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Abstract 
 

Background and Question: 

It is unclear which variables contribute to the variance in corona-virus disease (Covid-19) related 
deaths and Corono-virus2 (Cov2) cases. We wanted to see which contribution public health 
variables make in addition to health systems, health, and population variables to explain Covid-
19 cases and deaths 

Method: 

We modelled the relationship of various predictors (health systems variables, population and 
population health indicators) together with variables indicating public health measures (school 
closures, border closures, country lockdown) in 40 European and other countries, using 
Generalized Linear Models and minimized information criteria to select the best fitting and 
most parsimonious models. 

Results: 

We fitted two models with log-linearly linked variables on gamma-distributed outome variables 
(CoV2 cases and Covid-19 related deaths, standardized on population). CoV2-cases were best 
predicted by number of tests (b = 2*10-7, p =.00005), life-expectancy in a country (b = 0.19, p < 
.000001), and border closure (b = -0.93, p = .001). Population standardized deaths were best 
predicted by time, the virus had been in the country (b = 0.02, p = .02), life expectancy (b = 0.2, 
p = .000005), smoking (b = -0.08, p = .00001), and school closures (b = 2.54, p = .0001). Model 
fit statistics and model adequacy were good (model 1: Chi2/DF = 0.43; model 2: Chi2/DF = 
0.88). 

Discussion and Interpretation: 

Only few variables were good predictors. Of the public health variables only border closure had 
the potential of preventing cases and none were predictors for preventing deaths. School 
closures, likely as a proxy for social distancing in severely ill patients, was associated with 
increased deaths. 

Conclusion: 

The pandemic seems to run its autonomous course and only border closure has the potential to 
prevent cases. None of them contributes to preventing deaths. 
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Introduction 
 

 

 

The novel Coronavirus SARS-Cov2 (CoV2) which surfaced in China in December 2019 
for the first time created a world-wide pandemic [1, 2] and an associated disease, named 
Corona-virus-19 (Covid-19), with respiratory stress, heart problems, kidney failures and 
immunological problems associated with it [3-7]. Countries closed down their borders, their 
schools, universities and cultural facilities and sometimes even their whole activities. This was 
due partially to its novelty and its largely unknown properties, but also, because it was soon 
clear that those infected by the virus could be asymptomatic for up to a week or longer, while 
still being infectious to others, and because high infectivity, virulence and mortality was 
assumed. 

The spread of the virus was initially very quick following a seemingly exponential growth 
curve, but abated and the replication numbers went into decline. Currently it is highly debated 
what contributes to the variance that can be seen both in CoV2 cases, as well as in deaths 
attributed to Covid-19. While most people assume that political measures have mitigated the 
spread of the virus [8], others hold that the process is rather autonomous, that the virus recedes 
after having infected all those in a population susceptible to it and then the infection abates [9, 
10]. Moreover, most modeling approaches that were used in early stages of the disease to inform 
political decision making did not take into account potential inhomogeneity of a population 
due to natural or specific immunity of a large part of the population [11, 12]. More recent 
models that take such inhomogeneity parameters into account, informed by novel data, 
estimated that after about 7 to 18% of a population have been infected herd immunity is 
reached, because the rest of the population might not be susceptible to the virus [13, 14]. 

Since it is largely unclear what variables contribute to the variance in cases and deaths 
attributable to CoV2, we wanted to study this question by building linear models using various 
predictor variables to study their influence on the outcomes Covid-19 cases and deaths in 
various countries. 

 

Method 
 

Data 
 

We collected data on Covid-19 cases and deaths as presented by the database of the 
European Center for Disease Prevention and Control on their website on 15th May 2020. We 
used European and OECD countries, because those data are most relevant to our question and 
are more validly accessible. We included the following 40 countries 

1. Austria 

2. Belgium 

3. Brazil 

4. Bulgaria 

5. Canada 
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6. China 

7. Croatia 

8. Cyprus 

9. Czechia 

10. Denmark 

11. Estonia 

12. Finland 

13. France 

14. Germany 

15. Greece 

16. Hungary 

17. Iceland 

18. India 

19. Iran 

20. Ireland 

21. Italy 

22. Japan 

23. Lativa 

24. Lithuania 

25. Luxembourg 

26. Malta 

27. Netherlands 

28. Norway 

29. Poland 

30. Portugal 

31. Romania 

32. Russia 

33. Slovakia 

34. Slovenia 

35. Spain 

36. Sweden 

37. Switzerland 

38. Turkey 

39. United Kingdom 

40. USA 

 

Covid-19 Cases and Deaths were summed for the total period covered by the ECDP-
database and used as dependent variables (criterion). We standardized cases and deaths on 
100.000 inhabitants, taken from the population size in the same data-base. 

As predictors we collated data from publicly available sources (see Supplementary 
Material for a list and for sources) for population, health, health systems, and environmental 
indicators between May 15th and 20th 2020. The variables used as predictors are described in a 
protocol that was published on the server of the Open Science Framework 
(https://osf.io/x93np/) before commencement of data collection and analysis. Briefly, we used 
population indicators (Life-expectancy, percent single households, city dwelling, age groups, 
population density), health systems indicators (number of doctors, hospital beds, ICU beds, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.18.20135012doi: medRxiv preprint 

https://osf.io/x93np/
https://doi.org/10.1101/2020.06.18.20135012
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

PCR tests), health indicators (percentage of obese persons, diabetes patients, smoking and 
physically inactive persons), air pollution, and finally variables coding for political actions: 
closure of borders, closure of schools, country lockdown (all as dummy variables), including the 
rapidity of implementation since the first case was noted as number of days from first case to 
date when first action was implemented (see Table 1). 

 

Statistics 
 

We built two separate linear models to predict the influence of variables on population-
standardized CoV2-cases and Covid-19 associated deaths.  

In order to investigate which variables might be potential predictors first order 
correlations of all relevant variables with the outcome variables were calculated, using non-
parametric correlations, and their inter-correlation structure was studied. Only variables that 
contributed with an effect size r > .3 or with significant correlations were further considered for 
modeling.  

As 40 cases offer enough stability to estimate about 4 parameters reliably [15], we opted 
for small models to start with and included a further predictor only if it was theoretically 
meaningful, empirically supported (i.e. a significant predictor) and improved model fit. We 
included first all those relevant predictors from population, health systems, and environmental 
sets in separate steps that correlate significantly with the outcome and are not collinearly related 
with each other. We explored model fit to find the best subset for each small group of 
indicators with forced entry of not more than four variables at a time, retaining only significant 
predictors for the next step. In a final step we included potential predictors from the set of 
public health indicators to investigate whether there is any improvement in model fit and 
whether these variables were significant predictors. The rationale of this procedure is: If the 
public health measures contribute to preventing cases and deaths, then they would have to 
emerge as potential significant predictors with negative sign (as they were dummy coded with 1 
coding for present and 0 coding for absent). In addition, the model fit of the enlarged model 
would have to improve. 

