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Abstract 

 

Background: Updating systematic reviews is often a time-consuming process involving a lot of human 

effort and is therefore not carried out as often as it should be. Our aim was therefore to explore the 

potential of machine learning methods to reduce the human workload, and to particularly also gauge the 

performance of deep learning methods as compared to more established machine learning methods. 

Methods: We used three available reviews of diagnostic test studies as data basis. In order to identify 

relevant publications we used typical text pre-processing methods. The reference standard for the 

evaluation was the human-consensus based binary classification (inclusion, exclusion). For the 

evaluation of models various scenarios were generated using a grid of combinations of data 

preprocessing steps. Furthermore, we evaluated each machine learning approach with an approach-

specific predefined grid of tuning parameters using the Brier score metric.  

Results: The best performance was obtained with an ensemble method for two of the reviews, and by a 

deep learning approach for the other review. Yet, the final performance of approaches is seen to strongly 

depend on data preparation. Overall, machine learning methods provided reasonable classification. 

Conclusion: It seems possible to reduce the human workload in updating systematic reviews by using 

machine learning methods. Yet, as the influence of data preprocessing on the final performance seems 

to be at least as important as choosing the specific machine learning approach, users should not blindly 

expect good performance just by using approaches from a popular class, such as deep learning. 

 

Keywords: Machine learning, Deep learning, Text Mining, Preprocessing, Systematic Reviews

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.16.20132670doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.16.20132670
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

1 Introduction 

In patient-centered medicine, the integration of external evidence is a crucial component in deciding on 

the use of medical services. Clinicians, researchers and health policy makers have to deal with a 

multitude of publications within their field of expertise. A systematic review summarizes the empirical 

evidence according to a priori defined inclusion criteria into question and serves as an external evidence 

basis for clinical decisions.1 An increase in the number of studies, such as seen in medicine in recent 

years,2 also leads to the need for a higher frequency of systematic review updates. The updating of 

systematic reviews is very resource-intensive, which creates a major barrier for up-to-date evidence 

syntheses. Intelligent technical support systems, e.g., based on machine learning techniques, are a 

promising approach for reducing the human effort in this update process. In particular, deep learning 

techniques, which have recently become quite popular, are expected to considerably advance this area. 

We specifically consider the setting of systematic reviews of diagnostic test studies and compare the 

performance of several machine learning techniques, also including deep learning approaches. 

In the context of systematic reviews and living reviews, i.e. continuous updates, various computer-

assisted approaches were introduced to increase the efficiency3-5. Currently, however, living reviews are 

not widely used5, as the human effort for continuous updating within a few months is very substantial. 

Despite existing efforts to automate sub-processes of systematic/living reviews, these are only rarely 

applied in research practice. Initially, studies investigated the performance of established machine 

learning methods, such as support vector machines or random forests. The results obtained with these 

have already highlighted the potential of such support systems.3 Recently, the application of deep 

learning methods for natural language processing has been growing in addition to conventional machine 

learning methods.6 Machine learning and in particular deep learning have mostly been successful in big 

data applications. Here we investigate to what extent such techniques can be useful in settings with 

relatively small data sizes. 

According to our knowledge, only one study by Marshall, Noel-Storr, Kuiper, Thomas and Wallace 7 

compares convolutional neural networks (CNN) with other machine learning methods in the context of 

systematic reviews. Furthermore, current research has been mainly focused on the classification in the 

setting of highly specific reporting standards, such as randomized controlled trials (RCT)s. 

We specifically evaluate the performance of machine learning methods for identifying relevant 

publications in the context of updating a systematic review of diagnostic studies, which are characterized 

by rather low standardization of reporting, making classification more difficult. In addition to comparing 

different machine learning techniques, we also focus particularly on the effects of data preprocessing 

and tuning parameter selection on classification performance, as these might have considerably 

influence. 

