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expert level performance on certain medical skills – even surpassing humans in some instances.22–

25 Analyzing medical images constitute an important part of these skills26 because the 

development of deep learning has been strongly tied to image processing.27 Artificial intelligence 

models have been used in dermatology19,23,28–31, but, to the best of our knowledge, they have 

never been applied to cutaneous cytology or evaluating Tzanck smear findings. 

 

The aim of this study was to develop a deep neural network, called TzanckNet, for recognizing 

cells in Tzanck smear test findings of erosive-vesiculobullous diseases. It was designed to 

recognize six cell types related to diseases such as herpetic infections, pemphigus, and spongiotic 

dermatitis (Figure 1). The model was developed using a retrospective dataset and validated 

clinically using a prospective dataset. 

 

 
Figure 1. A schematic showing how the proposed TzanckNet works. TzanckNet accepts a Tzanck 

smear image as an input and outputs which cell types among six cell types are present and absent 

in the image. As an example, a Tzanck smear image from a patient with herpetic infection goes 

into the TzanckNet and the network predicts that there are acantholytic and multinucleated giant 

cells in the image, the remaining four cell types does not exist in the image. On the right-hand 

side of the figure, an example image from each cell type is presented. 
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Methods 

Datasets. For developing the TzanckNet, we used the cytology archive of Department of 

Dermatology, Başkent University Medical School, Adana Dr. Turgut Noyan Application and 

Research Center. This study was approved by Başkent University Institutional Review Board 

(Project no: KA19/401). There were 2260 Tzanck smear images from erosive-vesiculobullous 

diseases (pemphigus, herpetic infection, impetigo, Hailey-Hailey disease, contact dermatitis, 

vesiculobullous dermatophytic infection) collected between December 2006 – December 2019. 

This dataset is called the development dataset. It was used to train and fine tune the model. 

Afterwards, the finalized model was evaluated using a separate dataset that was collected during 

January 2020 in the same clinic. It contained 359 images from patients that were not in the 

development dataset. This is called the validation dataset. The images in this dataset were 

obtained from 15 patients (9 females, 6 males) with ages ranging from 2 to 68 years (34 years on 

average). 

 

Dataset preparation. Cytological specimens were stained with May-Grünwald-Giemsa (Bio-

Optica), examined microscopically and photographed with a digital camera. Cytological photos 

taken at x1000 magnification. Two dermatologists (M.D. and A.H.E.) prepared the dataset with 

two different microscopes and with two different digital cameras. There were no missing data in 

the datasets. Images with artifacts (overlapping cells, scratches etc.) were not removed from the 

dataset. Only images that were blurry at a level that would make them useless in a clinical setting 

were discarded and the samples were imaged again. Images were labeled, de-identified and given 

to the data scientist (M.A.N.). 

 

Reference standard. Images were labeled by two dermatologists (M.D. and A.H.E.). M.D. has 13 

years and A.H.E. has 2 years of previous cutaneous cytology experience. Labels were decided by 

adjudication32 i.e. disagreements were resolved through discussion. The image was labeled 

positively for a cell only if that cell was entirely present in the image. 
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Machine learning model development. A deep learning library, fastai33, was used to develop the 

TzanckNet. It is a convolutional neural network (ResNet-50), pretrained on ImageNet. Then, the 

final classification layer was replaced with six output nodes and retrained. Six output nodes in the 

final layer correspond to the six cell types we chose our model to recognize: acantholytic cells, 

eosinophils, hypha, multinucleated giant cells, normal keratinocytes and tadpole cells (Figure 1). 

An image can contain any combination of these cells; therefore, TzanckNet was designed such 

that it can output any number/combination of cells for one input image. Each output node, 

outputs a value between 0 and 1, corresponding to the probability of that cell existing in the input 

image. Depending on the discrimination threshold this probability is converted to 1 or 0 indicating 

whether the cell type exists in the image or not. For this study, the discrimination threshold was 

kept constant as 0.5, except for plotting the receiver operating characteristic curve. The 

development dataset was used at this stage, for training and tuning the model. 

