
 1 

Predictable county-level estimates of R0 for COVID-19  

needed for public health planning in the USA 
 

Anthony R. Ives1 *, Claudio Bozzuto2 
 

Affiliations: 
1 * Department of Integrative Biology, University of Wisconsin-Madison, Madison,  

WI 53706, USA. arives@wisc.edu. Correspondence to this address. 
2   Wildlife Analysis GmbH, Oetlisbergstrasse 38, 8053 Zurich, Switzerland.  

  bozzuto@wildlifeanalysis.ch. 

 

 

The basic reproduction number, R0, determines the rate of spread of a 

communicable disease and therefore gives fundamental information needed to 

plan public health interventions. Estimated R0 values are only useful, however, 

if they accurately predict the future potential rate of spread. Using mortality 

records, we estimated the rate of spread of COVID-19 among 160 counties and 

county-aggregates in the USA. Among-county variance in R0 estimates was 

explained by four factors: the timing of the county-level outbreak, population 

size, population density, and spatial location. The high predictability of R0 

makes it possible to extend estimates to all counties in the lower 48 States. The 

predictability also makes the R0 estimates valuable guides for designing long-

term public health policies for controlling COVID-19.  

 

The basic reproduction number, R0, is the number of secondary infections produced per primary 

infection of a disease, and it is a fundamental metric in epidemiology that gauges, among other 

factors, the initial rate of disease spread during an epidemic (1). While R0 depends in part on the 

biological properties of the pathogen, it also depends on properties of the host population such as 

the contact rate between individuals (1, 2). Estimates of R0 are required for designing public 

health interventions for infectious diseases such as COVID-19: for example, R0 determines in 

large part the proportion of a population that must be vaccinated to control a disease (3, 4). 
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Because R0 at the start of an epidemic measures the spread rate under "normal" conditions 

without interventions, these initial R0 values can inform policies to allow life to get "back to 

normal."  

 Using R0 estimates to design public health policies is predicated on the assumption that 

the R0 values at the start of the epidemic reflect properties of the population and therefore predict 

the potential rate of spread of the disease in case of a resurgent outbreak. Estimates of R0, 

however, might not predict future risks if (i) they are measured after public and private actions 

have been taken to reduce spread (5, 6), (ii) they are driven by stochastic events, such as super-

spreading (7, 8), or (iii) they are driven by social or environmental conditions that are likely to 

change between the time of initial epidemic and the future time for which public health 

interventions are designed (9, 10). The only way to determine whether the initial R0 estimates 

reflect persistent properties of populations is to identify those properties: if they are unlikely to 

change, then so too is R0 unlikely to change.  

Policies to manage for COVID-19 in the USA are set by a mix of jurisdictions from state 

to local levels. We estimated R0 at the county level both to match policymaking and to account 

for possibly large variation in R0 among counties. To estimate R0, we performed the analyses on 

the number of daily COVID-19 deaths (11). We used morality rather than infection case reports, 

because we suspected the proportion of deaths due to COVID-19 that were reported is less likely 

to change compared to reported cases. Due to the mathematical structure of our estimation 

procedure, unreported deaths due to COVID-19 will not affect our estimates of R0, provided the 

proportion of unreported deaths remains the same. We analyzed data for counties that had at least 

100 reported cumulative deaths, and for other counties we aggregated data within the same state 

including deaths whose county was unknown. This led to 160 final time series representing 

counties in 39 states and the District of Columbia, of which 36 were aggregated at the state level.  

We applied a time-varying autoregressive state-space model to each time series (12). In 

contrast to other models of COVID-19 epidemics (e.g., 13, 14), we do not incorporate the 

transmission process and the daily time course of transmission, but instead we estimate the time-

varying exponential change in the number of deaths per day, r(t). Detailed simulation analyses 

showed that estimates of r(t) generally lagged behind the true values. Therefore, we analyzed the 

time series in forward and reverse directions, and averaged to get the estimates of r0 at the start 

of the time series (Supplementary materials attached below). The model was fit accounting for 
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greater uncertainty when mortality counts were low, and confidence intervals of the estimates 

were obtained from parametric bootstrapping. Thus, our strategy was to use a parsimonious 

model to give robust estimates of r0 even for counties that had experienced relatively few deaths, 

and then calculate R0 from r0 after the fitting process using well-established methods (15). 

 Our r0 estimates ranged from close to zero for several counties to 0.33 for New York City 

(five boroughs); the latter implies that the number of deaths increases by a factor of e0.33 = 1.39 

per day. There were highly statistically significant differences between upper and lower 

estimates (Fig. 1). Although our time-series approach allowed us to estimate r0 at the start of 

even small epidemics, we anticipated two factors that could potentially bias our estimates away 

from the true value of r0 in naïve populations before public or private health interventions were 

taken. The first factor is the timing of the onset of county-level epidemic: 35% of the local 

outbreaks started after the declaration of COVID-19 as a pandemic by the WHO on 11 March, 

2020 (16), and thus we anticipated estimates of r0 to decrease with the Julian date of outbreak 

onset. We used the second factor, the size of the population encompassed by the time series, to 

factor out statistical bias from the time-series analyses. Simulation studies showed that estimates 

for time series with few deaths were downward biased (Fig. S2; Supplementary materials 

attached below). Because for a given r(t) the total number of deaths in a time series should be 

proportional to the population size, we used population size as a covariate to remove bias. In 

addition to these two "nuisance" factors, we also anticipated effects of population density and 

spatial autocorrelation. Therefore, we regressed r0 against outbreak onset, population size and 

population density, and included spatially autocorrelated error terms (Supplementary materials 

attached below).  

