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We demonstrate that universal scaling behavior is observed in the current coron-

avirus (COVID-19) spread in various countries. We analyze the numbers of infected
people in selected eleven countries (Japan, USA, Russia, Brazil, China, Italy, Indone-
sia, Spain,South Korea, UK, and Sweden). By using the double exponential function
called the Gompertz function, fG(x) = exp(−e−x), the number of infected people is
well described as N(t) = N0fG(γ(t− t0)), where N0, γ and t0 are the final total number
of infected people, the damping rate of the infection probability and the peak time of
dN(t)/dt, respectively. The scaled data of infected people in most of the analyzed coun-
tries are found to collapse onto a common scaling function fG(x) with x = γ(t− t0) in
the range of fG(x)± 0.05. The recently proposed indicator so-called the K value, the
increasing rate of infected people in one week, is also found to show universal behavior.
The mechanism for the Gompertz function to appear is discussed from the time depen-
dence of the produced pion numbers in nucleus-nucleus collisions, which is also found
to be described by the Gompertz function.

1. Introduction

The COVID-19 pandemic is the worst disease spread in this century. As of May 20, 2020,

over 4 million people have tested positive in the world, and the number of infected people

N(t) at the time t is still increasing rapidly. In order to control the spread of infection, it is

desired to understand the diffusion mechanism of COVID-19.

Recently, a double exponential function called the Gompertz function is found to catch the

features of N(t) [1–20]. The Gompertz function appears when the infection probability per

infected people exponentially decreases as a function of time. With the Gompertz function,

the daily increase of infected people (' dN(t)/dt) shows asymmetric time-profile rather than

the symmetric one found in the prediction of the Susceptible-Infected (SI) model [21], one

of the standard models of the spread of infection. The Gompertz function was proposed by

B. Gompertz in 1825 to discuss the life contingencies [22]. It is interesting to find that the

Gompertz function also appears as the number of tumors [23] and the number of detected

bugs in a software [24], as well as particle multiplicities at high energies [25].

The exponential decrease of the infection probability is also important to deduce when the

restrictions can be relaxed. For example, Nakano and Ikeda [26] found that the total number

of infected people of COVID-19 is well characterized by the newly proposed indicator K,
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which represents the increasing rate of infected people in one week. The indicator K takes a

value between zero and unity, is not affected by the weekly schedule of the test, and is found

to decrease almost linearly as a function of time in the region 0.25 < K < 0.9 provided that

there is only a single outbreak affecting the infection. In order to understand the linearly

decreasing behavior of K, Nakano and Ikeda assumed that the infection probability decreases

exponentially as a function of time. Since the indicator K is expected to be useful to predict

the date when the restrictions can be relaxed as K(t) ' 0.05, it would be valuable to analyze

its solution, the Gompertz function, in more detail.

In this article, we analyze the number of infected people by using the Gompertz function.

We examine that N(t) in one outbreak is well described by the Gompertz function in several

countries. Then with the time shift and the scale transformation of time and N(t), the data

are found to show universal behavior; they are on one-curve described by the basic Gompertz

function, exp(−e−x). The newly proposed indicatorK [26] also shows universality. We further

discuss that the number of produced pions in nucleus-nucleus collisions is described by

the Gompertz function. This similarity may be helpful to understand the mechanism of

COVID-19 spread.

This article is organized as follows. In Sec. 2, we give a brief review of the Gompertz

function and its relevance to the disease spread. In Sec. 3, we show the comparison of the

number of infected people and the Gompertz function fitting results. We demonstrate that

the numbers of infected people in many countries show universal scaling behavior. In Sec. 4,

we show that the number of pions in nuclear collisions is well described by the Gompertz

function, and we deduce the mechanism to produce the time-dependence described by the

Gompertz function. In Sec. 5, we summarize our work.

2. Gompertz function, indicator K and scaling variables

When the infection probability k(t) is given as a function of time, the evolution equation for

the number of infected people N(t) and its solution are given as

dN(t)

dt
= k(t)N(t), N(t) = N(t0) exp

[∫ t

t0

dt′k(t′)

]
. (1)

Adopting an exponentially decreasing function as k(t), the solution is found to be

k(t) = k(t0)e−γ(t−t0), N(t) = N(t0) exp

[
k(t0)

γ

(
1− e−γ(t−t0)

)]
. (2)

By choosing the reference time t0 so that k(t0) = γ, the solution is given as

N(t) =N0 exp(e−γ(t−t0)), (3)

where N0 = N(t0) exp(k(t0)/γ) = eN(t0) is the asymptotic value of N(t), N0 =

limt→∞N(t). Here, N0 can be interpreted as “terminal velocity”, since the evolution

equation (1) has an analogy to the equation of motion of particle feeling a viscous resistance,

where its coefficient is not constant but exponentially decreasing.