 

Statistical analysis. Discrimination and calibration performance were used to assess the 

TzanckNet. The following metrics were used for discrimination: accuracy, sensitivity, specificity, 

positive predictive value, negative predictive value and F1 score with a discrimination threshold 

of 0.5. Additionally, receiver operating characteristic curve (ROC curve) was plotted to evaluate 

the model at different discrimination threshold values. Area under this curve (AUC) was 

calculated and reported as well. Calibration curve was used to evaluate how well predicted 

probabilities approximated the actual event probabilities. The validation dataset was used at this 

stage for evaluating the model. Finally, TzanckNet predictions on selected images were 

demonstrated. 

 

Results 

Using a convolution neural network, we created a machine learning model called TzanckNet for 

recognizing six cell types in a Tzanck Smear image. An image can contain multiple cell types, for 

this reason we designed the model such that it can output more than one cell type. Given one 

input image, the model outputs six probabilities, corresponding to the predicted probabilities of 

the existence of six cell types. We fixed a discrimination threshold of 0.5 such that if the predicted 
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probability for any cell type was above this threshold, the model predicted that this cell type 

existed in the image. These predictions were compared to the reference standard for evaluating 

the model performance. 

 

The TzanckNet, trained and tuned on the development set, was prospectively validated using 359 

images collected in a real-world setting. For each image it made six predictions hence it made 

2154 predictions in total. The overall accuracy of the TzanckNet on this dataset was 94.3 % (95% 

CI 93.4 to 95.3), the sensitivity was 83.7 % (95% CI 80.3 to 87.0) and the specificity was 97.3 % 

(95% CI 96.5 to 98.1). Results of the other discrimination metrics and performance for each cell 

are given in Table 1. 

 

Table 1. Discrimination metrics of the TzanckNet on the validation dataset that contains 359 

Tzanck smear findings. 

 Accuracy Sensitivity Specificity PPV a NPV b AUC c F1 score 

Acantholytic 

cell 

315/359 

(87.7 %) 

118/139 

(84.9 %) 

197/220 

(89.5 %) 

118/141 

(83.7 %) 

197/218 

(90.4 %) 
0.954 84.3 % 

Eosinophil 
324/359 

(90.3 %) 

24/59 

(40.7 %) 

300/300 

(100 %) 

24/24 

(100 %) 

300/335 

(89.6 %) 
0.918 57.8 % 

Hypha 
352/359 

(98.1 %) 

39/39 

(100 %) 

313/320 

(97.8 %) 

39/46 

(84.8 %) 

313/313 

(100.0 %) 
0.999 91.8 % 

Multinucleated 

giant cell 

353/359 

(98.3 %) 

109/114 

(95.6 %) 

244/245 

(99.6 %) 

109/110 

(99.1 %) 

244/249 

(98.0 %) 
0.998 97.3 % 

Normal 

keratinocyte 

359/359 

(100 %) 

47/47 

(100 %) 

312/312 

(100 %) 

47/47 

(100 %) 

312/312 

(100 %) 
1 100 % 

Tadpole cell 
329/359 

(91.6 %) 

52/67 

(77.6 %) 

277/292 

(94.9 %) 

52/67 

(77.6 %) 

277/292 

(94.9 %) 
0.959 77.6 % 

Overall 
2032/2154 

(94.3 %) 

389/465 

(83.7 %) 

1643/1689 

(97.3 %) 

389/435 

(89.4 %) 

1643/1719 

(95.6 %) 
0.974 86.4 % 

 a PPV: Positive predictive value b NPV: Negative predictive value c AUC: Area under the receiver operating characteristic curve. 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.20137570doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137570


 7 

In order to visualize model performance across different discrimination thresholds, overall 

receiver operating characteristic curve of the network is given in Figure 2a. The area under this 

curve (AUC) was 0.974. For assessing the performance of the predicted probabilities, calibration 

curve is given in Figure 2b. 

 

 
Figure 2. (a) Receiver operating characteristic (ROC) and (b) calibration curves of the TzanckNet 

on the validation set. 