 The regression analysis showed highly significant effects of all four factors (Table 1), and 

each factor had a substantial partial R2pred (17). The overall R2pred was 0.69, so most of the 

county-to-county variance was explained. We calculated corrected r0 values, factoring out the 

effects of outbreak onset and population size, by standardizing the r0 values by 11 March, 2020 

and the most populous county (for which the estimates of r0 are likely best). Counties with low to 

medium population density never had high corrected r0 values (Fig. 2A), suggesting that 

population density sets an upper limit on the rate of spread of COVID-19. Nonetheless, the 

explanatory power of density was not great (partial R2pred = 0.13); this is not surprising, because 

county population density will likely be only roughly related to contact rates among people. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Spatial autocorrelation was stronger (partial R2pred = 0.42) and occurred at the scale of hundreds 

of kilometers (Fig. 2B). This in part reflects the relatively high values of corrected r0 clustered on 

the Northeast and Midwest, and the relatively low r0 clustered in the West and South. 

Nonetheless, when included in the regression model with spatial autocorrelation, regional 

differences were not statistically significant. The spatial autocorrelation could potentially be 

caused by different genetic strains of SARS-CoV-2 that differ in transmissibility spreading in 

different regions of the USA. It might also reflect differences in public responses to COVID-19 

across the USA not captured by outbreak onset in the model. For example, Seattle, WA, reported 

the first positive case in the USA, on 15 January, 2020, and there was a public response before 

deaths were recorded (18). In contrast, the response in New York City was delayed, even though 

the outbreak occurred later than in Seattle (19). The spatial autocorrelation could also potentially 

be caused by movement of infected individuals. However, because we estimated r0 from deaths 

at the county level, movement would only lead to autocorrelation in our regression if many of the 

reported deaths were of people infected outside the county. Although we cannot isolate the 

source of the autocorrelation from these data, its high explanatory power implies that it carries 

information that will affect future R0 values. 

 To obtain evidence that the corrected estimates of r0 represented values in naïve 

populations, we investigated additional population characteristics that should not affect the initial 

spread rate of COVID-19 (20, 21): (i) median age, (ii) adult obesity, (iii) diabetes, (iv) education, 

(v) income, (vi) poverty, (vii) economic equality, (viii) race, and (ix) political leaning (Table S2). 

The first three characteristics likely affect morbidity (22) but not transmission rates, and 

therefore they should not be significant when included with population size (the covariate that 

we uses to factor out differences in the number of recorded deaths). The remaining 

characteristics might affect health outcomes and responses to public health interventions, but 

they should not be significant when included with the date of outbreak onset. Accordingly, none 

of these characteristics was a statistically significant predictor of r0 when taking the four main 

factors into account (all P > 0.1). We also repeated all of the analyses on estimates of r(t) at the 

end of the time series (5 May, 2020, assuming an average time between infection and death of 18 

days) (Table S3). The corresponding R2pred = 0.38, largely driven by a large positive effect of the 

date of outbreak onset. The absence of significant effects of the additional population 

characteristics on r0, and the lower explanatory power of the model on r(t) at the end of the time 
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series, underscore the predictability of our estimates of r0. 

 In the regression model, the standard deviation of the residuals was 1.11 times greater 

than the standard error of the estimates of r0. This implies that the uncertainty of an estimate of r0 

from the regression is only slightly higher than the uncertainty in the estimate of r0 from the time 

series itself. Therefore, using estimates from other time series will give estimates of r0 for a 

county that are almost as precise as the estimate from the county's time series. In turn, this 

implies that the regression can also be used to extrapolate estimates of r0 to counties for which 

deaths were too sparse for time-series analysis. 

 We used the regression to extrapolate values of r0 for all 3109 counties in the 

conterminous USA, and we computed values of R0 from r0 using information about the time 

course of transmission from an infected individual (15, 23). The high predictability of r0, and 

hence R0, from the regression is seen in the comparison between R0 calculated from the raw 

estimates of r0 (Fig. 3A) and R0 calculated from the corrected r0 values (Fig. 3B). Extrapolation 

from the regression model makes it possible not only to get refined estimates for the counties that 

were aggregated in the time-series analyses; it also gives estimates for counties within states with 

so few deaths that county-aggregates could not be analyzed (Fig. 3C,D). The end product is a 

map of R0 for the conterminous USA (Fig. 3E). 

 It is widely understood that different states and counties in the USA, and different 

countries in the world, have experienced COVID-19 epidemics differently. Our analyses have 

put numbers on these differences in the USA. The differences argue for public health 

interventions to differ at the county level. For example, the vaccination coverage in the most 

densely populated area, New York City, needed to prevent future outbreaks of COVID-19 will 

be much greater than for sparsely populated counties. Similarly, if vaccines are not developed 

quickly and non-pharmaceutical public health interventions have to be re-instated during 

resurgent outbreaks, then counties with higher R0 values will require stronger interventions. As a 

final example, county-level R0 values can be used to assess the practicality of contact-tracing of 

infections, which become impractical when R0 is high (24). 