As an indicator of improved model fit we used the difference of Akaike Information 
Criterion (AIC in its original and corrected version), the difference of Bayes Information 
Criterion (BIC) and the Chi2-Goodness of Fit test statistic divided by degrees of freedom 
conjointly to avoid over and underfitting. We always used the model that minimized all of them 
in combination. To assess model adequacy, plots of predicted versus observed cases, residual 
distribution plots, and residuals vs. cases were visually analyzed and residual plots were screened 
for outliers (residuals vs. Chi2 statistic).  

In a sensitivity analysis the model was recalculated without outliers to see whether the 
model structure, i.e. the variables used as significant predictors, would be the same and 
goodness of fit improved. For those sensitivity analyses, AIC and BIC were only used as a 
further criterion if the difference was large, as the efficiency of these information criteria change 
with number of cases/degrees of freedom and number of variables [15, 16]. We used Statistica 
Version 13.1 for all analyses. 
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Results 
 

First order correlations 

The nonparametric correlations (Spearman’s Rho) between the two predefined outcome 
variables, cases and deaths per 100.000 inhabitants, as well as the case-fatality rate (CFR), for 
illustration, are reported in Table 1.  
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Table 1 – Nonparameteric correlations of all variables of interest with outcome variables (cases standardized, deaths standardized, and case-
fatality rate, defined as number of deaths/cases per 100.000 inhabitants) 

 

 Hospital Beds 
 

Doctors 
 

ICU Beds 
 

Number of 
Tests 

 

Days 
since 
first 
case 

 

life expec-
tancy total 

 

Life 
expectancy 
male 

Life 
expectancy 
female 

smoking in  
total 

 

Smoking male Smkoking female City-dwelling 
 

Population 
density 

 

Single 
house-

hold 
 

 

Cases 
 

-0,30 0,21 0,24 0,32* 0,17 0,53* 0,57* 0,46* -0,38* -0,59* 0,001 0,47* -0,02 0,21  

Deaths 
 

-0,28 0,16 0,22 0,46* 0,30 0,43* 0,46* 0,38* -0,33* -0,57* 0,09 0,36* 0,07 0,34  

CFR -0,18 -0,05 -0,07 0,35* 0,40* 0,16 0,17 0,09 -0,21 -0,30 0,07 0,15 0,13 0,33  

   

 
 

obesity rates 
in % 

 

insufficient  
physical  
activity  

 

 

Diabetes 
 

Vaccination 
 

Sleep 
Pollution_NO

2 
 

Pollution 
BAP 

 

Pollution 
Ozone 

 

Pollution_PM
2 

 

Pollution_ 
PM10 

 

% lipid lowering 
drugs ($) 

 
 

Mercury($) 
Schools fully 

closed 

Schools 
partially 
closed 

Cases 
 

0,07 -0,12 -0,22 0,19 -0,10 0,07 -0,69* -0,15 -0,52* -0,58* 0,42 0,42 -0,19 0,01 

Deaths 
 

0,04 -0,07 -0,31 0,12 0,06 0,31 -0,49* -0,11 -0,39* -0,42* 0,42 0,40 0,10 0,08 

CFR -0,01 0,05 -0,34* -0,02 0,13 0,39* -0,13 -0,02 -0,01 -0,05 0,41 0,19 0,31 0,19 

   

 
School 

Closure§ 

Duration 
School 
Closure 

Lockdown# 
 

national 
lockdown 

 

subnational 
lockdown 

 

Duration 
Border 
Closure 

Border 
closure 

Rapidity of 
political 

reaction% 
 

Cases 
 

-0,07 -0,06 0,01 0,07 -0,07 -0,10 -0,43* 0,11  

Deaths 
 

0,11 0,06 0,20 0,26 -0,09 -0,10 -0,25 0,25  

CFR 0,30 0,26 0,35* 0,35* -0,04 -0,15 0,02 0,39*  

 

$: not usable for modeling because too few data; §: Variable with three categories, taken apart into the dummy variables “Schools fully closed” and “Schools partially closed”; # 
Dummy variable: 1 if either national or subnational lockdown was present; % Time difference in days between first date a case was reglistered and first date of a public health 
intervention 

Red/*: significant; p < 0.05 
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Of the structural variables describing the health systems only the number of tests 
conducted correlated significantly with number of standardized cases (r = .32) and deaths (r = 
.46), as well as with case-fatality rate (r = .35) and with number of ICU beds (r = .39). 

Of the variables describing political actions only border closure was negatively and 
significantly related with standardized cases (r = -.43), but only weakly and non-significantly with 
number of deaths (r = -.25): Cases tended to be higher in countries that did not close the 
border. But neither lockdown nor school closures were significantly and sizably related with 
number of cases or number of deaths. Only full closure of schools was slightly, but non-
significantly related with number of cases (r = -.19) but not with number of deaths, indicating 
that cases were higher in countries that had not closed schools. However, as school closure was 
correlated positively, but non-significantly (r = .30) with CFR, it is necessary to clarify by 
modeling, which covariation might be influential. 

The duration or length of border- or school closures was only marginally and non-
significantly negatively correlated with number of deaths and cases. The rapidity with which 
countries reacted, i.e. the time difference between the registration of the first case and the 
initiation of political reactions was only slightly correlated with number of cases, and 
significantly correlated only with the case-fatality rate (r = .39), i.e. countries that were slower in 
initiating political actions had a higher case-fatality rate. 

Higher and significant correlations were visible with descriptors of populations and 
health status. There were more cases in countries that had a higher life-expectancy at birth (r = 
.53), and there were more deaths (r = .43) in such countries as well. There were more cases (r = 
.47), as well as more deaths (r = .36) in countries with a higher percentage living in cities. 
However, neither population density of a country, nor percentage living in single households 
emerged as a potential predictor. Potentially interesting correlations emerged between case-rate 
and death rate with percentage of population taking lipid lowering drugs (r = .42) and with 
amount of mercury used in the alkaline-chlorine industry (cases: r = .42, deaths: r = .40). But 
since we were unable to find enough data for all countries of interest, these variables could not 
be used for modeling. None of the other variables describing the health status of a population 
(obesity rate, insufficient physical activity, sleep problems, vaccination rate, percent of diabetes 
patients in a population) emerged as potential predictors. 