The double exponential function appearing in Eq. (3) is called the Gompertz function [22],

fG(x) = exp(−e−x). (4)

By using the Gompertz function, N(t) is given as

N(t)

N0
= fG(x), x = γ(t− t0), (5)
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Fig. 1 Comparison of Gompertz fG(x) and sigmoid fS(x) functions and their derivatives,

dfG(x)/dx and dfS(x)/dx, in the linear (top) and logarithmic (bottom) scales.

where x is the scaling variable for N(t).

One of the characteristic features of the Gompertz function is the asymmetry of its deriva-

tive in the early (x < 0) and late (x > 0) stages. In Fig. 1, we show the Gompertz function

fG(x) and its derivative,

f ′G(x) =
dfG(x)

dx
= e−x exp(−e−x), (6)

as functions of x. The derivative takes the maximum at x = 0, and the asymmetry in the

negative and positive x region is clearly seen.

This asymmetry should be compared with the solution of the SI model [21], in which the

susceptible people (S(t)) are infected by the infectious people (I(t)) at the rate proportional

to the product S(t)I(t),

dS

dt
= −kSI , dI

dt
= kSI , (7)

where k is a constant. The solution is found to be

I(t) =
N0

1 + exp[−γ(t− t0)]
= N0 fS(γ(t− t0)) , (8)

where N0 = S + I is a constant, γ = N0k, and t0 is the time when half of the people are

infected, I(t0) = N0/2. The characteristic function fS(x) is called the sigmoid function,

which is also referred to as the logistic function,

fS(x) =
1

1 + e−x
=

1

2
[1 + tanh(x/2)] , f ′S(x) =

dfS(x)

dx
=

e−x

(1 + e−x)2
=

1

4 cosh2(x/2)
. (9)

Then the daily number of infected people is a symmetric function of t− t0,

dI(t)

dt
=N0γ f

′
S(γ(t− t0)) =

N0γ

4 cosh2[γ(t− t0)/2]
, (10)

where f ′S(x) = dfS(x)/dx. In Fig. 1, we also show fS(x) and dfS(x)/dx by blue curves. As

already noticed [1–20] and is discussed later, the asymmetry is clearly found in dN(t)/dt

3/18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.18.20135210doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20135210
http://creativecommons.org/licenses/by-nc-nd/4.0/


of COVID-19, so N(t) is better understood by the Gompertz function than by the sigmoid

function.

Once the solution is given, one can obtain the K value [26], increasing rate of the infected

people in a week, as

K(t) =
N(t)−N(t− w)

N(t)
= 1− exp

[
−(eγw − 1)eγ(t−t0)

]
= 1− fG(xK), (11)

where xK is the scaling variable for K(t),

xK = γ(t− t0 −∆t), (12)

∆t =w +
1

γ
log
(
1− e−γw

)
, (13)

with w = 7 days.

3. Comparison with data

3.1. Adopted dataset

Let us now examine the universal behavior given by the Gompertz function in real data.

We use the data given in Ref. [27] as of May 21, which contain the N(t) data from Dec. 31,

2019 (t = 0) till May 20 (t = 141). Throughout this article, we measure the time t in the

unit of day. In order to avoid the discontinuity coming from the definition change, we have

removed the spikes in the daily increase (dN(t)/dt) data in Japan (April 12, t = 103) and

China (February 13, t = 44), and instead the daily numbers in previous days are increased

by multiplying a common factor, which is determined to keep the total number of infected

people in the days after the spike. The number of infected people (N(t)) is obtained as the

integral of thus-smoothen dN(t)/dt. In addition, seven-day averages (±3 days) are considered

in the analysis of dN(t)/dt in order to remove the fluctuations in a week. Thus-smoothen

dN(t)/dt data are available in 3 ≤ t ≤ 138.

We have chosen the countries with a large number of infected people (the USA, Russia,

Brazil, and the UK as of May 20, 2020), the first three Asian countries where the COVID-19

spread explosively (China, South Korea, and Japan), the first two countries of spread in

Europe (Italy and Spain), a country with a unique policy (Sweden), and a country with

somewhat different dN(t)/dt profile (Indonesia).

