the operator defined by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax)

with

ω(a′, i) = β (i)
[
ξs(i)(1− p)q(a′)πs(a′, i)+ξm(i)(1− p)(1−q(a′))πm(a′, i)+ξp(i)pπp(a′, i)

]
.

We see that U can be rewritten as

Uv(a) = S0(a)
∫ amax

0
K(a,a′)Ω(a′)v(a′)da′, ∀v ∈ L1

+(0,amax) where Ω
(
a′
)
=
∫

∞

0
ω(a′, i)di.

Now, in order to compute the spectral radius r
(
U
)
, we first make the following assumptions:447

Assumption A.1 We suppose that:448

a) functions S0,K,Ω are bounded and positive almost everywhere;449

b) the function K is symmetric.450

We can note that the Assumption A.1 is satisfied when using the parameters stated in Table 1. Now,
let S be the positive self-adjoint operator defined by

S : L2(0,amax) 3 v 7−→
√

S0(·)Ω(·)
∫ amax

0
K(·,a′)

√
S0(a′)Ω(a′)v(a′)da′ ∈ L2

+(0,amax)

(by symmetry of K supposed in Assumption A.1). We can deduce the following451

Proposition A.2 The operators U and S are positive and compact, their spectra σ(U) \ {0} and
σ(S)\{0} are composed of isolated eigenvalues with finite algebraic multiplicity. Moreover, we have
σ(U) = σ(S)⊂ R+ and the following Rayleigh formula holds:

r(U) = r(S) = sup
v∈L2(0,amax)

‖v‖L2(0,amax)
=1

∫ amax

0

∫ amax

0
K(a,a′)

√
S0(a′)Ω(a′)

√
S0(a)Ω(a)v(a′)v(a)da′ da.

Proof. The compactness of both integral operators follows from the fact that amax < ∞ by assumption
(see Table 1), hence their spectra are punctual. Now we prove that σ(U) = σ(S). Let ν ∈ σ(U) be an
eigenvalue of U and φ ∈ L1(0,amax) be the associated eigenvector, i.e.

Uφ(a) = S0(a)
∫ amax

0
K(a,a′)Ω(a′)φ(a′)da′ = νφ(a), ∀a ∈ [0,amax]
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so that φ ∈ L∞(0,amax)⊂ L2(0,amax). Defining the function

ψ =
φ

√
Ω√

S0
∈ L2(0,amax)

leads to

νψ(a) =
√

S0(a)Ω(a)
∫ amax

0
K(a,a′)

√
Ω(a′)S0(a′)ψ(a′)da′ = Sψ(a), ∀a ∈ [0,amax]

i.e. ν ∈ σ(S) is an eigenvalue of S associated to the eigenvector ψ , so that σ(U) ⊂ σ(S). For the
reverse inclusion, let ν ∈ σ(S) and ψ ∈ L2(0,amax)⊂ L1(0,amax) be the associated eigenvector for S.
It follows that the function

φ =
ψ
√

S0√
Ω
∈ L1(0,amax)

is an eigenvector of U related to the eigenvalue ν ∈ σ(U), whence σ(U) = σ(S). In particular,452

both spectral radius are equal. Finally, the Rayleigh formula is classical for positive and symmetric453

operators.454

Remark A.3 Numerically, to compute r(U), we can similarly show that it is given by the spectral
radius of the following operator:

L1(0,amax) 3 v 7−→
∫ amax

0
K(·,a′)Ω(a′)S0(a′)v(a′)da′ ∈ L1(0,amax)

which can be easily computed since the age a is numerically divided into 20 classes, so that the term455

inside the integral of the latter equation is a 20×20 matrix. Finally, we obtain α from (A.5).456

B Computations of the adjoint system457

In order to deal with the necessary optimality conditions, we use some results in [46]. Next, we
detail the computations of the adjoint system (12)-(13). To this end, we first define the functions
y1,Q : [0,T ]× [0,amax]→ R and y2 : [0,T ]× [0,amax]×R+ by:

y1(t,a) =

(
S(t,a)
R(t,a)

)
y2(t,a, i) =

 Is(t,a, i)
Im(t,a, i)
Ip(t,a, i)