Paradoxically, there were more cases (r = -.38), as well as deaths (r = -.33) in countries 
that had a lower percentage of smokers in the population. As this correlation was even higher 
for male smokers, likely because smoking is predominantly a male phenomenon, the percentage 
of male smokers was used for further modeling. The same paradoxical relationship can be seen 
with variables that code for air-pollution, especially with very small particles (PM2 – particulate 
matter of 2 micron size per m3 air), where we see significant negative correlations of r = - .52 
with cases and r = -.39 with deaths. Although the correlation with PM10 was somewhat higher, 
we used PM2 for modeling, because PM2 and PM10 are highly intercorrelated (r = .75) and 
because we had more cases with data for PM2, most notably USA. 

 

Modeling 

Following our protocol, we constructed a model to account for the covariance structure 
of the variables. Since the outcome variables, cases and deaths standardized on 100.000 
inhabitants per country, showed adequate fit to a gamma-distribution (Figures 1 & 2), we 
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calculated a generalized linear model with a log-link-function on gamma-distributed outcome- 
variables:  

�̂� ~ Γ(𝑘𝑖, 𝑠𝑖) 

where Γ refers to the Gamma distribution with shape ki and shape si, i 𝜖 1, … , 𝑛.  
 

 

Figure 1 – Distribution of CoV2 cases, population-standardized (per 100.000 inhabitants) and 
approximation to gamma distribution (with Kolmogorov-Smirnov and Chi2 Goodness-of-Fit 
test) 

 

Figure 2 - Distribution of Covid-19 related deaths, population-standardized (per 100.000 
inhabitants) and approximation to gamma distribution (with Kolmogorov-Smirnov and Chi2 
Goodness-of-Fit test) 

 

 

We used the Gamma distribution as it maximizes entropy. Although the (overdispersed) 
Poisson distribution may have been a choice, we opted for the Gamma distribution because by 
modeling standardized cases, we are effectively modeling a continuous variable, thereby 
excluding the Poisson distribution (which models discrete events). We also considered log-
transforming the outcome variables to approximate a normal distribution, but the fit was not 
adequate and sensitivity analyses using linear regression on a log-transformed outcome variable 
yielded essentially the same results, but with inadequate fit.  

Predicting Cases 

The models that best predicted standardized cases are presented in Table 2. 
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Table 2 – Linear Model Predicting Standardized CoV2-Cases 

 

 Parameter Estimates: 
 
 
 

B (Standard Error) 

 
 
 
 
95% Confidence Intervals 

 
 
 
Wald 
Statistic 

 
 
 
 
P value 

Model Test 
Statistics: 
Akaike 
Information 
Criterion 

 
 
Bayes 
Information 
Criterion 

 
 
 
Chi2/degrees 
of freedom 

 
 
 
Log 
Likelihood 

Model 1: no political 
variables included 

     
465,69 

 
474,0 

 
0,46 

 
-227,84 

Intercept -5,87 (2,87) -11,5 to -0,25 4,19 0,04     

Number of tests 0,0000002 (0,00000005) 0,00000009 to 0,0000003 13,28 0,0003     

Life expectancy 0,15 (0,03) 0,08 to 0,21 20,56 0,000006     

Smoking male -0,04 (0,01) -0,07 to -0,01 9,82 0,002     

Scaling Factor 2,56 (0,55) 1,7 to 3,9 n.a. n.a.     

Full Model 2: Model 1 + 
border closure included 

     
462,62 

 
470,94 

 
0,43 

 
-226,31 

Intercept -9,42 (2,3) -14,0 to -4,8 16,0 0,00006     

Number of tests 0,0000002 (0,00000005) 0,00000001 to 0,0000003 16,4 0,00005     

Life expectancy 0,19 (0,03) 0,13 to 0,24 42,9 <0,000001     

Border closure -0,93 (0,3) -1,5 to -0,35 10,0 0,001     

Scaling Factor 2,74 (0,6) 1,8 to 4,2       

Model 3: Model 2 
excluding outlier 
(Belgium) and fitting 
optimum model 

  

   
 
 
379,21* 

 
 
 
388,19* 

 
 
 
0,24** 

 
 
 
-183,61 

Intercept -6,15 (2,7) -11,53 to -0,76 5,0 0,02     

Number of tests 0,0000002 (0,00000005) 0,0000001 to 0,0000004 20,7 0,000005     

Life expectancy 0,15 (0,03) 0,09 to 0,21 21,8 0,000003     

Pollution PM2 -0,03 (0,02) -0,07 to -0,002 4,4 0,03     

Border closure -0,91 (0,25) -1,4 to -0,42 13,2 0,0003     

Scaling Factor 5,04 (1,2) 3,2 to 8,05 5,0      

* model fit can only be informally assessed using AIC and BIC, as the degrees of freedom of this model are different; ** model fit with different degrees of freedom 
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The first model describes the best fitting model for all countries predicting cases. The 
variables entering the model are life-expectancy, number of tests and smoking. Parameter 
estimates are positive for life expectancy and number of tests, and negative for smoking. In a 
second step variables coding for political decisions (country lockdown, border closure, school 
closures) were entered. The best fitting model emerged with border closure as a negative 
predictor, with smoking removed. The model fit statistics show improved model fit over the 
first model (Akaike Information Criterion – AIC 462,62 vs. 465,69; Bayes Information 
Criterion 470,94 vs. 474; Chi2/degrees of freedom 0,43 vs. 0,46). We inspected the Chi2 vs. 
prognosis plot to spot outliers. There was only one clear outlier, Belgium (Figure 3).  

 

Figure 3 – Outlier diagnostic: Chi2 vs. prognosis identifies Belgium as an outlier that reduces 
model fit 

 

Removing this outlier improved model fit considerably (AIC 379, 21; BIC 388,19; 
Chi2/degrees of freedom 0,24), with air-pollution PM2 added to the model as a negative 
predictor. The full model can predict the cases in the countries comparatively well. Figure 4 
presents the plot of raw residuals against cases/countries for the full model (model 2). In this 
plot China is missing, because there were no data on PCR-tests for China, and the last country 
is the USA. The countries for which the model predicts the cases less well, i.e. which have larger 
residuals are Belgium and Luxembourg with larger positive residuals, i.e. more cases 
unaccounted for by the model, and Japan, United Kingdom and USA with less cases than 
accounted for by the model. 