3.2. Number of infected people and its daily increase

In the left panel of Fig. 2, we show the daily increase of the infected people dN(t)/dt given

in Ref. [27] with the smoothing mentioned above. The legends stand for the abbreviation

of the country name (internet country domain code, see Table 1). The dN(t)/dt data show

there is one big peak in each country, and the shape of the peak is asymmetric; fast rise

and slow decay. In many of the countries, there are several other peaks, which are smaller

than the dominant one but visible at least in the log-scale plot. The fitting results using the

Gompertz function are shown by dotted lines, and are found to explain the dominant peak

region of data well.
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Fig. 2 Derivative of the number of infected people dN(t)/dt (left, symbols) and the

scaling behavior (right, symbols). In the left panel, dotted lines show the fitting results

in the derivative of the Gompertz function, dN(t)/dt ' N0γf
′
G(γ(t− t0)), and open circles

show the peak points in the fitting function, (t0, N0γf
′
G(t0)). In the right right panel, solid

black curve shows the derivative of the Gompertz function f ′G(x), and the grey band shows

its region with 5 % uncertainty in γ and 20 % in N0. The orange solid (dashed) curve shows

the derivative of the sigmoid function normalized to reproduce the peak height, 4f ′S(x)/e

(4f ′S(2x)/e).

Table 1 Fitting results with the fitting ranges of t. Parameters in the line with (*) are

adopted to draw figures.

Country γ [%/day] t0 [day] N0 [103] ∆N fitting range

Japan 9.1± 0.2 104.0± 0.3 15.4± 0.3 1554± 22 85– 150 (*)

8.7± 0.3 103.8± 0.4 15.6± 0.4 0.5± 1.3 0– 150

USA 7.2± 0.1 100.3± 0.3 1202± 23 −800± 240 75– 100

5.2± 0.1 108.5± 0.4 1780± 28 0.1± 2.2 0– 150 (*)

Russia 3.7± 0.1 140.8± 0.9 819± 28 0.1± 0.3 0– 150 (*)

Brazil 1.3± 0.1 245± 15 15100± 5600 −806± 45 74– 150

1.9± 0.1 193.2± 4.3 3890± 510 −0.7± 0.6 0– 150 (*)

China 11.9± 0.2 36.4± 0.2 88.5± 1.5 52.6± 9.5 0– 50 (*)

14.1± 0.2 35.4± 0.2 78.9± 1.7 73± 19 0– 150

Italy 6.0± 0.1 89.1± 0.2 234.6± 2.0 0.0± 0.4 0– 150 (*)

Indonesia 2.7± 0.2 135.0± 3.0 42.4± 3.5 −173± 12 75– 150

3.4± 0.1 126.7± 1.2 32.8± 1.2 −0.2± 0.2 0– 150 (*)

Spain 8.1± 0.1 88.9± 0.2 231.5± 2.6 0.1± 0.4 0– 150 (*)

S.Korea 17.5± 0.4 60.4± 0.1 8.5± 0.2 0.2± 0.3 0– 75 (*)

14.1± 0.5 61.1± 0.3 9.1± 0.4 0.2± 0.7 0– 150

UK 4.8± 0.1 110.6± 0.3 310.1± 3.5 0.1± 0.4 0– 150 (*)

Sweden 3.5± 0.1 116.0± 0.8 46.3± 1.1 −36.1± 5.7 60– 150

3.7± 0.1 114.9± 0.6 44.7± 0.8 −0.0± 0.2 0– 150 (*)
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The fitting to dN(t)/dt data is carried out by using the derivative of the Gompertz function,

dN(t)

dt
=N0γ f

′
G(γ(t− t0)). (14)

In order to concentrate on the dominant peak, we first limit the time region of the fit to

tmin ≤ t ≤ tmax, which covers it. Next, the fitting time region is extended to the whole

range, 0 ≤ t ≤ 140. In the fitting procedure, we have assumed a Poisson distribution for the

daily number of newly infected people, then the uncertainty in dN(t)/dt is assumed to be√
dN(t)/dt+ ε, where ε = 0.1 is introduced to avoid zero uncertainty in the case of zero

daily number. We summarize the obtained parameters (N0, γ, t0) in Table 1, and parameters

in the line with (*) are adopted to draw the figures. When the χ2 value is smaller in the

whole range analysis and the obtained parameters in the two cases are similar, the single

outbreak assumption is supported and we show only the results in the whole range analysis.

In other cases, we in principle adopt the results giving the smaller reduced χ2. The exception

is the USA, where the reduced χ2 is larger but we adopt the whole range analysis results.

This is closely related to the multiple outbreaks, and will be discussed in Appendix A.