 , Q(t,a) =
(

H(t) E(t,a) b(t,a)
)

wherein458

gH(i,y2(t,a, i)) = Is(t,a, i)1[isympt ,∞)(i), gR(i,y2(t,a, i)) = ∑
k∈{s,m,p}

hk(a, i)Ik(t,a, i),

gλ (a, i,y1,y2) = S(t,a)
∫ amax

0
K(a,a′)

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
da′,

H(t) =
∫

∞

0

∫ amax

0
gH(i,y2(t,a, i))da di, E(t,a) =

∫
∞

0
gλ (a, i,y1(t,a, i),y2(t,a, i))di,

b(t,a) =
∫

∞

0
gR(i,y2(t,a, i))di.
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The model (5) thus rewrites as
∂ty1(t,a) = F1(a,Q(t,a),c(t,a),y1(t,a)),

(∂t +∂i)y2(t,a, i) = F2(a, i,Q(t,a),c(t,a),y2(t,a, i)),
y2(t,a,0) = Φ(a,c(t,a),E(t,a)),

with

F1(a,Q(t,a),c(t,a),y1(t,a)) =

(
−µ(a,H(t))S(t,a)− (1− c(t,a))E(t,a)

−µ(a,H(t))R(t,a)+b(t,a)

)
,

F2(a, i,Q(t,a),c(t,a),y2(t,a, i)) =

−(µ(a,H(t))+ γ(a, i,H(t))+hs(a, i))Is(t,a, i)
−(µ(a,H(t))+hm(a, i))Im(t,a, i)
−(µ(a,H(t))+hp(a, i))Ip(t,a, i)


and

Φ(a,c(t,a),Q(t,a)) =

 (1− p)q(a)(1− c(t,a))E(t,a)
(1− p)(1−q(a))(1− c(t,a))E(t,a)

p(1− c(t,a))E(t,a)

 .

We now rewrite the functional J as

J(c) =
∫ T

0

∫ amax

0

(
J1(a,c(t,a),Q(t,a),y1(t,a))+

∫
∞

0
J2(a, i,Q(t,a),y2(t,a, i))di

)
da dt

which is decomposed into

J1(a,c(t,a),Q(t,a),y1(t,a)) = µadd(a,H(t))(S(t,a)+R(t,a))+B(a)c2(t,a)

and

J2(a, i,Q(t,a),y2(t,a, i)) = γ(a, i,H(t))Is(t,a, i)+µadd(a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i)).

We denote by z1,ζk : [0,T ]× [0,amax]→ R (for k ∈ {1,2,3}) the following adjoint functions

z1(t,a) = (zS(t,a),zR(t,a)), ζ (t,a) = (ζ1(t,a),ζ2(t,a),ζ3(t,a)),

and we denote by z2 : [0,T ]× [0,amax]×R+ the following adjoint function

z2(t,a, i) = (zIs(t,a, i),zIm(t,a, i),zIp(t,a, i)),

satisfying limi→∞ z2(t,a, i) = 0 and z1(T,a) = z2(T,a, i) = 0. We get

∇y1J1(a,c(t,a),Q(t,a),y1(t,a)) =

(
µadd(a,H(t))
µadd(a,H(t))

)T

∇y2J2(a, i,Q(t,a),y2(t,a, i)) =

µadd(a,H(t))+ γ(a, i,H(t))
µadd(a,H(t))
µadd(a,H(t))


T

27

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2020. ; https://doi.org/10.1101/2020.06.23.20138099doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.23.20138099
http://creativecommons.org/licenses/by-nc/4.0/


∇y1F1(a,Q(t,a),c(t,a),y1(t,a)) =

(
−µ(a,H(t)) 0

0 −µ(a,H(t))

)
and

∇y2F2 =

−µ(a,H(t))− γ(a, i,H(t))−hs(a, i) 0 0
0 −µ(a,H(t))−hm(a, i) 0
0 0 −µ(a,H(t))−hp(a, i)

 .

Then
(z1 ·∇y1F1)(t,a) =

(
−µ(a,H(t))zS(t,a) −µ(a,H(t))zR(t,a)

)
and

(z2 ·∇y2F2)(t,a, i) =
(
−(µ + γ +hs)zIs(t,a, i) −(µ +hm)zIm(t,a, i) −(µ +hp)zIp(t,a, i)

)
.

