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Due to the COVID-19 pandemic, there is a high demand for
Susceptible-Infective-Recovered (SIR) models to adjust and
predict the number of cases in urban areas. Forecasting, how-
ever, is a difficult task, because the change in people’s behavior
reflects in a continuous change in the parameters of the model.
An important question is what we can use from one city to an-
other; if what happened in Madrid could have been applied to
New York and then, if what we have learned from this city would
be useful for São Paulo. To answer this question, we present
an analysis of the transmission rate of COVID-19 as a func-
tion of population density and population size for US counties,
cities of Brazil, German, and Portugal. Contrary to the common
hypothesis in epidemics modeling, we observe a higher disease
transmissibility for higher city’s population density/size –with
the latter showing more predicting power. We present a contact
rate scaling theory that explain the results, predicting that the
basic reproductive number R0 of epidemics scales as the loga-
rithm of the city size.
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Introduction
The epidemic of COVID-19 that started in the Chinese city
of Wuhan in December of 2019, was declared a pandemic on
March 11th, 2020 by the World Health Organization (WHO).
While in many European countries (1) the epidemic is slow-
ing down after months of restrictions, the US is still strug-
gling with the highest numbers of active cases and deaths.
Presently, however, the epicenter is in Brazil, where the epi-
demic has the potential to hit even worse than in the US.
The COVID-19 is a human contact driven disease, therefore
it is necessary to work at the municipal level (2, 3) to get pre-
cise predictions. Such an approach, in addition to providing
more accurate forecasts, it would allow us to apply the expe-
rience of one city to others. With this idea in mind, we focus
on the basic reproductive number R0, a key concept in the
mathematical description of epidemics, that measure the av-
erage number of secondary cases generated by each infected
subject.
For a better understating, we factorize the basic reproductive
number as R0 = τpC, where τ is the infectious period, C is
the per capita contact rate and p the transmission probability.
The probability of infection p 1 and the infectious period τ
are characteristic of the disease itself. Therefore, to make the

1It can be drastically attenuated or even suppressed by the use of masks,
for example.

comparison between cities, it is necessary to understand how
the contact rate is related to demographics.
In epidemiological modeling, the mass action hypothesis (4)
is generally followed: the per capita contact rate is assumed
invariant of city size. Our analysis shows, however, that
this assumption cannot explain the available COVID-19 data.
Alternatively, we propose a scaling theory that explains the
dependence between contact rate and urban size or density,
which then explain how the epidemic growth rate (i.e. R0)
depends on size or density.

Population size and Population density
Consider a city with population size N and land area A.
There are two main competing hypothesis that try to explain
how the per capita contact rate C varies with N and A:
the population size driven contact rate, where C = C(N);
and the population density driven contact rate, stating that
C = C(ρ), where ρ = N/A. While the first approach as-
sumes that the social mobility network grows in larger areas,
allowing more distant people to interact (5), the second one
assumes that the length traveled by the individuals is invari-
ant of the size of the city (6).
Intriguingly, based on data of disease transmission in the
United States, both approaches appear to be valid (6–8). The
reason for this is the quasi-linear relation between the density
and size population of the US counties, as shown in Fig. 1. In-
deed, we have found that the best fit is ρ∝Nλ, with λ≈ 1.03.
Assuming a linear relation instead, ρ = kN gives an equally
valid fit, with k = 0.00059 Km−2 (this gives a typical US
county diameter of 46.5 Km). An almost constant density
across counties, or no correlation between ρ and N , cannot
explain the data.
In addition to the US, we study the COVID-19 transmission
in cities of Portugal, Brazil and Germany. While the same
quasi-linear scaling λ = 1.03 was found for Portugal’s mu-
nicipalities, in the other two countries the population density
of cities does not correlate well with their size. The linear fit
is strong for Portugal, weak for Brazil and almost nonexistent
for Germany. Constant density also cannot explain the data
for these countries (see Figs. S1, S3 and S2 in Supplemen-
tary Information Appendix).
Since the urban size and density are not well correlated in
Brazil and Germany, we use these countries to verify which
of the approaches, size-driven or density-driven, is the valid
one. The result may be useful during the present COVID-19
pandemic and for futures ones.
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Fig. 1. Population density (ρ) vs population size (N ) for US counties, represented
by blue dots (data). The solid line is a fit to a power law, ρ∝Nλ, while the dotted
line is a fit to the ρ = kN relation, with k = 0.00059 Km−2. Both fits have equal
correlation coefficient, R = 0.86. The dashed line represents the average density.
See Materials and Methods section for data source and fit methodology.