In the right panel of Fig. 2, we show the normalized daily numbers, (dN(t)/dt)/(N0γ),

as functions of the scaling variable, x = γ(t− t0). Most of the data points are around the

derivative of the Gompertz function and inside the gray band, which shows the region with

5% uncertainty in γ and 20% uncertainty in N0.

We also show the sigmoid function by the orange curves in the right panel of Fig. 2. It is

clear that a single sigmoid function cannot describe the behavior of the dN(t)/dt data. If we

try to fit dN(t)/dt data by the sigmoid function, we need to adopt larger γ in the negative

x region as shown by the orange dashed curve in Fig. 2, f ′S(2x), while f ′S(x) approximately

agrees with f ′G(x) in shape in the positive x region.
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Fig. 3 The number of infected people N(t) data (left) and the scaling behavior (right).

In the left panel, dotted lines show the Gompertz function fit, N0fG(γ(t− t0)), open circles

show the reflection points, (t0, N0/e), and open squares show the offset points, (toffset, Noffset).

In the right panel, the black solid curve shows the Gompertz function fG(x) and the grey

band shows the region fG(x)± 0.05. The orange solid curve shows the sigmoid function

fS(x).
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The left panel of Fig. 3 shows the number of the infected people N(t), obtained as the

integral of dN(t)/dt data after removing the spike. We also show the Gompertz function

results with the parameters (N0, γ, t0) determined from the dN(t)/dt data, and an integration

constant ∆N ,

N(t) = N0 fG(γ(t− t0)) + ∆N, (15)

where ∆N is obtained by fitting to the N(t) data. In most of the countries, the Gompertz

function with ∆N explains the data in the large N(t) region and deviations are found only

in the region with small N(t). In Japan, the fitted time range is limited to be t ≥ 85 and

earlier time data are not fitted to. Thus deviations at t < 80 are visible in the log scale,

while the value is less than 10% of the total number of infected people at t = 140.

We show the normalized N(t) as functions of the scaling variables in the right panel of

Fig. 3. We subtract ∆N from N(t). It is interesting to find that most of the world data are

on the Gompertz function fG(x). In Japan, China and South Korea, the fitted time range

is limited and deviation from the Gompertz function results are found in the earlier times

(Japan) and in later times (China and South Korea). It should be noted that the agreement

at x < 0 owes largely to the large denominator compared with the number of infected people

in the early stage. Compared with the exponentially grown number of infected people, the

number of infected people in the early stage is much smaller and the ratio is seen to be very

small. Nevertheless, it is impressive to find the agreement of the observed number of infected

people after scaling and the Gompertz function.

3.3. K value

We now proceed to discuss the K value. We choose the offset day when explosive spread

started, as shown by open squares in Fig. 3. The offset day and offset number of infected

people, (toffset, Noffset), are summarized in Table 2. With these offset parameters, the K value

is obtained as

K(t) =
N(t)−N(t− 7)

N(t)−Noffset
. (16)

Since Noffset is generally much smaller than the number of infected people after explosive

spread, the K value is not sensitive to the choice of the offset parameters as long as we

discuss the long-time behavior.

In the left panel of Fig. 4, we show the K factor as a function of time. Data of K(t) are

explained by the prediction from the scaling function, 1− fG(xK), while the fluctuations

around the predictions are large compared with the number of infected people, N(t). In the

right panel of Fig. 4, we show K values as functions of the scaling variable xK = γ(t− t0 −
∆t). Except for several countries, the scaling behavior in K is observed.

In Ref. [26], K(t) is found to show the linear dependence on time in the large K(t) region,

0.25 < K(t) < 0.9. Actually, the Gompertz function fG(x) shows the linear dependence on

time in the small |xK | region. When the scaling variable is small, the first-order Taylor

expansion would work,

K(t) = 1− exp(−e−xK ) = (1− 1

e
)− xK

e
+O(x2

K). (17)

The precision of this first order approximation is around 1% (10%) for |xK | ≤ 0.5 (|xK | ≤ 1),

where 1− fG(xK) amounts to be 0.45− 0.81 (0.28− 0.93). When K is smaller (K < 0.25),

7/18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.18.20135210doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20135210
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2 Offset parameters (toffset, Noffset) used to evaluate the K value.

Country toffset[day] Noffset

Japan 85 1193

USA 60 66

Russia 71 10

Brazil 74 98

China 18 80

Italy 53 17

Indonesia 75 96

Spain 62 136

S.Korea 50 46

UK 60 18

Sweden 60 12
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Fig. 4 K value as a function of t (left) and as a function of the scaling variable xK .