In the following we describe the three systematic reviews used for evaluation, the approaches for data 

processing, the training of machine learning techniques, and evaluation criteria, before reporting results, 

discussing these and giving some concluding remarks. 
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2 Materials and methods 

2.1 Data sets 

Three reviews were used to assess the performance of various machine learning methods in the context 

of systematic reviews (Table 1). These are data from the screening process of two already published 

reviews (R-18-10, R-310) of diagnostic studies in the field of orthopaedics and physical therapy. The 

review R-211 contains data of an unpublished Cochrane review. The size of the review is typical for 

diagnostic test systematic reviews in the field of medicine. The investigated systematic reviews aimed 

at evaluating the validity and reliability of a physical examination test for structural and functional 

testing of the anterior and posterior cruciate ligament and shoulder pathologies. Included were studies 

which (1) examined the desired physical target structure and (2) the quality of the physical tests. The 

original queries were carried out in the following databases: MEDLINE via PubMed/Ovid, EMBASE 

via Ovid, AMED, CINAHL, DARE, MEDION, and ARIF.  

 

Table 1: Reviews 

Review Target structure Psychometric property N+ TAS# 

R-1 Shoulder pathologies Reliability 3663 126 (0.03%) 

R-2 Anterior cruciate ligament ruptures Accuracy 5900 103 (0.02%) 

R-3 Posterior cruciate ligament ruptures Accuracy 1304 80 (0.06%) 

 

+ count of publications after database query; # count of publications after title abstract screening 

 

2.2 Study procedure 

Figure 1 illustrates the entire study process, containing text preprocessing, scenario preparation, training 

of machine learning methods and evaluation. In order to identify relevant publications, the title and 

abstract of each publication were available as training data. The reference standard for the evaluation of 

the machine learning methods was the human-consensus based classification (inclusion, exclusion) of 

the studies based on title and abstract screening. The various phases of the study are described in more 

detail below. 

 

2.3 Text preprocessing 

After export from the literature databases, the titles and abstracts are available in different quality. 

Abstracts, for example, varied in structure and sometimes additional unnecessary information were 

reported and had to be removed. Otherwise, they would have distorted the classification. Therefore, in 

the first processing step, the texts were preprocessed with the aim of creating a quality-checked data 

basis and optimizing the information content.  

Various text cleaning procedures were used. Additional content was removed using regular expressions 

in an iterative process (e.g. journal or author information). Furthermore, standard text procedures 
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(punctuation handling and upper/lower case, replacement of numbers and symbols and removal of 

stopwords) were applied to the reviews. Two different types of text reduction techniques were compared 

to each other: (1) Stemming - the individual words of the text were reduced to the undeclined root word 

to identify words with the same content as the same token. (2) Lemmatization - inflected words were 

grouped together into their original form. 

 

2.4 Data scenario preparation 

After text preprocessing, the reviews were prepared for model training and various scenarios were 

generated using a mixture of data preprocessing steps. Figure 2 outlines this procedure. The aim was to 

ensure a fixed allocation of publications into training and test data and to provide various data 

preparation scenarios for model training in a compact way. The sampling ratio of relevant versus 

irrelevant publications (inclusion/exclusion) was manipulated to investigate a possible effect of the 

balancing on model training. 

Basically, two different types of data representation were required for the different machine learning 

methods12. On the one hand, (1) the conventional machine learning methods use sparse 

vectors/document-term-matrices as input data. On the other hand, (2) the DL methods with word 

embedding require the input data represented as dense vectors. For both types of data representation, we 

varied (1) the number of n-grams between one and three words/tokens, (2) both types of text reduction 

techniques and (3) the maximum number of initial tokens (original frequency, fifteen, ten and one 

thousand and five hundred). Furthermore, for the document-term-matrix, we used the (a) term-frequency 

(Tf) and (b) the term-frequency – inverse document frequency (Tf-idf) as weighting scheme for the 

tokens. This results in 150 different data scenarios per review for the conventional machine learning 

methods and 50 data scenarios for the deep learning approaches. 