We present our county-level estimates of R0 as preliminary guides for policy planning, 

while recognizing the myriad other epidemiological (e.g. 25, 26) and political factors that must 

shape public health decisions (3, 27-29). We also recognize the importance of following the day-

to-day changes in death and case rates, and short-term projections used to anticipate hospital 
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needs and modify public policies (30-32). Looking back to the initial spread rates, however, 

gives a window into the future and what public health policies will be needed when COVID-19 

is endemic. 
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Table 1. For 160 county and county-aggregates, regression of initial spread rate, r0, against (i) 

the date of outbreak onset, (ii) total population size and (iii) population density, in which (iv) 

spatial autocorrelation is incorporated into the residual error. For the overall model, R2pred = 0.69, 

and the residual standard error is 1.11. 

 

  Value  SE t P partial R2
pred 

(i) onset -0.0018 0.0004 -4.28 10–4 0.093 

(ii) log(size) 0.0242 0.0028 8.59 < 10–8 0.34 

(iii) density1/4 0.010 0.0017 5.68 < 10–8 0.13 

(iv) space 
range = 3.88 

nugget = 0.39 
 c2

1 = 59 < 10–8 0.42 
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Fig. 1. Estimates of initial spread rate, r0, for 124 counties (gray) and 36 county-aggregates 

(blue) with 66% (bars) and 95% (whiskers) bootstrapped confidence intervals.  
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Fig. 2. Estimates of initial spread rates, r0, after correcting for the effects of outbreak onset and 

the population size. (A) Effect of population density (Northeast, black circles; Midwest, cyan 

diamonds; South, blue x’s; West, red triangles). (B) Effect of spatial proximity depicted by 

computing correlations in bins representing 0-100 km, 100-200 km, etc. The line gives the 

correlation of the residuals from the fitted regression. 
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Fig. 3. (A,B) Raw and corrected estimates of R0. The predicted R0 values are obtained from the 

regression model, with corrections to standardize values to an outbreak onset of 11 March, 2020, 

and a population size equal to the most populous county. Comparing the raw estimates of R0 (A) 

and the corrected R0 values (B) shows the predictive power of the regression analysis. We thus 

used the regression model to predict R0 for all counties. The raw estimates (C) are all the same 

for county-aggregates and could not be made for some States (gray). In contrast, (D) the 

predictability R0 in the regression model allows for better estimates. This makes it possible to 

extend estimates of R0 to all 3109 counties in the conterminous USA (E).  
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Materials and Methods 

 

1. Data selection and handling 

 

1.1 Death data 

 For mortality due to COVID-19, we used time series provided by the New York Times 

(11). We analyzed separately only counties that had records of 100 or more deaths. The District 

of Columbia was treated as a county. Also, because the New York Times dataset aggregated the 

five boroughs of New York City, we treated them as a single county. For counties with fewer 

than 100 deaths, we aggregated mortality to the state level to create a single time series. For 

thirteen States (AK, DE, HI, ID, ME, MT, ND, NH, SD, UT, VM, WV, and WY), the aggregated 

time series did not contain 100 or more deaths and were therefore not analyzed. For states that 

contained single counties that satisfied the 100 deaths criterion, while the aggregate of the 

remainder of counties contained fewer than 100 deaths (DE, NH, NV), the single counties were 

retained and the aggregated time series dropped in order to maintain the finest-scale spatial 

resolution in the analyses. 

 Deciding when to initiate the time series for analysis involves balancing three factors. 

First, because our goal was to try to estimate R0 for a "naive" population in which few 

interventions were taken, pushing the initiation of the time series as early as possible is 

important. Second, initiating the time series earlier also means that the count data are sparser, 

increasing uncertainty in the estimates. Third, we wanted the R0 estimate to reflect conditions 

within a state and therefore exclude deaths caused by infections contracted elsewhere and 

brought into the state. To balance these factors, we selected a threshold of one death per day as 

the starting point of the time series we analyzed. We determined when these thresholds were met 

using the GAMM in the R package 'mgcv' (33) to smooth the time series (see 3.6. Initial date of 

the time series).  

 

1.2 County-level variables 

 We obtained county-level population size and area (km2) from the US Census Bureau 

(21). Other socio-economic variables (Table S2) we obtained from Kirkegaard (20). We selected 

socio-economic variables a priori in part to represent a broad set of population characteristics, 
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and in part to represent factors that we anticipated would affect the proportion of the population 

that would die from COVID-19 without necessarily affecting the transmission rate. Thus, for 

example, mortality is high for older individuals, and therefore we would anticipate that counties 

with greater median population age would have higher numbers of deaths. Nonetheless, the 

increased mortality will not necessarily affect the transmission rate of the disease. Therefore, we 

used median age as a check on our analyses; if median age were significant, then this would call 

into question our estimates. Similarly, even though politically right-leaning states might have 

showed lower responses to COVID-19 in terms of public or private interventions, we would not 

anticipate differences in very early in the epidemic. Therefore, a check on our estimates is a non-

significant effect of the proportion of votes cast for Donald Trump in the 2016 Presidential 

election. 

 

2. Overview of statistical methods 

 Here we give an overview of the statistical methods and steps that we took to validate 

them. In subsequent sections we present the technical details of the methods. Thus, the present 

section gives a roadmap. 