In the left panel, dotted lines show the K value from the Gompertz function fit. In the

right panel, the black solid curve shows 1− fG(xK) and the grey band shows the region

1− fG(xK)± 0.05.

e−xK should be also small and the Taylor expansion with respect to e−xK may work. Then

K damps exponentially,

K(t) = 1− exp(−e−xK ) = 1−
(
1− e−xK

)
+O

(
(e−xK )2

)
' e−xK . (18)

With the sigmoid function, while scaling behavior is observed in N(t) and dN(t)/dt, K

does not scale as a function of a single scaling variable. In Fig. 5, we compare the functions

in the K value derived from the Gompertz and sigmoid functions for N(t) as functions of

x = γ(t− t0). With the Gompertz function, the shift of the scaling variable is enough for

the K value to be described by the basic Gompertz function. In contrast, the K value from

the sigmoid function reads

K(t) =
fS(γ(t− t0))− fS(γ(t− t0 − w))

fS(γ(t− t0))
=

1− e−γw

ex−γw + 1
. (19)
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In addition to the shift in the scaling variable, the amplitude also depends on γw = 7γ.
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Fig. 5 Comparison of K values from the Gompertz and sigmoid functions in terms of

x = γ(t− t0).

3.4. Days of expected relaxing COVID-19 restrictions from the K value

When the K(t) value goes down to be around 0.05 [26], it would be possible to relax COVID-

19 restrictions such as lifting the lockdown of the city or relaxing the state of emergency.

Let us call those days as trelax. The days of relaxing the restrictions in several countries

roughly correspond to the time at K(t) = 0.05. With this condition, the number of infected

people in the current outbreak will increase by around 5% and the infection in the current

outbreak will converge. In terms of the scaling variable, this corresponds to the solution of

1− fG(xK) = 0.05 and is found to be xK = xR ' 2.97. Thus the expected day of relaxing

the restrictions can be evaluated to be around,

trelax =
xR
γ

+ t0 + ∆t(γ), (20)

provided that there will be no further outbreaks. In Table 3, we summarize the expected day

of relaxing COVID-19 restrictions trelax from the Gompertz function analyses in comparison

with the relaxed day trelaxed in several countries.

In Fig. 6, we show the expected days of relaxing the restrictions in comparison with some

of the relaxed days. The lockdown in the Wuhan city was lifted on May 10, 2020 (t = 131) in

China, the lockdown was relaxed on May 2, 2020 (t = 123) in Spain, May 4, 2020 (t = 125)

in Italy, and May 11, 2020 (t = 132) in the UK. Restrictions were relaxed in part on May 6,

2020 (t = 127) in South Korea, May 12, 2020 (t = 133) in Russia, and May 20, 2020 (t = 141)

in the USA. In Japan, the state of emergency was declared on April 7, 2020 (t = 98) and

canceled on May 25 (t = 146). The relaxed days in Italy, Spain, Japan, the UK, and the USA

are close to those expected from the Nakano-Ikeda model analyses. In China and Korea, the

relaxed days were significantly later than the expectations from the model. One can guess

that the governments tried to be on the safe side in these first two countries of COVID-19

spread.

The expected day of relaxing COVID-19 restrictions strongly depends on the value of

the damping rate of the infection probability, γ, which people and governments should try
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Table 3 Expected day of relaxing COVID-19 restrictions trelax and the relaxed day trelaxed.

Country trelax[day] trelaxed[day]

Japan 135.4+1.5
−0.7 146

USA 149.9+2.0
−0.7 141

Russia 188.3+3.7
−1.2 133

Brazil 246.9+15.2
−4.2 –

China 63.6+0.8
−0.4 131

Italy 127.8+0.9
−0.4 125

Indonesia 175.5+5.2
−1.5 –

Spain 122.2+0.7
−0.3 123

S.Korea 82.4+0.7
−0.4 127

UK 153.3+1.5
−0.5 132

Sweden 162.3+2.7
−0.8 –
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Fig. 6 Expected days of relaxing COVID-19 restrictions and the relaxed days.

to enhance. In South Korea and China, the damping rate is larger than 0.1. Then the

infection probability decreases by a factor of 1/e within 10 days. In these countries, the

test-containment processes have been performed strongly. In many of the countries under

consideration (Japan, USA, UK, Italy, and Spain), the damping rates take the value between

4− 10%/day. In these countries, many of the restaurants and shops are closed and people

are requested to stay home for one month or more. Sweden may be an interesting example.

The Swedish government does not require restaurants and shops to be closed and does not

ask people to stay home. The government asks people to be responsible for their behavior

and social distancing is encouraged. The damping rate in Sweden, γ = 3.7%/day, may be

regarded as a value representing the intrinsic nature of COVID-19.

