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Letter text 

The prevalence of asymptomatic COVID-19 infections is largely unknown and may determine 

the course of future pandemic waves and the effectiveness of interventions. Using an 

epidemiological model fit to COVID-19 hospitalization counts from New York City, New York and 

Austin, Texas, we found that the ​undocumented​ attack rate in the first pandemic wave depends 

on the proportion of asymptomatic infections but not on the infectiousness of such individuals. 

Based on a recent report that 22.7% of New Yorkers are seropositive for SARS-CoV-2, we 

estimate that 56% (95% CI: 53-59%) of COVID-19 infections are asymptomatic. Given 

uncertainty in the case hospitalization rate, however, the asymptomatic proportion could be as 

low as 20% or as high as 80%. We find that at most 1.26% of the Austin population was infected 

by April 27, 2020 and conclude that immunity from undetected infections is unlikely to slow 

future pandemic spread in most US cities in the summer of 2020. 

 

As of June 20, 2020, the COVID-19 pandemic has caused nearly 9 million reported infections 

and over 450,000 confirmed deaths ​1​. Statistical and serological estimates suggest the true 

prevalence of the virus, SARS-CoV-2, may be anywhere from 5 to 50 times the reported case 

count ​2–6​. The failure to detect infections stems from both the limited availability of tests and 

potentially large numbers of asymptomatic or mild infections who may not have cause to seek 

testing.  

 

Asymptomatic infections are cases that do not develop clinical symptoms (e.g., fever or cough) 

but would likely test positive if given a SARS-CoV-2 nucleic acid test ​7–11​. Recent studies imply 
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that anywhere from 5% to 95% of infections are mild or asymptomatic ​7,10,12–18​ and are equivocal 

about the role of such infections in community transmission ​10,12,16,19–22​. One study estimated that 

asymptomatic infections are 67% as infectious as symptomatic infections, but reported a 

confidence interval ranging from 29% to 142% ​12​. Uncertainty in estimates may stem from 

demographic differences in study populations–for example, younger populations may have 

higher asymptomatic rates ​7,10​, differences in classification of mild infections ​10,21​, or variability in 

the sensitivity and specificity of diagnostic tests ​8​.  

 

Silent spread of COVID-19 has two key implications for managing future pandemic risks. First, 

asymptomatic transmission can amplify emerging clusters prior to their detection, particularly in 

younger populations ​23,24​. This poses a particular risk as schools and universities come back to 

campus in the fall of 2020. Second, high levels of undocumented cases may imply that cities are 

closer to achieving herd immunity than suggested by confirmed case counts ​25–27​.  

 

To provide clarity on both of these issues–the extent of silent spread and implications for herd 

immunity–we fit a stochastic Susceptible-Exposed-Symptomatic/Asymptomatic-Recovered 

compartmental model to COVID-19 hospitalization data from Austin, Texas and New York City 

through April 27, 2020. We varied three key inputs–the asymptomatic proportion (from 0% to 

99%), the relative infectiousness of asymptomatic infections (from 29% to 142%), and the 

symptomatic infection hospitalization rate (from 4.43% to 9.05% in Austin and 3.05% to 10.5% 

in NYC)–to assess the role and implications of asymptomatic SARS-CoV-2 infections 

(Supplement).  
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Across all inputs, we achieve good fits with hospital admission data and estimate that the 

reproduction number dropped dramatically between early March and April 27, by roughly 

98-100% in NYC and 80-93% in Austin (Figure 1A, Figure S1). When we average the ​R​t​ values 

from the initial epidemic period up to the first hospitalization date, we find ​R​t​ values of 4.85 (95% 

CI: 2.04-12.0) for NYC and 5.87 (95% CI: 3.36-10.7) for Austin. However, these estimates 

depend on the case hospitalization rate, proportions of infections that are asymptomatic, and 

only slightly on the infectiousness of asymptomatic infections (Figure S2-S4).  