Contact rate scaling theory
Consider N � 1 individuals –represented as nodes– dis-
tributed uniformly in a two-dimensional space with land area
A. As introduced by Noulas et al (9), we can expect an indi-
vidual i to form a link with individual j with probability

Pij = 1
ranki(j)

, (1)

where ranki(j) is the number of neighbors closer to i than
j. Assuming that the distance between these two individuals
is r, we then have

ranki(j) = ρπr2⇒ Pij = P (r) = 1
ρπr2 , (2)

with ρ=N/A as the population density. First, since 0≤ P ≤
1, we must impose a bottom cutoff radius r0 such that

P (r ≤ r0)≡ 1⇒ r0 = 1
√
πρ
.

Secondly, it is natural to assume an upper cutoff radius r1
for long distances such that P (r > r1) = 0. Then, similarly
to Pan et al (6), the mean degree of the social interaction
network is

k = 1
2

∫
dr (2πrρ)P (r) = 1

2

[
1 + 2

∫ r1

r0

dr

r

]
=

= 1
2

[
1 + ln

(
r2
1
r2
0

)]
⇒ k = 1

2 ln
(
a1ρ
)
, (3)

where a1 = eπr2
1 is the coverage area of individual mobility

and the 1/2 factor eliminates the double counting.
It is well reasonable to expect the per capita contact rate
C, and so R0, to be proportional to the mean degree k.
Therefore, following the population density driven approach,
which states that a1 is invariant, from Eq. 3 we arrive at

R0 ∝ C ∝ ln
(
a1ρ
)
. (4)

On the other hand, with the population size-driven approach,
the mobility increases with A (a1 = κA), then from Eq. 3 we
now have

R0 ∝ C ∝ ln
(
κN
)
. (5)

Results
In this Section we check on the validity of the scaling model
(Eqs. 4 and 5) in comparison to the traditional mass action
hypothesis. In the Materials and Methods section, we explain
how we estimate the basic reproductive number R0 of 1931
counties of the United States, 546 cities of Brazil, 401 cities
of Germany and, 143 municipalities of Portugal, based on the
COVID-19 related data. Finally, we give a plausible explana-
tion for the marginal deviation of data from the scaling based
on available data of mobility.

Population density driven contact rate. In Fig. 2 we
show the relation between R0 and the population density for
different counties of the United States. We see that the pro-
posed model (density driven, Eq. 4) provides a good fit, while
the null (mass action) hypothesis cannot explain the data. A
similar behaviour was found for Portugal (see Fig. S4 in Sup-
plementary Information Appendix).

Fig. 2. R0 vs the population density for different counties of the United States (see
Materials and Methods section for fit methodology).

However, this behavior seems not to be universal. In the cases
of Brazil and Germany the density driven model has almost
the same predictability that the mass action hypothesis (see
Figs. S5 and S6 in Supplementary Information Appendix).
Yet, the per capita contact rate may scale with the population
size instead of the population density as we see in the next
Subsection.

Population size driven contact rate. In Fig. 3, we show
the relation between R0 and population size for urban re-
gions of the United States, as well as for Brazil, Germany,
and Portugal. We can see that the model (Eq. 5) is the one
that provides a reasonable universal fit, while again the mass
action hypothesis fails to explain the results (see Figs. S7,
S9 and S10 in Supplementary Information Appendix for
country-separated plots).
How can we explain that the COVID-19 data for the US and
Portugal can be described by either one of the two hypothesis,
the density driven and the size driven? This apparent ambi-
guity relies in the linear relation between population size and
population density (ρ∝N ) observed in the urban centers for
these two countries (Section Population size and Population
density). However, for Brazil and Germany centers, only the
size driven approach appears to explain the scaling; thus, we
conclude that the size driven approach has a great explanatory
power than the density driven hypothesis.
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Fig. 3. R0 vs the population size for urban regions of four different countries:
the US, Brazil, Germany, and Portugal (see Materials and Methods section for fit
methodology).