 

Figure 4 – Raw residuals vs. cases/countries for full model predicting cases; the last country is 
the USA 

 

 

 

 

Predicting Deaths 

 

The model predicting Covid-19 related deaths is presented in Table 3: Here the 
duration the virus had been in the country is a significant positive predictor, and so is life 
expectancy. Smoking is a negative predictor. When entering the public health variables only 
school closures emerged as a significant positive predictor that improved model fit. Excluding 
Belgium, the only serious outlier, improved model fit. The same variables remain in the model 
as significant predictors with nearly the same regression coefficients including their sign.
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Table 3 – Linear Model Predicting Standardized Covid-19 associated Deaths 

 Parameter Estimates 
 

B (Standard Error) 

 
95% Confidence 
Intervals 

 
Wald 
Statistic 

 
 
P value 

Model Test Statistics: 
Aikaike Information 
Criterion 

 
Bayes Information 
Criterion 

Chi2/ 
degrees of 
freedom 

 
 
Log Likelihood 

Model 1: no political 
variables included 

     
262,32 

 
270,76 

 
1,02 

 
-126,16 

Intercept -13,25 (4,12) -21,3 to -5,2 10,3 0,001     

Days of pandemic  0,02 (0,01) 0,005 to 0,04 7,0 0,008     

Life expectancy 0,20 (0,5) 0,1 to 9,29 17,1 0,00003     

Smoking male -0,06 (0,02) -0,1 to-0,03 12,5 0,0004     

Scaling Factor 1,23 (0,25) 0,83 to 1,82       

Model 2: 
Model 1 + School 
closures 

     
256,47 

 
266,07 

 
0,88 

 
-122,24 

Intercept -15,3 (3,8) -22,8 to -7,7 15,8 0,00007     

Days of pandemic 0,02 (0,007) 0,003 to 0,03 5,3 0,02     

Life expectancy 0,20 (0,04) 0,11 to 0,29 20,9 0,000005     

Smoking male -0,08 (0,02) -0,11 to -0,04 19,2 0,00001     

School Closures 2,54 (0,67) 1,24 to 3,85 14,5 0,0001     

Scaling Factor 1,4 (0,3) 1,0 to 2,1       

Model 3: 
Model 2 without 
outlier (Belgium) and 
fitting optimum 
model 

   

  
 
 
242,97* 

 
 
 
252,94* 

 
 
 
0,84** 

 
 
 
-115,48 

Intercept -14,8 (3,7) -22,1 to -7,4 15,5 0,00008     

Days of pandemic 0,01 (0,007) 0,0006 to 0,03 4,2 0,04     

Life expectancy 0,2 (0,04) 0,1 to 0,28 20,8 0,000005     

Smoking male -0,08 (0,02) -0,1 to -0,04 18,1 0,00002     

School Closures 2,43 (0,65) 1,1 to 3,7 13,8 0,0002     

Scaling Factor 1,5 (0,31) 1,0 to 2,2       

* model fit can only be informally assessed using AIC and BIC, as the degrees of freedom of this model are different; ** model fit with different degrees of freedom 
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Inspection of residuals show that the linearity assumption is warranted. The model can 
predict the associated deaths reasonably well (Figure 5). For Belgium, Finland, Japan, and to 
some extent France and Spain predictions are not so good and the residuals large. Japan and 
Finland have much fewer deaths that the model cannot account for and Belgium, France and 
Spain have more.  

 

Figure 5 – Raw residuals vs. cases/countries for full model predicting Covid-19 realted deaths; 
the last country is the USA 

 

The inspection of the distribution of the residuals (Supplementary Figure 1) and other 
diagnostic plots (not shown) confirm that the model assumptions are not violated and the 
linearity assumption holds. 

 

 

Discussion 
 

The major findings of this modeling study using population data for 40 countries are 
clear: Life-expectancy emerges as a stable positive predictor both for standardized cases of CoV2 
infections, as well as for Covid-19 related deaths. Surprisingly, smoking emerges as a stable 
negative predictor, i.e. protective factor. Of the public health or political variables only border 
closure is as a strong negative predictor for cases. But school closures are a strong positive 
predictor for deaths, i.e. is associated with more deaths. The parameter for number of tests 
conducted in a country is as a strongly significant positive predictor. 

The fact that life expectancy is the most consistent positive predictor – the longer the 
life expectancy in a country the more cases and deaths – is easy to understand. The disease 
affects most aggressively elderly and multimorbid persons. Life expectancy is a complex variable, 
incorporating social and medical progress in a country as well as economic indicators, and 
hence it denotes the number of the elderly in a population, as well as the intensity of medical 
care. Only the number of CoV2-PCR-tests, out of all health systems variables, enters the model 
as a significant positive predictor. Other quality indicators of the medical system (number of 
doctors per 10.000 inhabitants, number of ICU or hospital beds) do not enter the model. That 
number of tests should be related to the number of cases is evident: the more tests are 
conducted in a country the more cases can be potentially registered. 

The absence of other indicators from the set of medical system variables shows that the 
development both of infections and deaths is rather independent of the preparedness of the 
medical system. Although some interesting first order correlations indicated that health status 
variables might be interesting to explore, none of them came up as a predictor, except smoking 
as a somewhat protective variable. This might have to do with the fact that smokers have a 
hyperactive system to combat airborne noxes and hence might have a small advantage against 
this particular disease [17, 18]. A large cohort study has documented a similar counterintuitive 
effect [19], and an argument could be made that this might have to do with the fact that 
smokers express fewer ACE2 receptors [20], which are the main entry gate of CoV2 into the 
lungs. [2] However, the correlation of smoking with life expectancy is negative (r = -.50 for 
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men), and hence smoking might confer other risks that shorten lives. Only in one model, 
excluding the outlier Belgium, does air pollution play a role as a potential negative predictor, 
i.e. as a potential preventive factor. This is rather counterintuitive. Either it could be 
understood along the same lines: lungs prepared to deal with small noxes might be better 
prepared to fight a virus. Or else, airborne viruses might be captured by small airborne particles 
and might fall to the ground earlier. Again, this could be an accidental effect that should not 
encourage air pollution, as this has detrimental effects elsewhere. 

The closing of borders is a significant negative predictor, denoting a protective effect, in 
the model including all countries and predicting number of cases, but not for predicting 
number of deaths. 