It would be valuable to comment on the use of the effective reproduction number, Re,

which is defined as the ratio of the newly infected people in one week to that in the pre-

vious week and has the merit that it is not necessary to define the offset. For a constant

infection probability per infected people, k(t) = k0 = const. in Eq. (1), Re is found to be
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Re = exp(k0w) and we can guess k0 from Re. In contrast, when the number of infected peo-

ple is given by the Gompertz function, N(t) = N0fG(x), the effective reproduction number

Re(t) is a function of two variables, xK and γw,

Re(t) ≡
N(t)−N(t− w)

N(t− w)−N(t− 2w)
=

1− fG(xK)

fG(xK)[1− fG(xK − γw)]
, (21)

while K(t) is a function of a single scaling variable xK . Thus the universality observed in

K(t) is lost in Re(t), and it would be less easy to give a prediction of trelax from Re(t) than

from K(t). In Fig. 7, we show Re(t) from the Gompertz function at γ = 4, 8 and 16%/day.

The value of Re(t) at xK = xR depends on γ, the value of xK at Re(t) = 1 is different from

xR, xK = 0.49 (1.42) for γ = 16% (4%)/day, and apparent large values of Re(t) appear in

the early stage, xK < 0 or t < t0 + ∆t(γ).
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Fig. 7 The effective reproduction number Re as a function of the scaling variable xK .

4. Mechanism of appearance of the Gompertz function

Fast and slow rises in the early and late stages are found in many physical processes such

as the particle production in nuclear collisions. In Fig. 8, we show the number of ∆ parti-

cles (∆++,∆+,∆0 and ∆−) and π particles (π+, π0 and π−) produced in central Au+Au

collisions at the incident energy of 1 GeV/nucleon [28]. Histograms show the calculated

results by using the hadronic transport model JAM [29]. The main production mechanism

of π particles at this incident energy is the ∆ production and its decay. In the early stage

(t < 15 fm/c), nucleons are excited to resonances such as the ∆ particles in the nucleon-

nucleon collisions, NN → N∆. Produced ∆s collide with other nucleons and ∆s, some of

them produce additional ∆ particles, ∆N → ∆∆, and some of them are deexcited to nucle-

ons in the ∆ absorption processes such as ∆N → NN . The ∆ particles decay and produce

π particles, ∆→ Nπ. Produced π particles may collide with other nucleons, ∆s and πs,

and occasionally produce additional ∆, πN → π∆. In the later stage, the system expands,

particle density decreases, and interaction rate goes down. When the density becomes low

enough, all ∆ particles decay to Nπ with the lifetime τ∆ = ~/Γ∆ ' 2 fm/c and π particles

go out from the reaction region and are detected.

The number of π and ∆ particles in the above nucleus-nucleus collision is found to be well

fitted by the Gompertz function fG(x) and its derivative f ′G(x). Curves in Fig. 8 show the
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Fig. 8 The number of π and ∆ particles as functions of time t in central Au+Au collisions

at the incident energy of 1 GeV per nucleon. Histograms show the π (red) and ∆ (blue)

numbers taken from [28], and solid curves show the fitting results using the Gompertz

function. The green dashed curves shows the sum of π and ∆ numbers.

results of fit by the Gompertz function and its derivative,

Nπ(t) = NπfG(γπ(t− tπ)) , N∆(t) = N∆γ∆f
′
G(γ∆(t− t∆)) , (22)

where the parameters are obtained as (Nπ, γπ, tπ) = (62.0, 0.113 (fm/c)−1, 14.6 fm/c) and

(N∆, γ∆, t∆) = (760, 0.160 (fm/c)−1, 14.3 fm/c). Compared with the lifetime of ∆, the num-

ber of ∆ during nucleus-nucleus collisions has a longer tail. This may be because of the

relativistic effects, resonance mass dependence of the width, and sequential decay and

production of ∆ such as ∆→ πN followed by πN → ∆.

It should be noted that one ∆ particle mostly decays into Nπ and additionally produced

number of π is less than unity in the present pion production in nucleus-nucleus collisions.

A rough estimate of the upper bound of the basic reproduction number R0 from ∆ to π

may be obtained as follows. The lower bound of the number of produced ∆ particles is

the peak number of ∆, which is N∆ = 45.3 at t = 14 fm/c in the calculated data and is

expected to be N∆(t∆) = N∆γ∆/e ' 44.7 at t = t∆ from the Gompertz function. Then the

upper bound of the additionally produced π number is given as Nπ(t =∞)−N∆(t∆) ' 17.