 

To triangulate the asymptomatic proportion, we consider a recent serology-based estimate that 

22.7% (95% CI: 21.5-24.0%) of the NYC population was infected as of April 28, 2020 ​28​. 

Assuming that 5.1% of symptomatic infections in NYC were hospitalized ​29​, we estimate the 

asymptomatic proportion to be 56% (53-59%) (Figure 1B). However, the range of plausible 

values widens to 20%-80% when we account for the uncertainty in the symptomatic 

hospitalization rate (Figure S6).  

 

Assuming asymptomatic COVID-19 infections are fully immunizing ​30,31​, previous studies 

suggest that at least 60% of the population will need to be infected to reach herd immunity–the 

point where enough people have been immunized that the pandemic stops spreading ​32​. Our 

initial estimates for early transmission rates in New York City and Austin suggest a higher 

potential value of 82% ( ), but we use 60% as a conservative estimate. The key question is 

whether asymptomatic infections have already begun to close the gap between the small 

numbers of reported cases and the herd immunity threshold. In Austin, the answer is clearly ​no​. 

Our estimates suggest it’s only possible in our most extreme scenario where 99% of infections 

are asymptomatic and the symptomatic hospitalization rate is 2.6% (Figure S5). Based on the 
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asymptomatic proportion derived from the NYC serology data, we estimate that 0.94% (95% CI: 

0.72%-1.26%) of the Austin population was infected by April 27, 2020. These estimates are 

consistent across symptomatic hospitalization rates and imply a 9.7% (95% CI: 7.2-12.3%) 

infection detection rate in Austin. Interestingly, estimates of current immunity levels do not 

depend on the relative infectiousness of asymptomatic infections (Figure S6). 

 

The proportion of SARS-CoV-2 infections that are asymptomatic remains uncertain, but we 

have narrowed the plausible range of values from 5-95% ​7,10,12–16​ to 20-80%, with a most likely 

value of 56%. Moreover, our analysis provides four clear insights regarding the future spread of 

COVID-19 in US cities. First, in communities that slowed spread early and reported relatively 

small initial pandemic waves, like Austin, the vast majority of people remain susceptible to 

infection. If social distancing and other individual precautionary measures are fully relaxed, we 

would expect the reproduction number of the virus to rebound toward initial levels. Thus, such 

cities remain highly vulnerable to rapid transmission and hospital surges. Second, as case 

counts climb, the asymptomatic rate has an increasing impact on the fate of the epidemic. If we 

take our most likely estimate that 56% of infections are asymptomatic, then we expect cities to 

reach herd immunity after roughly 26.4% of the population have had symptomatic infections. 

Third, while estimates for total infections in Austin our insensitive to symptomatic hospitalization 

rate, this key parameter can modulate our estimates of the asymptomatic rate. Our estimates 

will become more precise as more more comprehensive and retrospective analyses of 

symptomatic infections become available.  Finally, our estimates for total infections to date are 

remarkably insensitive to what we assume about the infectiousness of asymptomatic infections. 

However, understanding the role of asymptomatic infections in the transmission cycle will be 

critical to developing safe and sustainable reopening policies.  
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Figure 1: ​ Projected COVID-19 hospitalizations and infections in Austin, TX and New York City, 

NY (NYC) based on hospitalization admissions through April 27, 2020. (A) Observed hospital 

admissions (points) versus estimated hospital admissions (lines) based on data-driven 

stochastic SEIR compartmental models of COVID-19 transmission in Austin (top) and NYC 