 In all models predicting death the time the disease had been in a country is a positive 
predictor. As deaths develop with a delay of perhaps 3-4 weeks after the first contact with the 
virus [21-24], this relationship reflects a quite independent temporal dynamic of the infection.  
It is interesting to observe that closure of schools emerges as a strong positive predictor for the 
number of deaths, i.e. school closures are associated with more deaths. This could be an 
indicator for strong social distancing rules in a country which might be counterproductive in 
preventing deaths, as social distance for very ill, and presumably also very old patients, might 
enhance anxiety and stress and could then become a nocebo [25, 26]. It could also reflect the 
fact that countries which saw a rising tendency of deaths closed schools as an emergency 
measure, and hence school closure is an indicator of fear in a country. But considering the 
prevention of deaths, none of the public health measures studied are associated with the 
prevention of deaths. Border closure might be an exception in that it is associated with 
reduction in the number of cases and hence, indirectly, the number of deaths. But in the full 
model predicting deaths it is not a significant predictor. This seems to contradict new modeling 
data using time series models [27, 28] that report clear evidence for the effectiveness of non-
pharmaceutical interventions. We doubt the validity of these findings. The major shortfall of 
these models is that they ignore the most likely reason why we find the data we find: immunity 
in the population and neglecting the strength of natural immunity (see below). Apart from this 
these models operate with infection-fatality rates (IFR) of 0.91-1.26, a figure derived from early 
estimates, which is clearly too high. Meanwhile, better estimates are available, and a recent 
review of seroprevalence studies estimated a mean IFR of 0.25% across 23 studies and all strata 
of age, and 0.04% for those younger than 70. [29] Along the same line, a new reliability study of 
such models shows that they are crucially dependent on parameters assumed and the time point 
at which they capture data [30]. If the wrong assumption about a potential resistance against an 
infection in a population is made, the results are far off from true values. 

Rapidity of reaction can be a positive predictor in some models, but reliably leaves the 
equation, as soon as the duration of infection is taken into account. This signals in our view, 
the fact that the dynamics of the infection develops quite independently of political actions, or 
rather that political actions are mostly too late.  

The time the disease had been in a country was only a significant predictor for 
standardized deaths. A model including this variable to predict standardized cases is not 
significant and does not improve model fit. 

One might argue that a perhaps more conventional way of modeling would have been 
to log-transform the outcome variables and use standard linear regression approaches. We tried 
this as a sensitivity analysis but did see essentially similar results with a residual distribution that 
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signaled model inadequacy, and hence we doubt that such a model would have helped with 
understanding the data better. 

As data on number of tests were not available for China one might argue that our 
model is inadequate, as it excludes an important country. However, we fitted models without 
the number of tests as a predictor which did not lead to better fit or more meaningful models. 
The fact that the model predicting deaths, where China is included, could predict cases in 
China nearly perfectly shows indirectly that this is not an issue. We also used population 
standardized tests as an alternative to raw number of tests, but found that the model fit was 
much worse. 

Thus, the image that emerges from the data and the attempt to understand their 
relationship through modeling is that of a largely autonomous development. It affects mainly 
the elderly. Smoking is somewhat protective and border closures is associated with a lower 
number of cases. But other measures – closing of schools and lockdown of whole countries – 
do not contribute to a reduced number of cases or deaths. This may have to do with the fact 
that the virus travels extremely quickly. Even the shutdown of Wuhan airport delayed the 
spread across China only by 2,8 days [31, 32], and as Chinese airports remained open the 
spread of the virus across the world was guaranteed and could not be stopped by gross measures 
such as border closures, as these came too late. An Italian seroprevalence study estimated that 
even at the very beginning of the pandemic in Italy, the first country to be affected in Europe, 
there were 2.7% of the population in Milan that had already had contact with the virus. [33] 

The examples of Taiwan [34] and Hongkong [35] show that containment is possible, if 
reactions come very quickly and if cases can be traced close to 100%. But already the presence 
of 5 cases in a population increases the likelihood of a pandemic by 50%. [36, 37] Once 
infections are in the vulnerable segments of a populations, like in hospitals or homes for the 
elderly, political actions like school closures or country lockdowns do not prevent deaths. What 
might be useful but cannot be seen in our coarse-grained data are special protective measures 
geared to protect these vulnerable populations, such as protective masks for personnel and 
visitors in hospitals and old people’s homes, or the wearing of face masks in places with bad 
ventilation and close proximity of people.  

Why, then, have infections subsided and deaths receded since we gathered our data on 
May 15th 2020? Most people would say this was due to the public health measures [1], and 
recent modeling studies seem to support this [8, 27, 28]. However, we have pointed out that the 
peak of the cases had been reached in Wuhan already on January 26th, only 3 days after the city 
lockdown. [38] This was surely too short to be a result of public health measures, as cases 
manifest with a delay of at least 5, rather more days. And a careful analysis shows that, if one 
uses realistic retrodiction of cases, then effects of public health measures cannot be seen [39]. 
Thus, our modeling supports the view that the public health measures of school closures and 
country lockdown, with the exception of the closure of borders to reduce cases, were likely 
ineffective in influencing cases and deaths. If anything, social distancing might even be harmful 
for seriously ill patients. 

Very likely, scientists and governments overestimated the danger this virus presented 
and underestimated the immunological resistance in the population. While there is no doubt 
that those really falling seriously ill from this infection suffered a lot more and were in much 
greater danger than comparable patients suffering from flu or other respiratory infections [22], 
there can also be little doubt that basic immunological insights were neglected from the outset. 
Both specific [29, 40, 41] and non-specific immunity [42-44] seems to have been much greater 
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in the population than initially assumed. This is likely the case because the difference of CoV2 
from other Corona-viruses is not as great as initially assumed. Thus, a considerable percentage 
of any population would have been immune through specific cross-immunity against other 
corona-viruses, apart from the fact that non-specific immunity has been neglected in the 
discussion nearly completely. This is the reason why more recent models that account for this 
fact and introduce inhomogeneity parameters reach the conclusion that it is sufficient if 7%-
18% of a population have had contact with CoV2 to reach herd immunity [13], and that 
further waves are unlikely given immunity [45].  

Our data are not foolproof but first important hints. We were unable to code more 
countries, due to restrictions in time, resources and availability of data. This reduces the 
stability of estimates and to some degree also variance, although for those variables of interest 
variance was large enough to estimate stable models. [46] For the chosen models the goodness 
of fit test signals good fit, and the relative improvement of AIC and BIC values from model 1 
to model 2 is obvious. [47-49] 

We opted for completeness of data as much as possible rather than for a large number 
of countries, as modeling depends on the completeness of case-wise data. Some interesting and 
potentially useful predictors we were unable to gather: a more fine-grained resolution of 
different social distancing rules in different countries, availability and wearing of face masks for 
medical personnel and the public, for instance. Every model is wrong [50], but given the data 
our models have a comparatively good fit. This can also be seen indirectly, as excluding an 
outlier improved model fit, but did not change the predictors and their overall structure. Also, 
the plot of residuals versus cases/countries shows that the models fit most countries well. In 
Belgium, Japan, Luxembourg, United Kingdom and USA other factors seem to play a role that 
were not fully captured by these predictors, when predicting cases. In predicting deaths again 
Japan, but also Finland are not well predicted with fewer deaths, and Belgium, Spain and 
France seem to have more deaths which our model cannot account for.  