 The rate of spread of a disease in a population at the early phase of an epidemic, r0, when 

the entire population is susceptible depends on the basic reproduction number, R0, giving the 

number of secondary infections produced per infected individual, and the distribution of the time 

between primary and secondary infections. Thus, if the spread rate and distribution of infection 

times can be estimated, R0 can then be calculated. Our strategy is to estimate r0 as the most direct 

parameter associated with the dynamics of an epidemic, and then subsequently estimate R0. The 

advantages of calculating r0 include: (i) it captures all of the real-life complexities that affect R0 

by simply observing what happened in real life, and (ii) it uses data that are (tragically) 

becoming more prevalent. The challenges include (i) the changes in r(t) that are to be expected 

(and hoped for) as people and governments respond to lessen the spread, and (ii) the statistical 

challenges and uncertainties of determining rates of disease spread when the numbers of deaths 

are still low. 

  We developed and tested statistical methods to overcome the two challenges of 

estimating R0 from death data. Because the rate of spread of a disease may change rapidly in 

response to actions that are taken to reduce disease transmission, we used a time-varying 
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autoregressive model that allows for the rate of spread to change through time, r(t). Other models 

take a related approach (6, 14). The second challenge is that the counts of deaths at the beginning 

of an epidemic are low. To account for this, the time-series model includes increased uncertainty 

(measurement error) that depends on the time-varying estimate of the number of deaths. Standard 

(asymptotic) approaches often have poor statistical properties (type I errors, correctly calculated 

confidence intervals) when sample sizes are small (34). Therefore, we use bootstrapping (35) in 

which simulation time series are reconstructed to share the same pattern as the observed time 

series; a large number of simulated time series are then fit using the same statistical model as 

used to fit the original data. This bootstrapping procedure thus gives estimates and confidence 

intervals for model fit to the real data. Note that our approach is frequentist, in comparison to the 

majority of models that use a Bayesian framework. 

 Our approach focuses on estimating the time-varying rate of spread, r(t), of the number of 

deaths. Our rationale is that, for statistical fitting, it is better to keep the model as simple as 

possible, rather than "building in" assumptions about the processes of infection, reporting, and 

death. Our simple phenomenological model uses the same data as more complicated, process-

based models, and therefore both approaches ultimately rely on the same information. The 

simpler approach, however, does not depend on assumptions about the infection processes. 

Instead, after estimating r0, we computed R0 as 1/Ste-r(t)tp(t), where t is the number days after 

initial infection, and p(t) is the proportion of secondary infections produced per infected 

individual at t (15). This expression assumes that deaths (removal of individuals from the 

population) occur after all secondary infections have occurred. We used the distribution of p(t) 

that was estimated using contact tracing in Wuhan, China (23). 

 To validate the statistical method, we constructed a simulation model of the transmission 

process and spread of infections iterated on a daily time scale. Our simulations considered 

scenarios in which the transmission rate changed through time either in steps or gradually to 

capture the extremes of possible changes in real R(t). We varied the initial R0 and duration of 

simulations to produce epidemics that qualitatively match the county data we analyzed. Changes 

in our estimates of r(t) tended to lag behind changes in the true (simulated) value of r(t) (gray 

line and regions in Fig. S1A,B), and therefore we also estimated r(t) in the reverse direction 

(blue line and regions in Fig. S1A,B). For the estimate of the initial r0, we averaged the estimates 

from the forward and reverse time series. For the scenario of step changes in R(t) (Fig. S1 C), the 
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estimates were unbiased and had accurate confidence intervals, although for the scenario of 

gradual changes (Fig. S1 D), there was some downwards bias. Nonetheless, the estimates of 

initial R0 captured the order of simulations according to the true R0. In contrast, fitting the same 

time series with a commonly used Bayesian model that incorporates the transmission process 

given in the R package EpiEstim (13) gave estimates that poorly reflect the true (simulated) 

initial R0 (Fig. S1 E,F). 

 We also used the simulation model to investigate the properties of the statistical method 

when the number of deaths was low, as occurred in some time series. Reducing the simulated 

values of R0 reveals that the estimates of r0 become biased downwards when the maximum 

number of reported deaths per day drops below 15 (Fig. S2). This is due to the time series 

containing too little information about the rate of increase in the number of mortalities for 

accurate estimates. Because we did not think that our method (or any other) could overcome this 

challenge, we incorporated population size encompassed by a time series in the subsequent 

regression analysis. We used population size rather than the maximum number of deaths, 

because this would introduce a confounding effect: time series with higher r0 will likely have 

higher numbers of deaths. 

 In order to extrapolate the estimates of R0 from 160 time series to the remaining counties 

in the conterminous USA, we a priori selected four predictors. We selected population size 

encompassed by the time series to account for possible downwards bias in sparse datasets. We 

selected the Julian date of the outbreak onset to factor out public and private responses to 

COVID-19. We treated these two variables as “nuisance” variables that needed to be removed. 

We included population density, because it could potentially affect transmission rates. 