Marginal deviation and mobility reduction. The disper-
sion of points above or below the average – given by Eq. 5
– corresponds to areas where the epidemic spreads faster or
slower than the average. We see in Fig. 3 that for the same
population size we have municipalities with higher or lower
spread, which besides the different procedures in reporting
data, it could be telling something about the differences in
dealing with the epidemic in different places.
Thus, we compare the marginal deviation of R0 (the differ-
ence between each empirical value and the corresponding to
the best fit, according to the theory) with the mobility reduc-
tion in each county. We estimate the mobility reduction for
each county according to the data provided by Google mo-
bility for the US –the only one of the four countries with
municipal-level data available– on the percentage variation
of time that people stay at home (see Materials and Methods
section for data source and methodology).
In Fig. 4 we present the results as an histogram, where we
can see a clear correlation between the reduced mobility and
the the marginal deviation of R0. The higher the reduced
mobility, the more negative the marginal deviation. In other
words, the less the people move, the lower the value of R0
relative to the expected one for a given city size.
More generally, the marginal deviations may evidence the
differences in social and political aspects regarding the
COVID-19 problem in different countries. In any case, our
results are a warning for large cities to act promptly, applying
policies of social distancing and orders to stay home.

R0 and population size
We have found that the size driven hypothesis, besides ex-
plaining many scaling demographic characteristic of urban
centers (6), it also makes sense of the observed data regard-
ing the COVID-19 epidemics. Moreover, after the fit of Eq. 5
for the four countries (Fig. 3), we obtain a universal scaling
relation for the COVID-19 basic reproductive number 2

R0 = 0.18ln
(
0.1N

)
= 0.42log10

(
0.1N

)
. (6)

This simple logarithmic relation between R0 and the city
size condenses both the theory and the observations regard-

2Our estimation method for R0 is valid for urban center bigger than N ≈
3000, as it requires the number of cumulative cases to be small compared to
the population size. For smaller towns, this is not always the case.

Fig. 4. Average marginal deviation ofR0 vs average mobility reduction for counties
of the United States.

ing the spread of the COVID-19 pandemic in urban cen-
ters. Despite being simple, several conclusions can be made
from it. It states that the mass action hypothesis –Anderson
and May (10) call it proportionate mixing– is not generally
valid, so the pattern of transmission depends on the city size.
Moreover, Eq. 6 tell us quantitatively how its population size
would impact a city in case of an epidemic. Indeed, it indi-
cates that a multiplicative increase in population size results
in the additive increase in the basic reproductive number.
Therefore, the mass action hypothesis (R0 independent of
N ) overestimates the epidemic impact in small cities, while
it underestimates for larger ones.
With respect to the non pharmacological measurements to
fight the epidemic, like the stay at home recommendation
or lockouts, they are normally based on city-independent ba-
sic reproductive number –implicitly following the mass ac-
tion hypothesis. According to our findings, that would make
some political actions overdone for some counties and inef-
ficient for others. A more accurate strategy, however, should
consider the present contribution scaling trend. And the same
applies to reopening strategies.
We remark that the values of R0 obtained from our analy-
sis and displayed in Fig. 3, including obviously the best fit
of Eq. 6, are all within the range of the reported values in
previous works (11–17).
In the following subsections we present three important con-
clusions that follow from the city population scaling of R0.

Time dependent scaling. At the early stages of the epi-
demic, during the exponential phase, the time evolution of
number of cases C obeys (see Materials and Methods section
for a complete theoretical analysis):

lnC(t)− lnC(t0) = R0−1
τ

(t− t0) (7)

which, using Eq. 6 for R0 and τ = 8 days (18, 19), results in:

lnC(t)− lnC(t0) = 0.023(t− t0) ln(N)−0.177(t− t0),
(8)

That is a power-law relation for the number of cases in term
of the population size: C(t)∝Nα, where the scaling factor α
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(α= 0.023t from Eq. 8) increases with time t. Figure 5 con-
firms this scaling for the US counties, while a recent empiri-
cal study shows a similar behavior for Brazilian cities (20).
This is another evidence of the mass action hypothesis fail-
ure, since within it, α= 0 would be expected. In contrast, the
exponent that increases over time provides further evidence
in favor of the model, diverging from the mass action predic-
tions as time increases.