(bottom). The colored lines and shading indicate mean estimates and 95% prediction intervals 

assuming three different asymptomatic proportions ​33–35​. Corresponding estimates for the 

reproduction number (​R​t​) and cumulative infections are provided Figure S1. (B) Proportion of 

population infected by SARS-CoV-2 in Austin (top) and NYC (bottom) through April 27, 2020, 

stratified by symptomatic (dark slate) versus asymptomatic (grey). Simulations assume a 

symptomatic hospitalization rate of 4.43% for Austin and 5.13% for NYC, as estimated in the 

supplemental information ​29​. Across all asymptomatic rates, Austin is expected to have an 

exceedingly low proportion infected. Horizontal dashed lines indicate the approximate herd 
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immunity threshold above which the pandemic is expected to subside ​32​. In NYC, an 

asymptomatic rate above 83% might imply that the city may be close to achieving herd 

immunity. The horizontal blue bar indicates a serology-based estimate for the cumulative 

incidence in NYC by April 29th (21.5%-24%) ​28​. The horizontal black crossbar indicates where 

this estimate intersects with our projections (top of the gray curve) and suggests an 

asymptomatic rate in NYC of 56% (53%-59%) as described in the supplemental information.  
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Supplemental Information 

COVID-19 stochastic transmission model 

We model the transmission dynamics of COVID-19 using a stochastic SEIR compartmental 

model that explicitly accounts for symptomatic and asymptomatic infectious compartments, 

hospitalizations, and deaths. The model is defined by the following set of equations. 
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Where , , and with parameters as 

defined in the parameter table (Table S1) and states as defined in the state table (Table S2). 
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Table S1 ​: Model parameter definitions and estimates 

Parameter Definition Estimate Citation 

 Daily transmission rate Estimated from data  

 Standard deviation controlling the 
transmission rate AR(1) process on 
a log scale 

Estimated from data  

 Epidemic start date Fixed at estimated value: 
Austin = February 18, 2020 
NYC = January 22, 2020 

 

 Duration of the simulation in days 
(April 27, 2020 - ) 

Austin = 72 
NYC = 98 

 

 Relative infectiousness of 
asymptomatic individuals compared 
with symptomatic individuals. 

(0.29, 0.67, 1.42) 12 

 Proportion of cases that are 
symptomatic 

(0.01, 0.02, ..., 0.99, 1.0)  

 Rate of becoming infectious 
following exposure to COVID-19  

36 

 Recovery rate while infectious 
 

36 

 Proportion of symptomatic cases 
that require hospitalization 
normalized to city demographic data 

 Austin = 2.64%, 4.43%, 9.05% 
NYC = 3.05%, 5.13%, 10.5% 

29,37 

 Rate of hospitalization of 
symptomatic infections   

38 

 Proportion of hospitalizations that 
die 

Austin = 0.154 
NYC = 0.21 

39,40 

 Rate of leaving hospital 
Austin =  

NYC =  

39,40 

 Effective reproduction number at 
time   
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Table S2 ​: Model state definitions and initial conditions 

State Definition Initial value 

 Individuals susceptible to COVID-19 Austin = 2,168,316 
NYC = 8,398,747 

 Individuals exposed to COVID-19 but not 
currently infectious 

Austin = 0 
NYC = 0 

 Infectious individuals who are asymptomatic Austin = 0 
NYC = 0 

 Infectious individuals who are symptomatic Austin = 1 
NYC = 1 

 Hospitalized individuals Austin = 0 
NYC = 0 

 Recovered individuals Austin = 0  
NYC = 0 

 Individuals who have died Austin = 0 
NYC = 0 

 

Calculating the symptomatic hospitalization rate 

We used estimates of the expected hospitalization rate by age for infected cases from early 

data from China as a proxy for the estimated symptomatic infection hospitalization rate ​29​. Using 

the age distribution from Austin and NYC (Table S3), we calculated the expected symptomatic 

hospitalization rate for each city by multiplying the estimated hospitalization rate for each age 

group by the fraction of the population in the age group and taking the sum of all age groups. 