 

TzanckNet performance on selected Tzanck smear findings are given in Figure 3. Figure 3a 

contains a multinucleated giant cell (arrow). At first sight during labeling, it seemed like the cell 

had one circular nucleus and was hence labeled as an acantholytic cell. Upon further examination, 

it was realized that the cell actually had three nuclei instead of one and the label was changed to 

a multinucleated giant cell. The TzanckNet recognized that there was as a multinucleated giant 

cell, but it also gave a 44.6 % probability for the existence of an acantholytic cell. Two eosinophils 

can be seen in Figure 3b (arrows), however, TzanckNet didn’t recognize them. In Figure 3c, only 

some part of an acantholytic cell (arrow) is visible inside the image therefore the image was 

labelled as having no acantholytic cell in the image. TzanckNet predicted that there was an 

acantholytic cell, but it was not confident (51.1 % predicted probability). Figure 3d contains an 
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atypical acantholytic cell (arrow). It is atypical because the perinuclear halo is not evident and in 

some parts cytoplasm is not discernible. Therefore, the image was labeled as not having an 

acantholytic cell. The TzanckNet, however, detected that there is an acantholytic cell in this 

image, and it was 86.3 % confident. 

 

 

Figure 3. TzanckNet predictions and the corresponding reference standards for four selected 

images. For each cell type and image, TzanckNet predicts the probability of that cell type being 

present in the image. Probabilities are then converted to decisions of absence (0) or presence (1) 

of that cell, using a discrimination threshold of 0.5. Decisions matching with the reference 

standards are marked with green, and with red otherwise. The red arrows indicate the cells that 

are related to the false predictions. The green arrow indicates a multinucleated giant cell. 
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Discussion 

Tzanck smear test is an inexpensive test that can provide rapid diagnosis of many dermatological 

diseases. Interest in Tzanck smear test has increased in recent years. Nevertheless, in most clinics, 

this simple test is either not performed or is only used to diagnose a few diseases, mainly due to 

lack of experience. In a dermatology clinic where 75 patients for whom no diagnosis could be 

established via face-to-face clinical examinations and cytological evaluations, telemedicine was 

used to overcome this issue.34 Although this is a reasonable solution, the necessary expertise is 

still scarce, scheduling is necessary, and one can only examine a limited number of images during 

a session. In this work we demonstrated that TzanckNet can identify six cell types in Tzanck smear 

findings. It can analyze hundreds of images in a minute with high accuracy. 

 

The overall performance of the TzanckNet shows that deep learning has the potential to aid 

dermatologists for analyzing Tzanck smear findings. It was able to recognize cells with high 

accuracy. Moreover, the calibration performance shows that the predicted probabilities can also 

help with the interpretation of images. For example, if a cell type exists with 99 % estimated 

probability the network is almost certain that this cell is present in the image whereas if the 

estimated probability is 70 % the network tends to predict that this cell is present but not 

confidently. If the network is not confident about its predictions, additional images can be taken. 

 

Examining individual predictions can provide a better understanding of the model’s strengths and 

limitations hence indicating ways to improve it furthermore. For example, TzanckNet was able to 

recognize correctly a multinucleated cell that looks similar to an acantholytic cell (Figure 3a). 

Looking at Table 1, low sensitivity on eosinophils draws attention. Specificity being 100 % 

indicates that all of the errors for eosinophils were false negatives, there were no false positives. 

Individual examination of the images that resulted in false negatives revealed that they had less 

than five eosinophils on average whereas the examination of true positives revealed that they 

had more than ten eosinophils on average. One of the images that resulted in a false negative 

eosinophil can be seen in Figure 3b. Indeed, it contains only two eosinophils (arrows). This 

suggests that for TzanckNet to recognize eosinophils, they should be abundant in the image. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.20137570doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137570


 10 

Figure 3c and 3d indicates model performance may not be ideal for cells that are partially in the 

image or atypical cells. 

 

The most common use of Tzanck smear test is the diagnosis of herpetic infection.7,35 Herpetic 

infections may be primary or develop on other dermatoses. Early diagnosis of herpetic infections 

is very important in terms of early treatment and prevention of the spread of the disease. When 

Tzanck smear is not performed, patients receive unnecessary treatment or more complex 

diagnostic methods such as polymerase chain reaction or histopathological examinations are 

requested.2 Tzanck smear test is cheaper and faster than both of these methods.4 The 

characteristic finding of herpetic infection in the Tzanck smear test is acantholytic cells with 

multinuclear giant cells.2 Another disease that is related to these cells is pemphigus. It is a rare 

and severe autoimmune disease that can cause mortality. Tzanck smear test is not only important 

in early diagnosis of the disease but also in the diagnosis of recurrent lesions. A definitive 

diagnosis of pemphigus requires histopathological examination and immunofluorescence test. 