Fig. 5. Relation between the number of confirmed cases and the population size of
the US counties, at three different ∆t days (20, 40, and 60) after the 10th confirmed
case.

Epidemic peak. The so-called peak of an epidemic denotes
the time and the value at that time when the number of ac-
tive cases, Ip, is at its maximum. Since a fraction of it
requires hospitalization, a good regional/national health re-
sources management should consider the way that number
varies with the city size. According to our findings, the plan-
ning for a proportional distribution of ICU beds would lead
to an underestimation of the necessary resources, with the
danger of overloading the city’s health system.
The fraction of active cases at the epidemic peak, Ip/N , is
related to the basic reproductive number through the relation
in Eq. 11 which, using Eq. 6, can be related to the city size, as
we display in Fig. 6(a), for the theoretical expected fraction of
active cases at the peak as a function of population size. Ev-

idently, larger cities have relatively more active cases. More
precisely, the per capita active cases grow approximately –
fitting the exact expression– with ln(0.89N). It is worth
mentioning that the theoretically predicted epidemic peak is
hardly reached, because the non-pharmacological measures
usually succeed in lowering the effective R0 before that.

Community immunity. When a certain fraction of the pop-
ulation is immune –i.e. recovered from the infection–, the
epidemic can not continue to evolve. At that point, any fur-
ther outbreak would fade away. That condition is called com-
munity immunization and it is expressed mathematically in
Eq. 12. Once more, by means of Eq. 6, we can express the
fraction of people for community immunization, C∗/N , in
terms of the city size, as shown in Fig. 6(b).
As the necessary fraction of the population increases fast with
R0 and this in turn increases with size, it ends up being an-
other epidemic quantity which scales with population size –
in a rather more complex relation, as can be seen in Fig. 6.
In a nutshell, larger cities would require more people immu-
nized to achieve the desired community immunization. This
not only affects the easing of restrictions eventually made
based on sample draw of antibody prevalence, but it would
have to be taken into account, once a vaccine is available.
The economic downside of this aspect would be eventually
counterbalanced by the city income, which scales with the
population too (6).

Fig. 6. Theoretical expected fraction of (a) active cases at the epidemic peak and
(b) people necessary for community immunity as a function of city population size .

Materials and Methods
Demographics. With municipal-level data of population
density and population size for the United Sates (21, 22),
Brazil (23, 24), Germany (25), and Portugal (26, 27), we fit a
power-law function ρ ∝ Nλ using a linear regression of the
log-transformed variables, in the form ln(ρ) = k1 +λ ln(N),
where k1 is a constant. We compare the result against the
linear function ρ∝N , ln(ρ) = k2 + ln(N), and the constant
function ρ ∝ 1, ln(ρ) = k3, where k2 and k3 are constants.
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We quantify the goodness of fit by computing the R2 for
these three models, using log-transformed variables.

Epidemic Model. To conduct our proposed analysis, which
is to check how the COVID-19 transmissibility scale with
the density/size of the urban population, we use the standard
SIR model at the municipal level. We consider a population
of size N divided in the following epidemiological compart-
ments: susceptible S, infected I , and removedR (recovered,
immunized, or dead individuals). The dynamics of these
compartments is driven by the following system of differen-
tial equations (4):

dS

dt
=− β

N
IS

dI

dt
= β

N
IS− I

τ
(9)

dR
dt

= I

τ

where β = pC is the transmission rate and τ is the infectious
period. The N factor in the denominator makes β a disease
only parameter, supposedly independent of the size or any
other characteristic of the population. Called mass action hy-
pothesis (4), it assumes that the per capita number of contacts
is independent of the population size, resulting in similar pat-
terns of transmission, whether it is a town or a large city (10).
Now, defining the cumulative number of cases C ≡ N −S,
from Eq. 9 we got

dC
dt

= β

N
I(N −C)

and
dI

dt
= β

N
I(N −C)− I

τ
.