Population distribution in the cities was estimated using 2015 census data as made accessible 

through the tidycensus package in R ​41,42​.  
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Table S3: Data for estimating the symptomatic hospitalization rate 

Age group Hospitalization rate (95% CI) ​29 Austin population NYC population 

0-9 0% (0-0%) 13.2% 12.2% 

10-19 0.0408% (0.0243-0.0832%) 13.2% 10.9% 

20-29 1.04% (0.622-2.13%) 15.8% 16.1% 

30-39 3.43% (2.04-7%) 16.7% 15.7% 

40-49 4.25% (2.53-8.68%) 14.2% 12.9% 

50-59 8.16% (4.86-16.7%) 11.7% 12.6% 

60-69 11.8% (7.01-24%) 8.67% 10.1% 

70-79 16.6% (9.87-33.8%) 4.33% 5.82% 

80+ 18.4% (11-37.6%) 2.11% 3.71% 

  

Data for fitting 

We obtained hospitalization data through personal communication from the City of Austin, which 

included confirmed daily COVID-19 admits and discharges from the hospitals in the MSA, and 

included data from Bastrop, Caldwell, Hays, Travis, Williamson counties in aggregate. NYC data 

were compiled by the Department of Health and Mental Hygiene (DOHMH) Incident Command 

System for COVID-19 Response (Surveillance and Epidemiology Branch in collaboration with 

Public Information Office Branch) and were obtained through the public repository from the NYC 
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Department of health ​43​. The NYC data analyzed included daily hospital admit numbers for the 

city beginning on March 3rd.  

Epidemic start date 

We could not estimate the epidemic start date directly using our model, because the 

transmission rate flexibility gave rise to similarly good fits within a wide-range of potential values 

for . We therefore conducted an independent estimation procedure to obtain reasonable 

epidemic start dates for both Austin and NYC. For each city we first obtained the number of 

hospital admits on the first day of data (Austin = 1, NYC = 6). We then used our best guess 

parameters for each city as described in Table S1 and chose  as it produced 3 day 

doubling rate in cumulative cases and gave  which are consistent with observations 

across many locations for the early outbreak dynamics ​44​. We ran 1,000 stochastic simulations 

with these initial conditions, and identified the wait time for which the simulation first reached the 

number of admits in the first day of data for each city (1 admit for Austin and 6 admits for NYC). 

We estimated the start time from the resulting distribution of wait times for Austin as February 

17, 2020 (IQR = February 11 - February 23) and for NYC as January 21, 2020 (IQR = January 

12 - February 2).  

Model fitting procedure 

We carried out two slightly different estimation procedures for NYC and Austin due to the 

differences in available data. For both cities we varied and fixed the symptomatic proportion ( ), 

the relative infectiousness of asymptomatic individuals ( ), and the symptomatic hospitalization 

rate ( ). Ranges for these parameters were chosen based on literature estimates (Table S1).  
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Austin likelihood 

We obtained daily hospital admit ( ) and discharge data ( ), which included 

discharge due to both recovery and death, for the Austin MSA. In this model and for each 

combination of , , and  we estimated , , and  and fixed all parameters as 

described for Austin in Table S1. We assumed that both hospital admits and discharges were 

Poisson distributed around their predicted values from the stochastic model, and chose an 

informative, but relatively disperse prior for , to prevent the model from overfitting data 

through large transmission rate perturbations. The likelihood for the Austin model was thus: 

 

 

 

Where  and  are the predicted hospital admissions for day ,  is the duration of 

the epidemic, and  refers to the fixed parameters from Table S1. 

NYC likelihood 

We obtained daily hospital admit ( ) data for NYC. Admit data for NYC was more 

overdispersed than that from Austin, with data at the peak fluctuating 20% or more on a daily 

basis. We therefore assumed that admit data were distributed according to a negative binomial 

distribution with mean  and dispersion parameter . In this model and for each 

combination of , , and  we estimated , ,  and fixed all parameters as described for 

NYC in Table S1. Similar to Austin, we chose an informative, but relatively disperse prior for , 
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to prevent the model from overfitting data through large transmission rate perturbations. The 

likelihood for the NYC model was thus: 

 

 

 

Where  is the estimated dispersion parameter, , and  refers to the fixed 

parameters from Table S1. 