Obviously, in a population-based study we have to rely on the validity of the data 
provided by other sources, which may be of variable, even doubtful quality. This limitation has 
to be borne in mind. We gleaned our data from respectable sources, and inspecting our 
residuals vs. countries plots (Fig. 4 and 5) we can see that large countries with potential testing 
and reporting problems (Brazil, Russia, China, Iran) are nearly perfectly accounted for by our 
model, and hence unreliability of data does not seem to be a major problem. 

An exploratory modeling approach is always open to critique, as it is an observational 
study trying to infer potentially causal factors from a cross-sectional piece of data. This has to be 
borne in mind. We decided to build models that are theoretically guided and conceptually 
informed [15], starting with health systems, structural and population indicator variables and 
entering political public health variables in a last step, then adapt the model to find the best 
model fit. We followed a predefined, published protocol which guarded us against aimless 
fishing, and strove for parsimonious models that could explain the data with a minimum of 
predictors and good model fit. We avoided computer guided step-down and step-up procedures 
as they are inefficient or prone to overfitting. [15] Thus, we are quite confident that we did not 
overlook an important contribution of political actions to an explanatory model: they are not 
visible in our data except for those we report. More fine-grained, or country specific analyses 
might eventually unravel some contribution of such procedures, but on a large scale population 
based level they are not visible apart from those we report. 
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Conclusion 
 

In our data-set of 40 countries, only border closure had the potential to prevent cases. 
Other public health measures were not associated with reduced CoV2-cases or Covid-19 
associated deaths. Rather, the pandemic seems to take its own course. Since being elderly is a 
risk factor that cannot be changed, for many diseases and death, political actions in future 
pandemics would likely need to focus on protecting these members of society first. Apparently, 
closing schools and locking down countries was not the right method to prevent deaths. 
Perhaps the most sensible measures against pandemics are high alertness and an early warning 
system that initiates rapid actions that can prevent pandemics from developing. 
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Figures and Figure Captions 
 

Figure 1 – Distribution of CoV2 cases, population-standardized (per 100.000 inhabitants) and 
approximation to gamma distribution (with Kolmogorov-Smirnov and Chi2 Goodness-of-Fit 
test) 

Figure 2 - Distribution of Covid-19 related deaths, population-standardized (per 100.000 
inhabitants) and approximation to gamma distribution (with Kolmogorov-Smirnov and Chi2 
Goodness-of-Fit test) 

Figure 3 – Outlier diagnostic: Chi2 vs. prognosis identifies Belgium as an outlier that reduces 
model fit 

Figure 4 – Raw residuals vs. cases/countries for full model predicting cases; the last country is 
the USA 

Figure 5 – Raw residuals vs. cases/countries for full model predicting Covid-19 related deaths; 
the last country is the USA 
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Appendix: Supplementary Material 
 

S1 - Figure 1 – Model diagnostic: histogram of raw residuals - predicting cases 
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Data Extraction: Inclusion and Exclusion 
 

Data were extracted from the the Database of the  European Center for Disease 
Prevention and Control, as of 15th May 2020. This yields day-wise cases, deaths and population 
numbers for each country. The data were parsed (cases and deaths summed, date of first case 
registration and populations numbers extracted) using the Statistica Data Reporting Tool and 
the countries of interest included. These were all European countries including Switzerland, as 
well as other countries of the OECD, including China, Iran, Russia, India, Japan and Brazil to 
represent all countries that were at the beginning of the crisis, as well as other large countries in 
the world. We excluded Africa, other South and Middle American and Asian countries because 
of a lack of resources, time and because we were not sure we would be able to find sufficient 
data. This yielded the 40 countries described in our protocol. 

Political Data: 

Data on border closure came from the European commission: 

European Commission. Mobility and Transport. Coronavirus Response. Access 
on18.05.2020: https://ec.europa.eu/transport/coronavirus-response_en 

For the following countries we used other sources, as these were not contained in the 
European Commission data base: 

Brazil, Canada, Japan, Lithuania, Switzerland, Turkey, USA : 
https://www.nytimes.com/article/coronavirus-travel-restrictions.html  

India: https://www.cnbc.com/2020/03/12/coronavirus-india-suspends-most-visas-closes-
land-border-with-myanmar.html; all accessed on 18.05.2020 

We checked political data against Wikipedia (country lockdowns, border closures): 
https://de.wikipedia.org/wiki/COVID-19-Pandemie#/media/Datei:COVID-
19_Outbreak_lockdowns.svg  

Data for border closure of Iran suggested that other countries closed their borders 
against Iran, but not Iran against other countries. Hence this was marked as open. 
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We wanted to include the availability of face masks and their number, but those data 
were unavailable for most countries, so we excluded this variable.  

School Closures 

Were taken from the UNESCO data base which updated them on a daily basis; we 
extracted the data on the 15th of May: 

UNESCO. COVID-19 Educational Disruption and Response. Access on 18.05.2020. 
https://en.unesco.org/covid19/educationresponse 

 

Health and Environmental Data 

 

We extracted data for vaccination rates from 
https://de.statista.com/statistik/daten/studie/1034782/umfrage/laender-mit-d,er-hoechsten-
impfquote/ 

This is a representative survey and covers all different vaccinations. As this covers only 
Europe, we searched other sources. For China, India, Iran, Japan data came from 
https://ourworldindata.org/grapher/immunization-coverage-against-diphtheria-tetanus-and-
pertussis-dtp3-vs-gdp-per-capita 

For Brazil from https://academic.oup.com/jtm/article/25/1/tay100/5127106 

For Canada from https://www.canada.ca/en/services/health/publications/vaccines-
immunization/vaccine-uptake-canadian-children-preliminary-results-2017-childhood-national-
immunization-coverage-survey.html 

 

Air pollution: 

Data for air pollution are available for Europe from: 

https://www.eea.europa.eu/de/themes/air/intro 

Air pollution for other countries: 

Brazil (2018) : https://www.scielo.br/scielo.php?pid=S0103-
50532020000300523&script=sci_arttext 2018 No2, o3, p10, p2.5 

Canada (2018): https://pollution-waste.canada.ca/air-emission-inventory/ 

China, only PM2.5 from 2015 http://berkeleyearth.org/wp-
content/uploads/2015/08/China-Air-Quality-Paper-July-2015.pdf4 

USA from https://www.epa.gov/outdoor-air-quality-data/air-quality-statistics-report  

CSV formatted for all counties for 2017; imported into new spreadsheet and calculated 
median across PM2.5 weighted 24 h average, because there were a few counties with very high 
values, median was taken, else it would have been 103 instead of 40. Only PM2 and PM10, other 
values are not compatible (no full daily or annual averages). 