However, it is not possible to take a biopsy each time for recurrent lesions. Herpetic infection and 

candidiasis should be excluded ruled out especially in newly developed lesions resistant to 

corticosteroid treatment in oral mucosa. If this test is not performed, patients will receive 

unnecessary steroid treatment, which may lead to sepsis.36  In pemphigus patients, unlike 

herpetic infections, acantholytic cells without multinuclear giant cells are observed in cytological 

examination.2,9 In this study, TzanckNet showed that it was able to recognize acantholytic and 

multinuclear giant cells demonstrating its diagnostic potential for suspected herpetic infection 

and pemphigus. 

 

A few tadpole cells are observed in all vesiculobullous diseases. However, numerous tadpole cells 

are characteristic cytologic findings of spongiotic dermatitis37 and eczema. Tzanck smear is used 

for two purposes in eczema patients. The first is to distinguish eczema from other acantholytic 

diseases and the second is to detect bacterial, fungal and viral infections. Tzanck smear test 

performed for both purposes prevent unnecessary treatment. If the test is not done, infections 

can spread easily with steroid treatments used for eczema. Accuracy of the model on tadpole 
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cells was 91.6 %, however it should be noted that the specificity was high, but sensitivity was low 

suggesting that the model tends to give false negatives. 

 

Cutaneous eosinophilic infiltration may develop due to various causes such as infectious, 

inflammatory and neoplastic diseases. Histopathology is often used in the differentiation of these 

diseases. However, cytological examination has been used in only a few studies focused on the 

utility of cytology in some eosinophilic diseases. Besides detecting eosinophils, cytology can also 

show the various infectious etiologic agents and distinguish some inflammatory diseases. If 

eosinophils are present, bacterial and fungal structures should be investigated. The performance 

of TzanckNet on eosinophils and hypha suggests that the network can also be utilized as a decision 

support tool for diagnosing aforementioned diseases. 

 

The overall performance of the TzanckNet demonstrates its strong diagnostic potential. We 

would like to emphasize that we propose this model as a clinical decision support system to 

improve physician accuracy and efficiency in the clinical workflow, not as a replacement or a tool 

that can directly output a diagnosis. It has been shown that human-machine combination works 

better than either alone.38–40 Additionally, TzanckNet can be used to train dermatologists on 

Tzanck smear test. 

 

Limitations. Like all methods/models, explicitly reporting known limitations of TzanckNet is 

crucial for clinicians and researchers who want to use and improve it. The model was trained using 

Tzanck smear findings of patients from Turkey, stained with May-Grünwald-Giemsa and taken 

with x1000 magnification. The performance of the model on other populations, sample 

preparation procedures and imaging systems remains unknown at this point. Model performance 

on cells that are atypical or that overlap or appear partially in the image may not be ideal. Finally, 

yet importantly, the model can recognize which cell types exist in an image, but it cannot localize 

the cells. Localizing the cells has many advantages such as being able to count the cells and being 

able to say precisely which cells in the image are recognized and what their types are. Two major 

improvements are needed to realize the full potential of the TzanckNet: the first is to retrain and 
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validate the model with other populations, stains, and magnifications for better generalization, 

and the second is to add object detection to the model for localizing the cells. 

 

Nevertheless, this study showed that TzanckNet can analyze the cytological findings of erosive-

vesiculobullous diseases accurately. The model can be extended for analyzing granulomatous and 

tumoral diseases. 

 

Conclusions 

Tzanck smear test is a valuable but underappreciated diagnostic tool. This work introduced 

TzanckNet, a machine learning model that can analyze Tzanck smear findings with high accuracy. 

It can be used as a clinical decision support system as well as a training tool for new physicians. It 

has the potential to spread the use of Tzanck smear test, decrease the number of biopsies, 

prevent unnecessarily long antibiotic treatments, help early diagnoses for fatal diseases, decrease 

costs, and thus improve patient well-being. 
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