Fitting method 

For each combination of parameters that were fixed by design, we fitted the remaining free 

parameters in the model using the iterated filtering algorithm made available through the mif2 

function in the pomp package in R ​45,46​. This algorithm is a stochastic optimization procedure; it 

performs maximum likelihood estimation using a particle filter to provide a noisy estimate of the 

likelihood for a given combination of the parameters.  For each parameter combination we ran 

1,000 iterations of iterated filtering, each with 10,000 particles. We repeated this fitting process 

five times for each combination of fixed parameters. As the stochastic fitting procedure can 

sometimes stick in local maxima or impossible parameter combinations, we selected the fitted 

model with the highest likelihood out of the five independent runs as our best fit model. Then 

fixing the best fit maximum likelihood parameter estimates, we calculated smoothed posterior 

estimates for all of the states within the model through time (including  which is technically a 

state variable in our model formulation, as it changes through time according to a stochastic 

process). We calculated these smoothed posteriors as follows:  
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1. We ran 1,000 independent particle filters at the MLE, each with 10,000 particles. For 

each run, , of particle filtering, we kept track of the complete trajectory of each particle, 

as well as the filtered estimate of the likelihood, . 

2. For each of the 1,000 particle filtering runs, we randomly sampled a single complete 

particle trajectory, giving us 1,000 separate trajectories for all state variables.  

3. We resampled from these trajectories with probabilities proportional to  to give a 

distribution of state trajectories  

 

The result can be thought of as an empirical-Bayes posterior distribution: that is, a set of 1,000 

smoothed posterior draws from all state variables, conditional on the maximum likelihood 

estimates for the model’s free parameters. This smoothed posterior distribution is how we 

calculate means and credible intervals for   in addition to all other time-varying state 

variables. In general our estimates were more stable for Austin, potentially due to the high 

accuracy in the underlying data, or because we were able to fit both hospital admits and 

discharges. 

Estimating the asymptomatic rate 

For each symptomatic hospitalization rate we calculated the mean and 95% confidence interval 

by comparing our fitted model estimates with the seroprevalence estimates from NYC. For a 

given hospitalization rate, we fitted 99 models assuming 0-99% asymptomatic rates for NYC as 

described above. We then calculated the mean and 95% confidence interval for the final 

estimate of the total infected population. Our mean estimate for the asymptomatic rate was then 

the asymptomatic rate whose mean value was most similar to the NYC estimate of 22.7% 

prevalence. 95% confidence intervals were calculated as the minimum and maximum 
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asymptomatic rate whose fitted models overlapped with the seroprevalence confidence interval 

of 21.5%  to 24.0%. Point estimates and confidence intervals for each asymptomatic rate can be 

seen in Figure S5, while asymptomatic rate estimates can be seen in Figure S6.  

 

 

Figure S1: Fitted epidemic dynamics for Austin and NYC. ​ ​R​t​ estimates (top), fitted hospital 

admit estimates (middle), and estimated cumulative incidence (bottom) for Austin (left) and NYC 

(right). ​R​t​ estimates are shown for a wide-range of estimated asymptomatic proportions (colors) 

from the recent literature ​33–35​. Hospital admission data (points) are compared with posterior 

distributions from the best fit model. Cumulative infections are shown for both asymptomatic 

(solid line) and symptomatic infections (dashed line), with symptomatic infection estimates 

overlapping across the range of asymptomatic rates. 
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Figure S2: Reduction in ​R​t​ across the epidemics for Austin and NYC. ​Each panel 

corresponds with a specific city (row) and relative infectiousness of asymptomatic individuals 