Data including US air-pollution data Covid10-mastertabelle10.sta 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.18.20135012doi: medRxiv preprint 

https://en.unesco.org/covid19/educationresponse
https://de.statista.com/statistik/daten/studie/1034782/umfrage/laender-mit-d,er-hoechsten-impfquote/
https://de.statista.com/statistik/daten/studie/1034782/umfrage/laender-mit-d,er-hoechsten-impfquote/
https://ourworldindata.org/grapher/immunization-coverage-against-diphtheria-tetanus-and-pertussis-dtp3-vs-gdp-per-capita
https://ourworldindata.org/grapher/immunization-coverage-against-diphtheria-tetanus-and-pertussis-dtp3-vs-gdp-per-capita
https://academic.oup.com/jtm/article/25/1/tay100/5127106
https://www.canada.ca/en/services/health/publications/vaccines-immunization/vaccine-uptake-canadian-children-preliminary-results-2017-childhood-national-immunization-coverage-survey.html
https://www.canada.ca/en/services/health/publications/vaccines-immunization/vaccine-uptake-canadian-children-preliminary-results-2017-childhood-national-immunization-coverage-survey.html
https://www.canada.ca/en/services/health/publications/vaccines-immunization/vaccine-uptake-canadian-children-preliminary-results-2017-childhood-national-immunization-coverage-survey.html
https://www.eea.europa.eu/de/themes/air/intro
https://www.scielo.br/scielo.php?pid=S0103-50532020000300523&script=sci_arttext
https://www.scielo.br/scielo.php?pid=S0103-50532020000300523&script=sci_arttext
https://pollution-waste.canada.ca/air-emission-inventory/
http://berkeleyearth.org/wp-content/uploads/2015/08/China-Air-Quality-Paper-July-2015.pdf4
http://berkeleyearth.org/wp-content/uploads/2015/08/China-Air-Quality-Paper-July-2015.pdf4
https://www.epa.gov/outdoor-air-quality-data/air-quality-statistics-report
https://doi.org/10.1101/2020.06.18.20135012
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Some countries missing on that variable. 

 

Life expectancy since birth: 
https://ec.europa.eu/eurostat/databrowser/view/tps00205/default/table?lang=de (18.05.2020) 

Brazil, Canada, China, India, Iran, Japan, Russia and USA 
https://www.laenderdaten.info/lebenserwartung.php#by-population (18.05.2020) 

Smoking status:  
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/age-standardized-
prevalence-of-current-tobacco-smoking-among-persons-aged-15-years-and-older (18.05.2020) 

Physical activity: 
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(18)30357-7/fulltext 

Regina Guthold, Gretchen A Stevens, Leanne M Riley, Fiona C Bull, Worldwide trends 
in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based 
surveys with 1·9 million participants, The Lancet Global Health, Volume 6, Issue 10, 2018, 
Pages e1077-e1086, ISSN 2214-109X, https://doi.org/10.1016/S2214-109X(18)30357-7. 

Obesity rate: 

https://www.who.int/gho/publications/world_health_statistics/2020/EN_WHS_2020
_TOC.pdf 

World health statistics 2020: monitoring health for the SDGs, sustainable development 
goals. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. 

 
Other Sources on Health and Population Data 

EMB-Japan. (2012). Japan und Deutschland im Zahlenvergleich (2): Bevölkerung. Accessed  15. May 
2020 fromhttps://www.de.emb-japan.go.jp/NaJ/NaJ1202/dj2.html 

Hurriyet. (2020). Türkei: Mehr Einpersonenhaushalte und kleinere Haushaltsgrößen. Accessed  15. 
May 2020 fromhttps://www.hurriyet.de/news_tuerkei-mehr-einpersonenhaushalte-und-
kleinere-haushaltsgroessen92527_143536701.html 

International Diabetes Federation. (2020). IDF Europe members. Accessed  15. May 2020 
fromInternational Diabetes Federation: https://idf.org/our-network/regions-
members/europe/members.html 

International Diabetes Federation. (2020). IDF MENA Members. Accessed  15. May 2020 
fromInternational Diabetes Federation: https://idf.org/our-network/regions-
members/middle-east-and-north-africa/members.html 

International Diabetes Federation. (2020). IDF North America and Caribbean members. Accessed  
15. May 2020 fromInternational Diabetes Federation: https://idf.org/our-
network/regions-members/north-america-and-caribbean/members.html 

International Diabetes Federation. (2020). IDF SACA members. Accessed  15. May 2020 
fromInternational Diabetes Federation: https://idf.org/our-network/regions-
members/south-and-central-america/members.html 
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kanada/ 

Wikipedia. (2020). Liste der Länder nach Geschlechterverteilung. Accessed  15. May 2020 
fromhttps://de.wikipedia.org/wiki/Liste_der_L%C3%A4nder_nach_Geschlechterverte
ilung 

Zeit. (2013). Schweizer, allein, glücklich: Allein zu Haus. Accessed  15. May 2020 
fromhttps://www.zeit.de/2013/21/alleine-wohnen-schweiz 

 

Sleep Problems 

Were exctracted information from various reviews and publications: 

Self-assessed “Problems Sleeping” from a review on Statista 
(https://de.statista.com/statistik/daten/studie/888175/umfrage/selbsteinschaetzung-zu-
ausreichend-schlaf-in-ausgewaehlten-laendern/) and https://www.who.int/news-
room/detail/14-05-2020-substantial-investment-needed-to-avert-mental-health-crisis 

 

Prevalence of insomnia from various review sources: 

Canada: Morin et al. (2011); Portugal: Ohayon & Paiva (2005); China: Xiang et al. 
(2008); Switzerland: Angst et al. (1989); Greek: Paparrigopoulos et al (2010); Ireland: Nugent et 
al. (2008); UK: Morphy et al. (2007); Japan: Kim et al. (2000); India: Panda et al. (2012); Brazil: 
Lopes et al (2014); Spain: Ohayon & Sagales (2010) 
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Incidende of insomnia in Europe: 
 
Riemann, D., Baglioni, C., Bassetti, C., Bjorvatn, B., Dolenc Groselj, L., Ellis, J. G., . . . 

Spiegelhalder, K. (2017). European guideline for the diagnosis and treatment of 
insomnia. Journal of Sleep Research, 26(6), 675-700. doi:10.1111/jsr.12594 

 

Sleep dissatisfaction from Canada: Morin et al. (2011); Finland, France, Turkey, Latvia, 
Lithuania, Malta, Greece, Ireland, Norway, Spain: May et al. (2018); Portugal: Phayon & Paiva 
(2005); Switzerland: Statista "Leiden Sie unter Schlafstörungen?"(2019); USA, France, 
Germany, Italy, UK, Japan: Léher et al. (2007).  