 

2.5 Word embedding 

The word embedding was generated by a skip-gram-model with the preprocessed three reviews as 

inputs13. In total, two word embeddings were used based on both text reduction techniques (1) stemming 

and (2) lemmatization. The following parameters were used for the word embeddings: Loss function: 

Binary crossentropy, Epochs: 10, Batch size 1, Learning rate 0.01, Optimizer: Adam (decacy: 0, 𝛽
1
: 0.9, 

𝛽
1
: 0.999), Dimensions: 300, Skip window: 5, Negative sample: 1. 

 

2.6 Model training 

Different models were trained on each specific data scenario (Figure 2). Overall, we investigated six 

conventional machine learning methods, two deep learning methods, and two ensemble methods. 

For conventional machine learning methods: (SL-1) logistic regression with elastic net regularization, 

(SL-2) Naïve Bayes, (SL-3) Support Vector Machines, (SL-4) K-Nearest Neighbors, (SL-5) C5.0 trees, 

and the (SL-6) Random Forest algorithm were used (Supplement Table 1).  
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Further, we investigated the performance of different deep learning methods: (DL-1) Multilayer 

Perceptron (MLP) – Bag of Words approach, (DL-2) MLP – with word embedding, (DL-3) 

Convolutional Neural Networks (CNN) –with word embedding, (DL-4) CNN-MLP – with word 

embedding (Supplement Table 2). 

Two different ensemble methods, which comprise conventional machine methods, were evaluated. (E-

1) Ensemble stack with a Random Forest as meta learner and the (E-2) ensemble soft voting, averaging 

the prediction probabilities of the base learners. Both Ensembles (E-1, E-2) used the scenario specific 

best trained base learner (B-1) logistic regression with elastic net regularization, or (B-2) Support Vector 

Machines, as well as (B-3) a Random Forest algorithm. In addition, a soft voting ensemble was used to 

combine (E-3) deep learning methods. 

The pseudo code in Figure 3 illustrates the entire model training process. For each model, a 10-fold 

cross-validation with 3 repetitions was used to identify the optimal tuning parameter set for each data 

scenario. To enable a fair comparison, it was ensured that resampling was identical across all models 

during cross-validation. The optimal data scenario for each algorithm with its specific optimal tuning 

parameters was determined by averaging across hold-out predictions while training and choosing the 

best performing scenario. 

 

2.7 Model evaluation 

The evaluation of the methods was carried out step by step. As outlined in Figure 3, (1) the optimal 

tuning parameter constellation was selected per scenario, (2) the optimal scenario per method was 

identified, and then (3) the optimal tuning parameters per method and scenario were used to determine 

the predictive value of the respective method on the independent test data. 

(1) The Brier score (Formula 1) was primarily used as the selection criterion for the optimal tuning 

parameters. This score describes the precision of the predictions by determining the distance of the 

predicted probabilities from the reference standard15. 

(2) To enable a fair comparison between the scenarios with differently balanced proportions, the Brier 

score for each scenario was compared to the scenario-specific null model. We call this “Brier 

comparison score” and used this score to determine the optimal scenario (Formula 2). As null model we 

trained an intercept only model. 

(3) After the models were trained with the optimal tuning parameter set on the optimal scenario, the 

final prediction probabilities were determined on a corresponding independent test data set. The Brier 

comparison score was primarily used as evaluation metric. Other metrics, such as sensitivity, specificity, 

as well as positive and negative predictive values, were also calculated.  

 

Formula 1: Brier score 

𝐵𝑆 =
1

𝑛
෍ሺ𝑝ȁ1 − 𝑦𝑖ሻ

2

𝑛

𝑖=1
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Formula 2: Brier comparison score 

 

𝐵𝑆𝑐𝑜𝑚𝑝 = 𝐵𝑆𝑛𝑢𝑙𝑙 − 𝐵𝑆𝑚𝑜𝑑 

 

 

2.8 Sensitivity analysis 

To compensate for the high class imbalance (few inclusions/many exclusions) that is inherent in all title 

and abstract screenings, we lowered the default threshold value (50:50) for binary classification to 

evaluate its influence on the prediction success. The threshold was reduced from 0.5 to 0.2 to improve 

the classification sensitivity of the models (i.e. lower the false negative rate). 