Population size and density were weakly and negatively correlated among the 160 time series 

(Pearson correlation between log population size and log density = –0.25), and therefore there 

were no problems with multicollinearity. Finally, the regression model included spatial 

autocorrelation based on the latitude and longitude of the midpoint of the counties or county 

aggregates. Because the regression model had residual variance that was only slightly high than 

the variance of the estimates of r0 that the regression predicted, the precision of the estimates 

from the regression for the counties without time series will be on par with the precision of the 

counties with time series. 
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3. Time series analysis 

 

3.1 Time series model 

 The time-varying autoregressive model that we applied to the time series is a variant of 

the TVIRI (time-varying intrinsic rate of increase) model presented in Bozzuto and Ives (36), 

which is an implementation of time-varying autoregressive models (e.g., 37, 38, 39) that is 

designed explicitly to estimate the rate of increase of a variable using non-Gaussian error terms. 

We assume in our analyses that the proportion of the population represented by a time series is 

close to one, and therefore there is no decrease in the infection rate caused by a pool of 

individuals who were infected, recovered, and were then immune to further infection. Thus, the 

variant of the TVIRI model we used here does not include a density-dependent term that would 

account for decreases in the proportion of susceptibles in the population. 

 The general specification of the model is 

 

 x(t) = r(t–1) + x(t–1) (S1a) 

 r(t) = r(t–1) + wr(t) (S1b) 

 x*(t) = x(t) + ϕ(t) (S1c) 

 

Here, x(t) is the unobserved, log-transformed value of deaths at time t, and x*(t) is the observed 

count that depends on the observation uncertainty described by the random variable ϕ(t). 

Because a few of the datasets that we analyzed had zeros, we replaced zeros with 0.5 before log-

transformation; other ways of treating zeros in the count data gave very similar results. The 

model assumes that x(t) increases exponentially at rate r(t), where the latent state variable r(t) 

changes through time as a random walk with wr(t) ~ N(0, s2r). This assumption allows r(t) to 

change through time as dictated by the data, and the estimate of s2r sets the rate at which r(t) can 

change from one day to the next. 

 We assume that the count data follow a quasi-Poisson distribution. Thus, the expectation 

of counts at time t is exp(x(t)), and the variance is proportional to this expectation. On the log-

transformed scale of x*(t), this implies that ϕ(t) has mean zero and variance approximately s2ϕ + 

exp(–x(t)), where s2ϕ scales the variance. 
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 We fit the model using the Kalman filter to compute the maximum likelihood (40, 41). In 

addition to the parameters s2r, and s2ϕ, we estimated the initial value of r(t) at the start of the 

time series, r0, and the initial value of x(t), x0. The estimation also requires an assumption for the 

variance in x0 and r0, which we assumed were zero and s2r, respectively. In the validation using 

simulated data, we found that the estimation process tended to absorb s2r to zero too often; this 

is a common feature of time-varying autoregressive models. When this occurs, the estimate of r0 

is the average over the entire time series and is thus biased downwards. To eliminate this 

absorption to zero, we imposed a minimum of 0.02 on s2r, which eliminated the problem in the 

simulations. 

 

3.2 Applying the model to epidemiological data 

 The time-varying autoregressive model estimates the rate of spread of the disease, r(t), 

from the count of deaths observed each day, x*(t). Any value of x*(t) reflects the number of 

people infected over multiple days in the past, and the proportion that is counted as a result of 

death on day t. If the disease had been spreading exponentially at constant rate for many days, 

and if the number of infected people was large, then the increase from x*(t–1) to x*(t) would 

approach a constant value; in other words, r(t) would give the exponential rate of spread of the 

disease. This would be true even if only a small fraction of the infected population died or was 

diagnosed, provided these fractions did not change through time. However, changes in the 

infection rate will mean that the disease is not at its "stable infection age distribution", the 

distribution of time since infection observed in the infected population (42). While this does not 

affect the statistical model fitting, it will mean that the observed spread of the disease is not 

exactly equal to the rate of new infections. Nonetheless, because the distribution of times 

between infection and counting (deaths) is fairly broad, the assumption that populations are at 

their "stable infection age distribution" is unlikely to cause a great difference between the 

observed rate of disease spread and the infection rate. This is addressed in detail in the 

simulation study (3.3 Parametric bootstrapping). 

 The "true" value of the number of daily deaths in the model, x(t) (S1a), is the probability 

that a death is counted. After accounting for measurement error (S1c), all of the variation in x(t) 

is assumed to be given by variation in the spread rate r(t) (S1b). Therefore, the variation wr(t) in 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 19 

r(t) includes both the day-to-day variation in the spread rate and the longer-term changes in r(t) 

that results when estimates of wr(t) have a mean different from zero. The assumption that r(t) is a 

random walk gives it flexibility to track the patterns in the data as the model is fit. We suspect 

that the true changes in the infection rate do not vary greatly on a day-to-day basis. This might 

argue for fitting a smoothing curve to r(t) or x(t). Nonetheless, we found that results from curve-

fitting models were sensitive to decisions made about the type of curves that were fit. The time-

varying autoregressive model was less dependent on a priori assumptions, due to few a priori 

assumptions about the data. Further, the bootstrapping method we applied to obtain estimates of 

the uncertainty of the model fits also acts as a smoothing method. 

 

3.3 Parametric bootstrapping 

 To generate approximate confidence intervals for the time-varying estimates of r(t), we 

used a parametric bootstrap designed to simulate datasets with the same characteristics as the real 

data that are then refit using the autoregressive model. This procedure answers the question: If it 

were possible to observe many time series generated by the same process, how variable would be 

the results of the statistical model fit? This bootstrapping approach requires assumptions about 

the process underlying the true data. Because the underlying changes in r(t) are of interest, the 

bootstrap incorporates the time-varying changes in the estimated values of r(t) from the fitted 

data. 