From the two above equations we have that

dI

dC
= dI

dt

/
dC
dt

= 1− N

βτ(N −C) ⇒

⇒ I(C) = C+ N

βτ
ln
(
N −C
N − I0

)
(10)

And from there, we get for the time derivative of C

dC
dt

= β
(N −C)
N

[
C+ N

βτ
ln
(
N −C
N − I0

)]
with the initial condition I(t = 0) = C(t = 0) = I0. At the
early stages of the epidemic, when I0 < C �N , we can use
a first-order approximation for the expression above to get

dC
dt
≈
(
R0−1
τ

)
C ⇒ lnC(t) = lnI0 +

(
R0−1
τ

)
t,

where R0 = βτ is the basic reproductive number. We use it
here to estimate the value of R0 for each municipality as

R0 = 1 + τ

[
lnC(t0 + ∆t)− lnC(t0)

∆t

]
,

where t0 is the first day since the 10th confirmed case,
∆t = 30 days to avoid any possible within-month measure-
ment bias, and the infectious period is τ = 8 days (18, 19).
For that purpose, we use the municipal level time series data
of confirmed cases for the United States (28), Brazil (29),
Germany (30), and Portugal (31). As for the mobility reduc-
tion for the US counties, we measure it during the epidemic
in relation with the pre-pandemic standards. To do so, we es-
timate it with the average of residential percent change from
baseline variable of Google mobility reports (32) over the pe-
riod [t0, t0 + ∆t].

Fit methodology. As explained in Contact rate scaling the-
ory Section, we expect that R0 = k1 +k2 lnx, where x may
be the population size or the population density (see Demo-
graphics for data source) and k1 and k2 are constants. We fit
the relation using a linear regression with the log-transformed
variable x and compare the result against the constant func-
tion R0 = k3, where k3 is a constant. We quantify the good-
ness of fit by computing the R2 for the two models.

Some predictions. The peak of an epidemic is when the num-
ber of active cases I is maximum. So, in that situation, we
have

dI

dt

∣∣∣∣
p

= I

τ

(
R0S

N
−1
)∣∣∣∣
p

= 0⇒ Sp = N

R0
⇒Cp =N − N

R0
.

Inserting this result for Cp in the Eq. 10 for I(C), the fraction
of active cases during the peak is given by

Ip
N

= Cp
N

+ 1
R0

ln
(

1−Cp/N
1− I0/N

)
⇒

⇒
Ip
N

= 1− 1
R0
− 1
R0

ln(R0), (11)

since I0�N .
In the equilibrium (community immunity), the cumulative
number of cases is constant. So, the final fraction of infected
persons is given the the solution of the transcendental equa-
tion

dC
dt

∣∣∣∣
∗

= N

τ

(
1− C

∗

N

)[
R0
C∗

N
+ ln

(
N −C∗

N − I0

)]
= 0⇒

⇒R0
C∗

N
+ ln

(
1− C

∗

N

)
= 0, (12)

since I0�N .
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Supplementary Information Appendix

Fig. S1. Population density (ρ) vs population size (N ) at the municipal level for
Brazil, represented by red squares (data). The solid line is a fit to a power law,
ρ ∝Nλ, while the dotted line is a fit to a linear relation, ρ = kN , with k = 0.002
Km−2. The dashed line corresponds to the average density. See Supplementary
Materials for data source and fitting methodology.

Fig. S2. Population density (ρ) vs population size (N ) for Portuguese municipalities,
represented by green diamonds (data). The solid line is a power law fit, ρ ∝ Nλ,
while the dotted line is a fit to the ρ = kN relation with k = 0.00047 km−2. Both
fits have almost equal correlation coefficient,R= 0.81. The dashed line represents
the average density.

Fig. S3. Population density (ρ) vs population size (N ) at the municipal level for
Germany, represented by yellow stars (data). The solid line is a power law fit,
ρ∝Nλ, while the dotted line are linear fit ρ = kN , with k = 0.0017 km−2. The
dashed line corresponds to the average density.

Fig. S4. R0 vs the population density for different municipalities of Portugal.
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Fig. S5. R0 vs the population density for different cities of Brazil.

Fig. S6. Comparison between R0 and the population density for different cities of
Germany.

Fig. S7. R0 vs the population size for different counties of the United States.

Fig. S8. R0 vs the population size for different municipalities of Portugal.

Fig. S9. R0 vs the population size for different cities of Brazil.

Fig. S10. R0 vs the population size for different cities of Germany.
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