 

All statistical analyses were performed using the statistical software R16. For training and systematic 

evaluation the Caret package14 was used which allows to streamline for creating predictive models 

including the implementation of self-developed algorithms, loss functions, and evaluation metrics. This 

package also enables the evaluation of the models in direct comparison in a sufficient manner. 

 

3 Results 

Overall, three different but thematically similar systematic medical reviews were analyzed. Specifically, 

only titles and abstracts were used and no full texts. An abstract contains on average 225.2 ± 117.4 

words (median= 226; min/max= 2/708). After data preprocessing (stemming and lemmatization) the 

maximum overall number of tokens (words) per review varied within a range of: R-1: 16.807/19.162; 

R-2:  12.722/14.684; R-3: 5.924/6.905.  

The data preprocessing grid (shown in Figure 2) resulted in 1038 different data scenarios in total 

(Document Term Matrix – R-1: 396; R-2: 342; R-3: 300; Dense-Vector representation – R-1: 66; R-2: 

57; R-3: 50). 

 

3.1 Evaluation of data scenarios 

Figure 4 gives an overview of model comparison during the training step (cross validation) for one 

review (R-1) as example. Each data point represents a prediction for a specific data preparation scenario 

as measured by the Brier score. On the y-axis the Brier comparison score is shown. Positive values 

indicate a better performance of the model than the scenario specific null model, which is based on an 

intercept only model. Note that some methods tend to result in rather poor predictions, with negative 

Brier comparison scores (e.g. K-NN, Naïve Bayes). Furthermore, variation between models within one 

algorithm is higher than the variation between different algorithms. Depending on the specific data 

preparation procedures, a specific method might perform well or rather poor. Yet, there is no clear 

relationship between the specific data preparation steps and the performance of the methods. The 
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algorithms perform differently on the same data preparation scenarios, but with no distinguishable 

patterns. It seems that each algorithm needs its own optimal preprocessing steps, also strongly depending 

on the input data. Two different data preprocessing methods that were designed to reduce the 

dimensionality of the feature space show impact on model performance in many cases. One is token 

reduction, as a method to increase the signal to noise ratio, another are word embeddings, which are 

specific to deep neural networks. Word embeddings take into account the proximity of words and 

generate a lower dimensional vector out of a high dimensional matrix. It can then be used to pre-weight 

the input data of a deep neural network. The above findings remain consistent across all reviews 

examined. 

 

3.2 Evaluation of test data performance 

The final evaluation of model performance (i.e. generalizability) is based on independent test data. 

Figure 5 shows a heatmap with Brier comparison scores for all investigated reviews (R1-3).  Cells with 

light gray background (values above zero) point to a better performance of the corresponding model 

compared to the scenario specific null model, while dark cells (values below zero) indicate worse 

performance. The best performing algorithm varies between the reviews examined (R1: Ensemble (Soft-

Voting), R2: MLP (20 epochs), R3: Ensemble (Soft-Voting)). Across all reviews, there is no clear 

winner and the performance varies between the reviews. Review R3 is most challenging during test data 

prediction. In review R2, deep learning outperforms most conventional machine learning methods, 

while in review R1 and R3 ensembles of conventional machine learning methods are superior.  

Note that not all possibilities of model tuning, especially thresholding or generalized word embeddings, 

were fully systematically investigated for deep learning methods. Depending on the evaluation metric, 

the best performing algorithm changes within a review. In the present case of updates of systematic 

reviews, there is always a strong class imbalance, with the minority class being of particular interest. 

Under this scenario a stable evaluation metric is needed incorporating this high class imbalance. This 

would certainly improve the quality of the results. Ensemble methods, incorporating more than one 

algorithm, may lead to better results here compared to single algorithms since multi-model ensembles 

increase the sensitivity of the analysis purely by incorporating more than one algorithm, especially by 

aggregating with plurality or soft voting.  