 Changes in r(t) consist of unbiased day-to-day variation and the biased deviations that 

lead to longer-term changes in r(t). The bootstrap treats the day-to-day variation as a random 

variable while preserving the biased deviations that generate longer-term changes in r(t). 

Specifically, the bootstrap was performed by calculating the differences between successive 

estimates of r(t), Dr(t) = r(t) – r(t-1), and then standardizing to remove the bias, Drs(t) = Dr(t) – 

E[Dr(t)]. The sequence Drs(t) was fit using a autoregressive time-series model with time lag 1, 

AR(1), to preserve any shorter-term autocorrelation in the data. For the bootstrap a new time 

series was simulated from this AR(1) model, Dr(t), and then standardized, Drs(t) = Dr(t) – 

E[Dr(t)]. The simulated time series for the spread rate was constructed as r(t) = r(t) + Drs(t)/ 

21/2, where dividing by 21/2 accounts for the fact that Drs(t) was calculated from the difference 

between successive values of r(t). A new time series of count data, x(t), was then generated using 

equation (S1a) with the parameters from fitting the data. Finally, the statistical model was fit to 
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the reconstructed x(t). In this refitting, we fixed the variance in r(t), s2r, to the same value as 

estimated from the data. Therefore, the bootstrap confidence intervals are conditional of the 

estimate of s2r. We imposed this condition, because the estimate of s2r tends to absorb to zero 

when the change in r(t) is small, with variation in x(t) transferred to the measurement error 

variance.  

 

3.4. Calculating R0 

 We derived estimates of R(t) directly from r(t) as (15) 

 

 R(t) = 1/Ste-r(t)tp(t) (S2) 

 

where p(t) is the distribution of the proportion of secondary infections caused when by a primary 

infection that occurred t days previously. We used the distribution of p(t) from Li et al. (23) that 

had an average serial interval of T0 = 7.5 days; smaller or larger values of T0, and greater or 

lesser variance in p(t), will decrease or increase R(t) but will not change the pattern in R(t) 

through time. We report values of R(t) at dates that are offset by the average length of time 

between initial infection and death, which is taken as 18 days (43).  

 

3.5. Simulation for validation 

 To assess the robustness of the statistical model, we built a simulation SIR (susceptible-

infected-recovered) model of a hypothetical epidemic. The simulation model was not the same as 

the statistical model, so the goal was to determine whether the phenomenological statistical 

model was capable of capturing the rate of infection spread in the process-based simulations. 

 The simulation model tracks the number of infected individuals on day t who were 

infected t days previously, X(t;t). After 25 days, they are all assumed to be recovered or dead. 

The probability distribution of the day on which a susceptible is infected, p(t), is given by a 

Weibull distribution with mean 7.5 days and standard deviation 3.4 (23) (Fig. S3 A). For an 

individual who dies, the day of death, d(t), is given by a Weibull distribution with mean 18.5 

days and standard deviation 3.4 (23) (Fig. S3 B). Finally, for case data we need to know the time 

between initial infection and diagnosis, h(t), which we assume is lognormally distributed with 
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mean 5.5 days and standard deviation 2.2 (44) (Fig. S3 C). 

 On day t, the number of new infections produced by individuals who were infected t days 

earlier is b(t) p(t). The term b(t) is closely related to R(t), the number of secondary infections 

caused per infection. However, because we allow b(t) to fluctuate on a daily basis, here we use a 

notation that differs from R(t). Note, however, that on average R(t) = St b(t + t) p(t). The total 

number of new infections on day t is given by a lognormal Poisson distribution in which the 

mean of the Poisson process is b(t) a(t) St p(t)X(t;t), where the lognormal random variable a(t) 

is included to represent environmental variation.  

 Deaths occur according to a binomial distribution for each infection age category X(t;t), 

so that the probability of death of individuals that had been infected t days earlier is (1 – s) b(t) 

d(t), where s is the overall survival probability and b(t) is a lognormal distribution. We assume 

that the overall survival probability for COVID-19 is 98%; changes in this assumption had little 

effect on the simulation study. Once an individual dies, they are removed from the pool of 

individuals. 

 Cases are reported according to a binomial distribution for each infection age category 

X(t;t), so that the probability of a person with the infection for t days being diagnosed is G c(t) 

h(t), where G is the overall probability that a case is reported, and c(t) is a logit-normal 

distribution to represent daily variation in reporting. We assume that the overall reporting 

probability is G = 0.5.  

 To illustrate the simulations, we assumed that the expectation of the infection rate, b(t), 

changes as a step function (Fig. S4 A, black line), while there is also daily variation around this 

expectation (Fig. S4 A, points). We also calculated R(t) from the asymptotic rate of disease 

spread (Fig. S4 A, red line). This shows that the expected daily infection rate, b(t), is closely 

related to the population-level R(t). Over the simulated time series of 60 days, we then recorded 

the number of deaths (Fig. S4 B) and diagnosed cases (Fig. S4 C). We initiated the simulation 

with a single cohort of individuals, all infected on day 1 (Fig. S4 C, filled black dot). This gives 

the "worst-case" situation in which the distribution of time-since-infection is far from the stable 

age distribution.  