Setting

g1(a,y1,y2) =


∫

∞

0 gH(i,y2(t,a, i))di
E(t,a)
b(t,a)

 , g2(a, i,y1,y2) =

 gH(i,y2(t,a, i))
gλ (a, i,y1(t,a, i),y2(t,a, i))

gR(i,y2(t,a, i))

 ,

we see that

∇y1g1(a,y1,y2)=

 0 0∫
∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′ di 0
0 0


and

∇y2g2(a, i,y1,y2) =

 1[isympt ,∞)(i) 0 0
S(t, ·)βs(a, i)K(·,a) S(t, ·)βm(a, i)K(·,a) S(t, ·)βp(a, i)K(·,a)

hs(a, i) hm(a, i) hp(a, i)

 .

From there, we deduce that

(ζ ·∇y1g1)(t,a)=
(

ζ2(t,a)
∫

∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′di 0
)

and

(ζ ·∇y2g2)(t,a, i)=

ζ1(t,a)1[isympt ,∞)(i)+βs(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hs(a, i)
βm(a, i)

∫ amax
0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hm(a, i)

βp(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hp(a, i)


T

.

The adjoint system is given by{
− ∂ z1

∂ t (t,a) = ∇y1J1(t,a)+(z1 ·∇y1F1)(t,a)+(ζ ·∇y1g1)(t,a)
−( ∂ z2

∂ t + ∂ z2
∂ i )(t,a, i) = ∇y2J2(t,a)+(z2 ·∇y2F2)(t,a, i)+(ζ ·∇y2g2)(t,a, i)
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which is equivalent to (12). Next, we see that

∇QΦ(t,a) =

0 (1− p)q(a)(1− c(t,a)) 0
0 (1− p)(1−q(a))(1− c(t,a)) 0
0 p(1− c(t,a)) 0


whence

(z2(·, ·,0) ·∇QΦ)(t,a) =
(

0 [1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0) 0
)
.

Further, we have
∇QJ1(t,a) =

(
∂ µ

∂H (a,H(t))(S(t,a)+R(t,a)) 0 0
)

and

∇QJ2(t,a, i) =
(

∂ µ

∂H (a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i))+
∂γ

∂H (a, i,H(t))Is(t,a, i) 0 0
)
.

We also see that ∇Qg1 ≡ 0, ∇Qg2 ≡ 0,

∇QF1(t,a) =

(
− ∂ µ

∂H (a,H(t))S(t,a) −(1− c(t,a)) 0
− ∂ µ

∂H (a,H(t))R(t,a) 0 1

)
and

∇QF2(t,a, i) =


−
(

∂ µ

∂H (a,H(t))+ ∂γ

∂H (a, i,H(t))
)

Is(t,a, i) 0 0

− ∂ µ

∂H (a,H(t))Im(t,a, i) 0 0
− ∂ µ

∂H (a,H(t))Ip(t,a, i) 0 0


whence

(z1 ·∇QF1)(t,a) =

−
∂ µ

∂H (a,H(t))S(t,a)zS(t,a)− ∂ µ

∂H (a,H(t))R(t,a)zR(t,a)
−(1− c(t,a))zS(t,a)

zR(t,a)


T

and
(z2 ·∇QF2)(t,a, i) =

(
−
(

∂ µ

∂H + ∂γ

∂H

)
IszIs−

∂ µ

∂H ImzIm−
∂ µ

∂H IpzIp 0 0
)
.

Finally, the adjoint functions ζ must satisfy the following equation:

ζ (t,a) =(z2(·, ·,0) ·∇QΦ)(t,a)+(∇QJ1(t,a))+(z1 ·∇QF1)(t,a)+(ζ ·∇Qg1)(t,a)

+
∫

∞

0
(∇QJ2(t,a, i)+(z2 ·∇QF2)(t,a, i)+(ζ ·∇Qg2)(t,a, i))di

which is equivalent to (13). Finally, the Hamiltonian is given by

H (t,a,c) = z2(t,a,0) ·Φ(t,a,c,Q)+J1(a,c,Q,y1)+
∫

∞

0
J2(a, i,Q,y2)di

which leads to

H (t,a,c) = E(t,a)[1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0)

+µadd(a,H(t))(S(t,a)+R(t,a))+B(a)c2(t,a)

+
∫

∞

0
(γ(a, i,H(t))Is(t,a, i)+µadd(a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i)))di. (B.1)
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