 

3.3 Sensitivity analysis 

For sensitivity analysis, we lowered the classification threshold from 0.5 (equal probabilities on both 

sides) to 0.2 inducing a more sensitive classification. This clearly leads to better results since a more 

sensitive classification is superior in this task. Not missing a potentially relevant manuscript and 

therefore increasing the inclusion rate (lower the false negative rate) is of advantage here (Supplement 

Table 3, Supplement Table 4, Supplement Table 5). 
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4 Discussion 

We investigated the performance of machine learning methods for systematic reviews in the challenging 

setting of diagnostic test studies. Besides the general level of performance, we were interested whether 

deep learning approaches would have a considerable advantage of conventional machine learning 

methods. We found that deep neural network approaches were among the top performers but did not 

considerably outperform conventional machine learning methods such as random forest or ensembles. 

This might be due to the rather low number of publications and the rather small amount of text available 

from titles and abstracts. 

Yet, searching for the best algorithm for the task is only part of the picture. Instead our results suggest 

that data preprocessing steps had much more influence on the final performance. With a bad choice of 

preprocessing steps any approach could drop to or even below the performance level of the scenario 

specific null model, which only uses an intercept as predictor variable and no words. On the other hand, 

most algorithms could perform rather well on a specific combination of data preprocessing steps. 

Unfortunately, it seems difficult to predict in advance which preprocessing steps are best suited for 

which algorithm and review. Therefore, we strongly encourage to consider data preprocessing besides 

other predictors as a tuning parameter for training of machine learning approaches. Yet, one consistent 

pattern is that technics that reducing the dimensional load of the models are preferable. For example, 

token reduction, which increases the signal to noise ratio, almost always is beneficial. The same trend 

is observed for embeddings which reduce dimensions in deep neural network models.  

In the process of updating systematic reviews it is of utmost importance not to miss a relevant 

publication, thus high sensitivity is needed. In fact, in our medical context we want to achieve a 

sensitivity of one. Accordingly, we required that a usable algorithm must have a sensitivity of one and 

a specificity that allows to reduce the  number of texts to be examined manually at least by a factor of 

two. By lowering the binary classification threshold from equal probabilities to 0.2 we were able to 

achieve such results with a sensitivity of one. At the same time, our goal of automatically sorting out at 

least 50 percent of all texts was achieved in all three reviews. However, we did not use a systematic 

search for the optimal threshold for each review, instead freely chose a value of 0.2 for all sensitivity 

analyses. A separate test data set would in principle allow cross-validation to find the optimal threshold 

for the specific problem.  

 

4.1 Methodological considerations 

A stable comparison metric in the setting of high class imbalance is desirable to clarify there the question 

which algorithm works best. In the presence of a high class imbalance, all used evaluation metrics, 

including the Brier comparison score, the null models tend to be extremely good performing. In fact, 

the higher the imbalance the better the null model. Another potential measure is the Net Benefit17, which 

considers the class imbalance by weighting the difference in true and false positive rate. However, the 

advantage of the Brier score is the incorporation of the distance of the predicted probabilities. In contrast, 
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the Net Benefit uses only the binary classification. Thus, an inclusion of a prevalence adjusting 

weighting factor for the Brier score could improve the performance in class imbalance problems. 

Maybe, a combination of various metadata could increase the classification performance. In addition to 

title and abstract, further information such as full text, MeSH term indexing or hierarchical inclusion of 

keywords amongst others could be used. Thus, separate classifiers trained on the different input 

information could be combined for improved predictions e.g. with a majority-vote ensemble. 