And prevalence of sleep problems from Van de Straat & Bracke (2015); Iran: Hosseini 
et al. (2018); USA: Olufunmilola et al. (2017); Norway: Pallesen et al. (2014); Japan, India, 
China: Gulia & Kumar (2018). 

As these sources gave different types of data for incomplete sets of countries, but 
together most countries were covered, we used the following strategy: 

New variables were constructed, in which the respective original variables were rank-
ordered. Then a new hyper-variable was constructed in which the mean rank of those variables 
that were available per country was deposited. Finally, this new mean rank-variable was again 
ranked to yield the rank order of countries with sleep problems. This was used for further 
analysis. 

 

Health Services Data: 

We exctracted number of doctors, standardized per 1.000 inhabitants, number of 
hospital beds and number of ICU beds, standardized. 

Hospital Beds (per 1.000 inhabitants)  

WHO: Global Health Observatory data repository. Hospital bed density. Data by 
Country. Last updated 2020-03-10. Zugriff am 15.05.2020. Online verfügbar unter 
https://apps.who.int/gho/data/view.Mayn.HS07v   

number of doctors (per 10.000 inhabitants) 

Global Health Workforce Statistics. Medical doctors. World Health Organization, 
Geneva. Last updated 2020-02-14. Zugriff am 15.05.2020. Online verfügbar unter 
https://apps.who.int/gho/data/node.Mayn.HWFGRP_0020?lang=en  

 

absolute numbers of doctors in chosen countries: 

Global Health Workforce Statistics. Medical doctors. World Health Organization, 
Geneva. Last updated 2020-02-14. Zugriff am 15.05.2020. Online verfügbar unter 
https://apps.who.int/gho/data/node.Mayn.HWFGRP_0020?lang=en 

 

 According to the year given in the data base: 
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Global Health Workforce Statistics. Medical doctors. World Health Organization, 
Geneva. Last updatet 2020-02-14. Zugriff am 15.05.2020. Online verfügbar unter 
https://apps.who.int/gho/data/node.Mayn.HWFGRP_0020?lang=en 

  

Number of Intensive Care Unit Beds: 

Taken from the OECD report “Beyond Containment: Health systems responses to 
COVID-19 in the OECD“ (p.13 https://oecd.dam-broadcast.com/pm_7379_119_119689-
ud5comtf84.pdf); accessed 15th May 2020; see also: http://www.oecd.org/coronavirus/policy-
responses/beyond-containment-health-systems-responses-to-covid-19-in-the-oecd-6ab740c0/ 

The following countries are not contained in this list and data for these countries come 
from the according sources: 

China: Phua, J.; Farug, M.; Kulkarni, Atul; Redjeki, Ike (2020-01-01). "Critical Care Bed 
Capacity in Asian Countries and Regions". Critical Care Medicine. 
doi:10.1097/CCM.0000000000004222. 

Czech Republic, Estonia, Finland, Greece, Iceland, Latvia, Lithuania, Luxembourg, 
Portugal, Slovakia, Slovenia, Sweden: Rhodes, A.; Ferdinande, P.; Flaatten, H.; Guidet, B.; Metnitz, P. 
G.; Moreno, R. P. (2012-10-01). "The variability of critical care bed numbers in Europe". Intensive Care 
Medicine. 38 (10): 1647–1653. doi:10.1007/s00134-012-2627-8. ISSN 1432-1238. PMID 
22777516. 

Germany: DIVI-Intensivregister https://www.intensivregister.de/#/intensivregister 

Russia: http://government.ru/news/39218  

Turkey: https://dosyamerkez.saglik.gov.tr/Eklenti/33116,haber-bulteni---2018-30092019pdf.pd  

 

Number of Tests (extracted 13th May 2020) 

https://www.worldometers.info/coronavirus/ 

 

Drugs 

We attempted to get data for lipid-lowering drug consumption, but as these data were 
sparse and not systematically comparable, we desisted from further attempts. 

Mercury 

Country wide mercury consumption is not easily available. UN-EN reports give tons of 
consumption for those countries that use mercury in the chlorine-alkaline industry but this is 
only about half of the countries. For the rest only regional data were available. We contacted 
Dr. Steenhuisen and Prof. Kümmerer in the hope to get help. Dr. Steenhuisen did not provide 
data and the publication (Steenhuisen, F., & Wilson, S. J. (2019). Development and 
application of an updated geospatial distribution model for gridding 2015 global mercury 
emissions. Atmospheric Environment, 211, 138-150. 
doi:https://doi.org/10.1016/j.atmosenv.2019.05.003) did not contain data. Prof. Kümmerer, 
an expert in environmental toxicology did not have any information, neither did other experts 
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asked. Hence we dropped this variable in the final analysis, as the data from the UN-EN report 
on mercury in the alkaline industry was too patchy. 

 

At each step new partial data-sets were created and added to the master database with 
the Statistica-data “merge” command with variable merging according to country names and 
each set was saved under a new name. 

Since some variables were created as functions of others and indexed by the original 
variable number, the final database contained all variables, even those that were never further 
used except for orienting correlations. 

 

Transformations 
 

 Outcome variables were log-transformed to check whether they would then be normally 
distributed to allow for a normal linear regression. As the result was less than satisfactory we 
decided to go for a generalized model and regress on a gamma-distributed variable, as the 
variables were clearly gamma-distributed. 

Date variables were calculated from starting date to the 15th May for border closure, 
school closure, and finally for the rapidity of reaction as the difference. This was defined as the 
date when the first measure, either border closure or school closure was registered and the days 
to first case registration was calculated. 

 

 

First Analyses 

 
Distribution analyses of the dependent variable showed that it was gamma distributed 

and that a log transformation cannot rectify this. Hence it was decided that a regression on 
gamma-distributed variables should be calculated. 

First non-parametric correlations were correlated to see which variables correlate at all 
with the outcome, and as defined in the protocol, only variables with r > .3 and/or significantly 
correlating variables were considered further in regression models. The regression models used 
the functionality Generalized Linear Models, stipulating a gamma distributed outcome variable 
with a log-link function. The parametrization method was overparametrized, as there was no 
sigma restricted coding in our data. 

All potentially included variables were inspected for their descriptive parameters and to 
see, whether they contribute any variance. If several similar variables (.e.g. air pollution 
variables) were available we used those that had the least missing data in order to not lose 
power. 

All modeling approaches included first health serviced, population and health 
parameters in a model, trying to fit the most parsimonious model with only significant 
predictors in the equation. This was done by calculating forced entry models, excluding non-
significant predictors and recalculating the model. Highly intercorrelated variables were never 
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used together, but separate models were calculated and the model with the best model fit was 
selected. 

After that variables representing political actions (country lockdown, school closure) 
were entered in an additional model and used if significant as predictors. 
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