 We fit this simulated dataset using the same procedure as we used for the real data, 

including the same rules to determine which day to initiate the fitted time series (Fig. S1 A).  
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We performed a similar exercise while assuming that the expectation of the infection rate, b(t) 

changes geometrically, producing a linear change in r(t) (Fig. S1 B). In this particular example, 

the estimated values of r(t) are below the true values in the simulation in the first part of the time 

series. Because there was a lag in response of the estimates of r(t) relative to b(t), we fit the time 

series in both the forward and reversed directions, and we averaged these values (and their 

confidence intervals) for the final estimates. Note that this is possible in our approach, because 

we estimate r(t) rather than R(t). 

 We performed 100 simulations with the expectation of b(t) changing as either a step 

function (Fig. S1 C) or geometrically (Fig. S1 D), to assess the overall robustness of the 

modeling approach. Simulations were performed by changing the initial value of b(t). Because 

higher values of b(t) led to much higher numbers of deaths, we shorted the intervals between step 

changes and increased the decline in geometric changes in b(t) to roughly match the observed 

time series. Specifically, the simulated time series ranged in length from 55 to 150 days: for the 

case of step changes, the time series were broken into three equal periods, and for the case of 

geometric changes, the ending value of b(t) was kept the same. We also estimated R(t) using the 

R package EpiEstim under default control parameters (13). EpiEstim has the same general 

structure of many of the Bayesian models that estimate R(t) directly using information about the 

transmission process (Fig. S1 E,F). Even though EpiEstim is structurally more complicated than 

our model, it tended to give values of R0 that were biased upwards when the true value was low, 

and biased downward when the true value was high. Finally, we investigated the bias in our 

estimates of r0 when the maximum number of deaths in a time series was low by simulating time 

series for 20 to 70 days, using an initial value of b(t) to correspond to R0 = 4, and changing the 

timing of step changes or the rate of geometric decline of b(t) to correspond to the length of the 

time series. The simulations show that the estimates of r0 are downward biased when the total 

numbers of counts are low (Fig. S2). 

 

3.6. Initial date of the time series 

 Many time series consisted of initial periods containing zeros that were uninformative. 

As the initial date for the time series, we chose the day on which the daily mortality rate 

exceeded 1. To estimate the daily mortality rate, we fit a Generalized Additive Mixed Model 
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(GAMM) to the death data while accounting for autocorrelation and greater measurement error 

at low counts using the R package mgcv (33).  

 

4. Regression analysis for r0 

 We fit the estimates of r0 from the 160 county and county-aggregate time series with the 

Generalized Least Squares (GLS) model (S3) 

 

 r0 = b0 + b1 start.date + b2 log(pop.size) + b3 pop.den0.25 + e (S3) 

 

 e = N(0, s2S) 

 

where start.date is the Julian date of the start of the time series, log(pop.size) and pop.den0.25 are 

the log-transformed population size and 0.25 power-transformed population density of the 

county or county-aggregate, respectively, and e is a Gaussian random variable with covariance 

matrix s2S. The covariance matrix contains a spatial correlation matrix of the form C = uI + (1-

u)S(g) where u is the nugget and S(g) contains elements exp(-dij/g), where dij is the distance 

between spatial locations and g is the range. To incorporate differences in the precision of the 

estimates of r0 among time series, we weighted by the vector of their standard errors, s, so that S 

= diag(s) * C * diag(s), where * denotes matrix multiplication. With this weighting, the overall 

scaling term for the variance, s2, will equal 1 if the residual variance of the regression model 

matches the square of the standard errors of the estimates of r0 from the time series. We fit the 

regression model with the function gls() in the R package nlme (45). 

 To make predictions for new values of r0, we used the well-known relationship 

 

 �̂�i = �̅� + vi * V-1(ei - �̅�) (S4) 

 

where ei is the GLS residual for data i, �̂�i is the predicted residual, �̅� is the mean of the GLS 

residuals, V is the covariance matrix for data other than i, and vi  is a row vector row containing 

the covariances between data i and the other data in the dataset (46). This equation was used for 

three purposes. First, we used it to compute R2pred for the regression model by removing each 

data point, recomputing �̂�i, and using these values to compute the predicted residual variance 
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following (17). Second, we used it to obtain predicted values of r0, and subsequently R0, for the 

160 counties and county-aggregates for which r0 was also from time series. For these predicted 

values, for each row i of the data matrix, we removed row i and column i from S to give V, and 

we set vi as row i from S to give �̂�i. Then the predicted value of r0, r0[i], is 

 

 r0[i] = b0 + b1 min.start.date + b2 log(max.pop.size) + b3 pop.den[i]0.25 + �̂�i (S5) 

 

where min.start.date is the earliest start date of any time series, and max.pop.size is the 

maximum population size among counties. Third, we used equation (S4) similarly to obtain 

predicted values of r0, and hence predicted R0, for all other counties. For this, because there is no 

variance in the predicted values of r0[i] from the time-series analysis, we refit the regression 

model without the weighting term s and applied equation (S4) with V as the correlation matrix. 