(column- ). Points correspond with estimated drop in ​R​t​ between the first and last dates of 

hospitalization data for each city. Colors correspond with estimated rate of hospitalization for 

symptomatic individuals, and smoothed splines are included to identify trends. In general Austin 

estimates are slightly more stable than those from NYC, likely do to the higher quality and 

availability of data. Symptomatic hospitalization rates vary between Austin and NYC due to 

different demographic makeups and the values are estimated to be 2.64%, 4.43%, and 9.05% 

for Austin and 3.05%, 5.13%, and 10.5% for NYC for lowerbound, mean, and upperbound 

respectively. 
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Figure S3: Initial estimates for ​R​t​ across the epidemics for Austin and NYC. ​Each panel 

corresponds with a specific city (row) and relative infectiousness of asymptomatic individuals 

(column- ). Points correspond with the initial estimated ​R​t​ on the first day of hospitalization data 

for each city (NYC = March 3, 2020, Austin = March 10, 2020). Colors correspond with 

estimated rate of hospitalization for symptomatic individuals, and smoothed splines are included 

to identify trends. In general Austin estimates are slightly more stable than those from NYC, 

likely do to the higher quality and availability of data. Symptomatic hospitalization rates vary 

between Austin and NYC due to different demographic makeups and the values are estimated 

to be 2.64%, 4.43%, and 9.05% for Austin and 3.05%, 5.13%, and 10.5% for NYC for 

lowerbound, mean, and upperbound respectively. 
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Figure S4: Final estimates for ​R​t​ across the epidemics for Austin and NYC. ​Each panel 

corresponds with a specific city (row) and relative infectiousness of asymptomatic individuals 

(column- ). Points correspond with estimated final ​R​t​  on April 27, 2020 for each city. Colors 

correspond with estimated rate of hospitalization for symptomatic individuals, and smoothed 

splines are included to identify trends. In general Austin estimates are slightly more stable than 

those from NYC, likely do to the higher quality and availability of data. Symptomatic 

hospitalization rates vary between Austin and NYC due to different demographic makeups and 

the values are estimated to be 2.64%, 4.43%, and 9.05% for Austin and 3.05%, 5.13%, and 

10.5% for NYC for lowerbound, mean, and upperbound respectively. 
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Figure S5: ​ Estimated cumulative infections for Austin and NYC up to April 27, 2020 across 

asymptomatic rates and three different assumed symptomatic hospitalization rates (colors). 

Points and error bars represent the mean and 95% confidence interval for the estimated 

cumulative infections for the fitted model for Austin and NYC. Symptomatic hospitalization rates 

vary between Austin and NYC due to different demographic makeups and the values are 

estimated to be 2.64%, 4.43%, and 9.05% for Austin and 3.05%, 5.13%, and 10.5% for NYC for 

lowerbound, mean, and upperbound respectively. Estimates derived from Asymptomatic rates 

range from 0-99%. Horizontal dashed line indicates an estimate for herd immunity which is 

reached when cumulative infections are above the line, assuming fully immunizing infections 

and ​R​0​=2.5. Horizontal rectangle in NYC plot corresponds with estimated cumulative incidence 

on April 29th, 2020 ​28​. For each hospitalization rate, we estimate the asymptomatic rate that 

matches the seroprevalence data by identifying the range of asymptomatic rates whose 

confidence interval spans the confidence interval from the seroprevalence study. Inset plot 

zooms in for Austin data that spans the uncertainty in asymptomatic rates estimated from NYC 

(20-80% asymptomatic). These estimates assume asymptomatic infectiousness of 67% of that 
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of symptomatic individuals, with other assumed infectiousness values not shown but mirroring 

the ones shown here. 

 

 

Figure S6 ​: Asymptomatic rate estimate and 95% confidence interval from fitted model results 

across the mean and 95% confidence interval for symptomatic hospitalization rate. Colors 

indicate estimates made using different relative asymptomatic infectiousness estimates. 

Estimates obtained as described in the supplemental information. 
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