Consequently, the upper bound of R0 is given as R0 = [Nπ(t =∞)−N∆(t∆)]/N∆(t∆) '
0.38, which is less than unity. As a result, the number of pions in the final state is already

determined in the early stage. The green dashed curve in Fig. 8 shows the ”π-like” particle

number, Nπ∆ = Nπ +N∆, which shows a peak at t ' 16 fm/c, gradually decreases by the

∆ absorption processes, and converges to Nπ(t =∞).

Based on the success in describing Nπ(t) by using the Gompertz function, we may make a

conjecture of the correspondence of the COVID-19 spread and the π production in nuclear

collisions. Let us assume that π particles correspond to the infected people who tested

positive and ∆ particles correspond to the exposed (infected) people who have not tested

positive yet. The people are exposed in the initial dense stage (∆ production), occasionally

infect other susceptible people (additional ∆ production) or are recovered (∆ absorption),

develop symptoms and test positive (∆→ Nπ). Number of infected people including those

have not tested positive, Nπ +N∆, grows rapidly in the early dense stage but does not
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change much in the later stage. Hence, except for the early dense stage, the basic reproduction

number would be less than unity.

5. Summary

We have analyzed the number of infected people of COVID-19, one of the coronaviruses,

as a function of time, N(t), by using the double exponential function referred to as the

Gompertz function, fG(x) = exp(−e−x). The Gompertz function appears when the infection

probability is an exponentially decreasing function in time. One of the characteristic features

of the Gompertz function is the asymmetry of its derivative, f ′G(x) = dfG(x)/dx, fast rise

and slow decay.

This feature is found in the daily cases of infected people, dN(t)/dt. We have assumed

that the number of infected people from one outbreak is given as N(t) ' N0 exp[−e−γ(t−t0)],

where N0, γ and t0 are the total number of infected people, damping rate of the infection

probability, and the time where N(t) becomes N0/e. These parameters are obtained by the

χ2 fitting to the dN(t)/dt data. Then we have found that N(t) and dN(t)/dt show universal

scaling, N(t)/N0 = fG(x) and (dN(t)/dt)/(N0γ) = f ′G(x), where x = γ(t− t0) is the scaling

variable. The K value, the increasing rate of infected people in one week, is also found to

show the scaling behavior, K(t) = 1− fG(xK), where xK = γ(t− t0 −∆t(γ)) is the scaling

variable for K(t) with ∆t(γ) being a given function of γ.

We have also found that the time dependence of the produced pion number in nucleus-

nucleus collisions is described by the Gompertz function. Since both of the COVID-19 spread

and the pion production are transport phenomena, the mechanism of the former may be

similar to the latter. If this is the case, there is a possibility that the basic reproduction

number is high only in the initial stage of the outbreak.

Throughout this article, we have imposed the single-outbreak assumption. Since this

assumption may be too restrictive, we show the results of multiple-outbreak analyses in

Appendix A. The multiple-outbreak analyses also show that the COVID-19 spread in one

outbreak is well described by the Gompertz function.
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A. Multiple-outbreak model analysis

In the analyses in the main text, we have assumed that there is only one dominant outbreak.

Let us consider here the multiple-outbreak cases, where we assume the number of infected

people is described by the sum of several Gompertz functions,

N(t) =

n∑
i=1

NifG(γi(t− ti)) + ∆N . (A1)
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As in the single-outbreak model discussed in the main text, we analyze the daily number of

newly infected people, dN(t)/dt,

dN(t)

dt
=

n∑
i=1

Niγif
′
G(γi(t− ti)) , (A2)

where f ′G(x) = dfG(x)/dx.
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Fig. A1 Derivative of the number of infected people dN/dt with single-outbreak (grey)

and multiple-outbreak (red) model analyses in the linear (top) and logarithmic (bottom)

scales. Magenta, green and blue dotted curves show the contributions from the first, second

and third outbreaks, respectively.

In Fig. A1, we show dN/dt in Eq. (A2) in comparison with the daily number of newly

infected people. In the multiple-outbreak analysis, we use data in the whole range, 0 ≤ t ≤
140. Two or three outbreaks are considered, and we try to describe the region with large

dN/dt by adding outbreaks. Obtained parameters are summarized in Table A1.

