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Figure S6: Robustness of surveillance effectiveness to epidemiological model parameters. (A) Results
from the fully-mixed simulation with a tripled rate of external infection, i.e. 3=N per person per day. (B)
Results from the fully mixed simulation with R0 doubled, i.e. R0 = 5. (C) Results from the agent-based
simulation with R0 doubled, i.e. R0 = 5.
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Methods

Viral Loads
Viral loads were drawn from a simple viral kinetics model intended to capture (1) a variable latent
period, (2) a rapid growth phase from the lower limit of PCR detectability to a peak viral load, and
(3) a slower decay phase. These dynamics were based on the following observations.

Latent periods prior to symptoms have been estimated to be around 5 day [23]. Viral load appears
to peak prior to symptom onset [4], and peaks within 2 days of challenge in a macaque model [24,
25], though it should be noted that macaque challenge doses were high. Viral load decreases
monotonically from the time of symptom onset [4, 26, 27, 28, 29], but may be high and detectable
3 or more days before symptom onset [1, 30]. Peak viral loads are difficult to measure due to lack
of prospective sampling studies of individuals prior to exposure and infection, but viral loads have
been reported in the range of O(104) to O(109) copies per ml [8, 28, 29]. Viral loads appear to
become undetectable by PCR within 3 weeks of symptom onset [26, 29, 31], but detectability and
timing may differ depending on the degree or presence of symptoms [31, 32]. Finally, we note
that the general understanding of viral kinetics may vary depending on the mode of sampling, as
demonstrated via a comparison between sputum and swab samples [8].

To mimic growth and decay, log10 viral loads were specified by a continuous piecewise linear
“hinge” function, specified uniquely with three control points: (t0, 3), (tpeak, Vpeak),(tf , 6) (Fig-
ure S7; green squares). The first point represents the time at which an individual’s viral load first
crosses 103, with t0 ∼ unif[2.5, 3.5], measured in days since exposure. The second point represents
the peak viral load. Peak height was drawn Vpeak ∼ unif[7, 11], and peak timing was drawn with
respect to the start of the exponential growth phase, tpeak− t0 ∼ 0.2+gamma(1.8). The third point
represents the time at which an individual’s viral load crosses beneath the 106 threshold, at which
point viral loads no longer cause active cultures in laboratory experiments [], and was drawn with
respect to peak timing, tf − tpeak ∼ unif[5, 10]. In simulations, each viral load’s parameters were
drawn independently of others, and the continuous function described here was evaluated at 21
integer time points (Figure S7; black dots) representing a three week span of viral load values.

Infectiousness
Infectiousness F was assumed to be directly related to viral load V in one of three ways. In the
main text, each individual’s relative infectiousness was proportional log10 of viral load’s excess
beyond 106, i.e. F ∝ log10(V ) − 6. In the supplementary sensitivity analyses, we investigated
two opposing extremes. To capture a more extreme relationship between infectiousness and viral
load, we considered F to be directly proportional to viral load’s excess above 106, i.e. F ∝
10log10(V )−6 = V ×10−6, and to capture a more extreme relationship, but in the opposing direction,
we considered F to simply be a constant when viral load exceeded 106, i.e. F ∝ 1V >106 . We
call these three functions log-proportional, proportional, and threshold throughout the text and
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Figure S7: Example viral load (line) with stochastic control points highlighted (squares). Because sim-
ulations took place in discrete time, dots show points at which this example viral load would have been
sampled. Light grey lines show 20 alternative trajectories to illustrate the diversity of viral loads drawn from
the simple model.

supplemental materials.

Recently, He et al [4] published an analysis of infectiousness relative to symptom onset. Among
our infectiousness functions, this inferred relationship bears the greatest similarity, over time, to
the log-proportional infectiousness function, as visualized in Figs. 1 and 3. The proportional and
threshold models therefore represent one of many types of sensitivity analysis. Results for those
models can be found in Figures S3, S4, and S5.

In all simulations, the value of the proportionality constant implied by the infectiousness func-
tions above was chosen to achieve the targeted value of R0 for that simulation, and confirmed via
simulation as described below.

Disease Transmission Models

Overview
Two models were used to simulate SARS-CoV-2 dynamics, both based on a typical compartmental
framework. The first model was a fully-mixed model of N = 20, 000 individuals with all-to-all
contact structure, zero initial infections, and a constant 1/N per-person probability of becoming
infected from an external source. This model could represent, for instance, a large college campus
with high mixing, situated within a larger community with low-level disease prevalence. The
second model was an agent-based model of N = 8.4 million agents representing the population
and contact structure of New York City, as previously described [18]. Contact patterns were based
on a combination of individual-level household contacts drawn from census microdata and age-
stratified contact matrices which describe outside of household contacts. This model was initialized
with 100 initial infections and no external sources of infection.
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Both the fully-mixed and agent-based models tracked discrete individuals who were Susceptible
(S), Infected (I), Recovered (R), Isolated (Q), and Self-Isolated (SQ) at each discrete one day
timestep. Upon becoming infected (S → I), a viral load trajectory V (t) was drawn which in-
cluded a latent period, growth, and decay. Each day, an individual’s viral load trajectory was used
to determine whether their diagnostic test would be positive if administered, as well as their infec-
tiousness to susceptible individuals. Based on a schedule of testing each person every D days, if
an individual happened to be tested on a day when their viral load exceeded the limit of detection
L of the test, their positive result would cause them to isolate (I → Q), but with the possibility of
a delay in turnaround time. A fraction 1 − f of individuals self-isolate on the first day after peak
viral load, to mimic symptom-driven isolation (I → SQ), with f = 0.8 for the fully mixed model
and f = 1 for the agent based model. When an individual’s viral load dropped below 103, that
individual recovered (I,Q, SQ→ R). Details follow.