For individual counties that were within county-aggregates, we assumed that the spatial distance 

between individual county and the county-aggregate was the average distance between counties 

within the aggregate. We also calculated the variance of the estimates from (46) 

 

 𝑣%i = s2 – vi * V-1 * vit (S6) 

 

 Predicted values of R0 were mapped using the R package usmap (47). 
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Additional figures and tables 

 

 
Fig. S1. Simulation study of fitting methods to epidemic death data. Simulations were fit with 

the time-varying autoregression model (TVA) in the forward (black line with dark and light gray 

regions giving 66% and 95% approximate confidence intervals) and reverse (blue line and 

regions) directions when the true value of R(t) (red line) shows either (A) a step or (B) gradual 

changes. For each simulation, the forward and reverse estimates were averaged to give an 

estimate of R0 with 95% confidence intervals, which are plotted against the true values of R0 for 

step (C) and gradual (D) changes in R(t). The same simulations with fit using EpiEstim (E,F). 
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Fig. S2. Simulation study of the estimation of r0 from the forward and reverse time-varying 

autoregressive model for different population sizes. Simulations following those used for Fig. 1 

were performed assuming r(t) changed either (A) in steps or (B) gradually. The simulations were 

performed using the same initial value of r0, but the length of time of the simulation was varied 

to change the maximum number of deaths that occurred. Due to the stochastic nature of the 

simulations, the realized value of r0 when the analysis was started differed among time series 

when r(t) changed gradually (red points in B), while they were all 0.22 when r(t) was changed in 

steps (A). The median in the maximum number of deaths among the real county time series was 

21. 
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Fig. S3. Probability distributions used in the process-based SIR simulation model used to test 

methods for robustness. (A) The probability distribution of the day on which a susceptible is 

infected, p(t), which is given by a Weibull distribution with mean 7.5 days and standard 

deviation 3.4. (B) For an individual who dies, the day of death, d(t), which is given by a Weibull 

distribution with mean 18.5 days and standard deviation 3.4. (C) For case data, the time between 

initial infection and diagnosis, h(t), which is lognormally distributed with mean 5.5 days and 

standard deviation 2.2. 

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

5 10 15 20 25

0.
00

0.
04

0.
08

Days

Tr
an

sm
is

si
on

 p
ro

ba
bi

lit
y

A

● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
● ●

5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

Days

M
or

ta
lit

y 
pr

ob
ab

ilit
y

B

●

●

●

● ●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20 25

0.
00

0.
10

0.
20

Days

D
et

ec
tio

n 
pr

ob
ab

ilit
y

C

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 28 

 
 

Fig. S4. Example simulation from the process-based SIR model. (A) Changes in the infection 

rate, b(t), are modeled as a step function (black line) with daily variation (points). R0(t) (red line) 

tracks changes in b(t). (B) and (C) The number of deaths (B) and diagnosed cases (C) when the 

simulation is initiated with a single cohort of individuals, all infected on day 1 (solid black dot).  
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Table S1. Separate spreadsheet giving the following variables for the 3109 counties in the 

conterminous USA. 

 
Variable Description 

ST two-letter state abbreviation 
state_county state abbreviation with county name 

fips FIPS identifier for counties 
lon longitude 
lat latitude 

death.max maximum number of daily deaths 
start.date state date of the analyzed time series 
end.date end date of the analyzed time series 

den population density 
r0.est estimate of r0 from time-series analyses 

r0.est.se standard error of the estimate of r0 from bootstrapping 
r0.est.cor corrected estimate of r0 removing start.date and the population size 
r0.l66.cor lower 66% confidence interval of the corrected estimate of r0 
r0.u66.cor upper 66% confidence interval of the corrected estimate of r0 

r0.pred predicted estimate of r0 from the regression model 
r0.pred.se standard error of the predicted estimate of r0  

R0.pred predicted estimate of R0 from the predicted estimate of r0 
R0.pred.l66 lower 66% confidence interval of the predicted estimate of R0 
R0.pred.u66  upper 66% confidence interval of the predicted estimate of R0 
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Table S2. Variables giving population characteristics that were including in the regression model 

(equation S3). No variable was statistically significant. Data from (20, 21). 

 

Variable Description 
median age median age 2010 

adult obesity incidence of adult obesity 
diabetes incidence of adult diabetes 

education percent bachelor's degree or higher, 2005-2009 
income median earnings 2010 
poverty percentage people below federal poverty threshold 

economic equality Gini index 
race percent White, non-Latino 

political leaning  proportion of votes cast for Donald Trump, 2016 
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Table S3. For 160 county and county-aggregates, regression of spread rate at the end of the time 

series, corresponding to 5 May, 2020, r(tend), against (i) the date of outbreak onset, (ii) total 

population size and (iii) population density, in which (iv) spatial autocorrelation is incorporated 

into the residual error. For the overall model, R2pred = 0.38. 

 

  Value  SE t P partial R2
pred 

(i) onset 0.0021 0.0003 6.40 < 10–8 0.17 

(ii) log(size) 0.0097 0.0021 4.61 < 10–6 0.083 

(iii) density1/4 -0.0008 0.0013 -0.57 0.57 0.003 

(iv) space 
range = 0.29 

nugget = 0.18 
 c2

1 = 10.3 0.0056 0.099 
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Fig. 3E (enlarged) R0 estimated at the onset of epidemics for counties in the 
conterminous USA. The predictability of R0 in the regression model makes it 
possible to extend estimates of R0 to all 3109 counties.
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