In many countries under consideration, dN/dt is decreasing on May 21, 2020, and the

parameters are well determined. Then we adopt the three-outbreak model (n = 3). In Japan,

China, and South Korea, multiple-outbreak structure of dN/dt is clearly seen in the logarith-

mic plot and can be fitted by using Eq. (A2). In Russia, Italy, Spain, the UK and Sweden,

additional outbreaks improve the reduced χ2 by filling the peaks which are not covered by

the single outbreak. In Brazil and Indonesia, where the numbers of infected people are still

rapidly increasing, we need at least one outbreak term with ti > tnow. In those cases, param-

eters generally have large uncertainties, so the third outbreak, if included, has extremely
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Table A1 Parameters in multiple-outbreak model analyses.

Country γi[%/day] ti[day] Ni[103] ∆N

Japan 5.0± 0.5 78.5± 3.0 2.2± 0.3 0.3± 0.3

8.2± 0.3 104.3± 0.2 11.4± 0.6

19.4± 1.8 105.0± 0.3 3.2± 0.6

USA 9.4± 0.2 95.4± 0.4 560± 33 0.2± 0.5

3.7± 0.1 124.8± 1.2 1682± 21

Russia 15.4± 0.5 111.8± 0.2 28.9± 1.8 0.1± 0.1

16.1± 0.6 128.8± 0.2 65.8± 5.1

3.3± 0.0 144.1± 0.9 647± 31

Brazil 5.0± 0.4 111.3± 3.5 86.6± 22.4 0.0± 0.1

3.4± 0.4 160.6± 4.9 1380± 330

China 14.8± 2.1 32.0± 1.9 36.5± 14.6 52.2± 6.6

17.0± 1.3 38.5± 0.3 43.8± 14.6

10.4± 0.6 90.0± 0.8 2.5± 0.2

Italy 8.3± 0.5 76.6± 1.8 47.3± 11.1 0.0± 0.1

10.6± 0.4 85.0± 0.3 110± 12

7.4± 0.1 110.0± 0.6 76.7± 3.7

Indonesia 4.1± 0.1 116.5± 1.0 22.3± 1.0 −0.1± 0.1

6.0± 2.4 152± 12 23± 23

Spain 19.1± 0.9 86.3± 0.2 36.9± 3.2 0.1± 0.2

7.5± 0.1 89.5± 0.1 195.4± 3.2

39.8± 3.1 129.9± 0.2 3.6± 0.3

S.Korea 17.5± 0.3 60.4± 0.1 8.5± 0.2 0.2± 0.2

12.6± 0.6 87.8± 0.5 2.0± 0.1

15.0± 3.7 134.1± 1.9 0.4± 0.1

UK 5.7± 0.1 106.1± 0.3 251.5± 3.5 0.1± 0.3

15.5± 1.3 127.6± 0.4 29.4± 3.0

50± 38 137.0± 1.4 2.0± 1.9

Sweden 17.2± 1.4 73.2± 0.5 1.3± 0.2 0.0± 0.1

12.0± 1.1 94.9± 0.7 4.3± 0.8

3.4± 0.1 124.1± 1.7 44.6± 0.9

large uncertainties larger than 100 %. Thus we use the two-outbreak model (n = 2) in these

countries.

In the USA, there are many centers of outbreaks. In Fig. A2, we show the dN(t)/dt data in

New York, Massachusetts and California states [30]. It is possible to fit the data in each state

by using the Gompertz function, but the results show significantly different values in (γ, t0).

This would be the reason of the slow decrease of dN(t)/dt in the USA. As a result, a single-

outbreak treatment is not appropriate. By comparison, the dN(t)/dt data are reasonably

explained by two outbreaks (n = 2). We have used the data in Ref. [27] updated on June
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Fig. A2 The daily increase of the number of infected people dN(t)/dt in the USA with

single-outbreak (grey) and multiple-outbreak (red and blue) model analyses. The red and

blue curves show the fitting results to the data till May 20 and June 6, respectively. Magenta,

brown and cyan histograms (curves) show the data (fitting results in the single-outbreak

model) in the New York, Massachusetts, and California states, respectively.

7, 2020. The daily number of newly infected people does not decrease and it seems that it

takes more time for the settle down.

After obtaining (Ni, γi, ti) by fitting dN/dt data, the constant part (∆N) is obtained by

fitting N(t). Thus obtained multiple-outbreak functions in Eq. (A1) are compared with the

data in Fig. A3. In the region with N(t) > 100, the multiple-outbreak functions are found

to explain the data well. This supports the idea that the number of infected people in one

outbreak would be described by the Gompertz function.
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Fig. A3 The number of infected people N(t) with single-outbreak and multiple-outbreak

model analyses in the linear (top) and logarithmic (bottom) scales. Magenta, green and blue

dotted curves show the contributions from the first, second and third outbreaks, respectively.
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