Testing, Isolation, and Sample-to-Answer Turnaround Times
All individuals were tested every D days, so that they could be moved into isolation if their viral
load exceeded the test’s limit of detection V (t) > L. Each person was deterministically tested
exactly every D days , but testing days were drawn uniformly at random such that not all indi-
viduals were tested on the same day. To account for delays in returning test results, we included
a sample-to-answer turnaround time T , meaning that an individual with a positive test on day t
would isolate on day t+ T .

Transmission, Population Structure, and Mixing Patterns: Fully-mixed model
Simulations were initialized with all individuals susceptible, S = N . Each individual was chosen
to be symptomatic independently with probability f , and each individual’s first test day (e.g. the
day of the week that their weekly test would occur) was chosen uniformly at random between 1
and D. Relative infectiousness was scaled up or down to achieve the specified R0 in the absence
of any testing policy, but inclusive of any assumed self-isolation of symptomatics.

In each timestep, those individuals who were marked for testing that day were tested, and a counter
was initialized to T , specifying the number of days until that individual received their results.
Next, individuals whose test results counters were zero were isolated, I → Q. Then, symptomatic
individuals whose viral load had declined relative to the previous day were self-isolated, I →
SQ. Next, each susceptible individual was spontaneously (externally) infected independently with
probability 1/N , S → I . Then, all infected individuals contacted all susceptible individuals, with
the probability of transmission based on that day’s viral load V (t) for each person and the particular
infectiousness function, described above, S → I .

To conclude each time step, individuals’ viral loads and test results counters were advanced, with
those whose infectious period had completely passed moved to recovery, I,Q, SQ→ R.
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Transmission, Population Structure, and Mixing Patterns: Agent-based model
The agent-based model added viral kinetics and testing policies (as described above) to an existing
model for SARS-CoV-2 transmission in New York City. A full description of the agent-based
model is available [18]; here we provide an overview of the relevant transmission dynamics.

Simulations were initialized with all individuals susceptible, except for 100 initially infected in-
dividuals, S = N − 100. As in the fully-mixed model, each individual’s test day was chosen
uniformly at random and relative infectiousness was scaled to achieve the specified R0.

In each timestep, those individuals who were marked for testing that day were tested, and a counter
was initialized to T , specifying the number of days until that individual received their results.
Next, individuals whose test results counters were zero were isolated, I → Q. There was no self-
isolation in this model (and accordingly, the model did not label individuals as symptomatic or
asymptomatic).

Then, transmission from infected individuals to susceptible individuals was simulated both within
and outside households. To model within-household transmission, each individual had a set of
other individuals comprising their household. Household structures, along with the age of each
individual, were sampled from census microdata for New York City [33]. The probability for
an infectious individual to infect each of their household members each day was determined by
scaling the relative infectiousness values to match the estimated secondary attack rate for close
household contacts previously reported in case cluster studies [34].

Outside of household transmission was simulated using age-stratified contact matrices, which de-
scribe the expected number of daily contacts between an individual in a given age group and those
in each other age group. Each infectious individual of age i drew Poisson(Mij) contacts with in-
dividuals in age group j, where M is the contact matrix. The contacted individuals were sampled
uniformly at random from age group j. We use a contact matrix for the United States estimated
by [35]. Each contact resulted in infection, S → I , with probability proportional to the relative
infectiousness of the infected individual on that day, scaled to obtain the specified value of R0.

To conclude each time step, individuals’ viral loads and test results counters were advanced, with
those whose infectious period had completely passed moved to recovery, I,Q→ R.

Calibration to achieve targeted R0 and estimation of R
As a consistency check, each simulation’s R0 was estimated as follows, to ensure that simulations
were properly calibrated to their intended values. Note that to varyR0, the proportionality constant
in the function that maps viral load to infectiousness need only be adjusted up or down. In a typical
SEIR model, this would correspond to changing the infectiousness parameter which governs the
rate at which I-to-S contacts cause new infections β.

For the fully-mixed, the value ofR0 was numerically estimated by running single-generation simu-
lations in which a 50 infected individual were placed in a population ofN−50 others. The number
of secondary infections from those initially infected was recorded and used to directly estimateR0.
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For the agent-based model, the value of R0 depends on the distribution of infected agents due to
stratification by age and household. We numerically estimate R0 by averaging over the number of
secondary infections caused by each agent who was infected in the first 15 days of the simulation
(at which point the population is still more than 99.99% susceptible).

Estimations ofR proceeded exactly as estimations ofR0 for both models, except with interventions
applied to the the viral loads and therefore the dynamics.
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