 

4.2 Strengths and weaknesses 

One of the main strengths of this work is the realization and implementation of all working processes in 

a unified development environment, which allow us to systematically generate and evaluate different 

models on different data sets with different data pre-processing steps. According to the review by 

O’Mara-Eves, Thomas, McNaught, Miwa and Ananiadou 3 the Brier Score, was not included in any 

recent scientific research of machine learning methods as evaluation metric in the context of updating 

systematic reviews. In favor of a balanced prevalence in training and test data sets, a putative interesting 

time effect was not considered (e.g. changes in quantity and structure in reporting over time). The tested 

machine learning and deep learning methods represent only a selection of the methods potentially 

available for this classification task. 

5 Conclusions 

Overall, the presented work shows that it is possible to reduce the human work load in updating scientific 

systematic reviews by machine learning methods, even for studies with a low standardized reporting 

quality. There is no big performance difference between deep learning and other machine learning 

approaches. Instead, the influence of data preprocessing on the final model performance is rather strong. 

Optimizing the threshold assessment and evaluating additional, desirable stable, metrics in high class 

imbalance settings seems more urgent and should be the topic of future research.  
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6 Figure captions 

Figure 1: Study procedure 

Figure 2: Data preprocessing and scenario preparation 

Figure 3: Algorithm: model training and practical implementation of model training; adapted from Kuhn 14 

Figure 4: Comparison of data scenarios 

Figure 5: Heatmap – performance on unseen test data based on the Brier comparison score 
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8 Supplement 

Supplement Table 1: Tuning parameter of conventional machine learning methods 

Model R package Parameter Grid 

Naïve Bayes    

 naivebayes usekernel [TRUE, FALSE] 

  laplace [0, 1] 

  adjust [0, 1, 2] 

Logistic regression    

 glmnet alpha [seq(from = 0, to = 1, 

length.out = 10)] 

  lambda [10^seq(from = 3, to = -3, 

length.out = 100)] 

C5.0    

 C50 trials [1:9, 10:100] 

  model [tree, rules] 

  winnow [TRUE, FALSE] 

Random Forest    

 ranger mtry [sqrt(ncol(data) - 1] 

  Splitrule [gini, extratrees] 

    

Support Vector Machine    

 e1071 cost [0.2, 0.5, 1, 5, 10, 30, 60] 

  weight [seq(0.5, 1.5, 0.1)] 

    

K-Nearest Neighbors    

 kknn   

  k [3, 6, 9, 12, 15, 18] 

    

Ensemble (Stack)    

 caretEnsemble rf - 

    

Ensemble (Soft-Voting)    

 -  - - 
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Supplement Table 2: Deep learning methods - Network architecture 

Global 

Parameter  

MLP (Bag of Words) MLP (Word 

embedding) 

CNN (1) CNN (2) 

Loss-Function      

 Binary cross entropy  Binary cross entropy Binary cross entropy Binary cross entropy 

Epochs     

 [20, 50] [20, 50] [20, 50] [20, 50] 

Batch size:     

 20 20 20 20 

Learning rate      

 0.01  0.01  0.01  0.01  

Optimizer     

 Adam Adam Adam Adam 

Architecture     

 Fully-connected-

Layer 1  

(units: 512, activation: 

ReLU, dropout: 0.2)  

Fully-connected-

Layer 2 (units: 256, 

activation: ReLU, 

dropout: 0.2)  

Fully-connected-

Layer 3 (units: 64, 

activation: ReLU) 

Fully-connected-

Layer 4 (units: 2, 

activation: softmax) 

Word embedding-

Layer  

Global-Max-Pooling-

Layer 

Fully-connected-Layer 

1  

(units: 300, activation: 

ReLU) 

Fully-connected-Layer 

2 

(units: 128, activation: 

ReLU) 

Fully-connected-Layer 

3 

(units: 32, activation: 

ReLU) 

Fully-connected-Layer 

4 

(units: 2, activation: 

softmax) 

Word embedding-Layer  

Convolutional-Layer 

(filter: 150, kernel size: 

3, activation: ReLU) 

Global-Max-Pooling-

Layer 

Fully-connected-Layer 

2 (units: 2, activation: 

softmax) 

Word embedding-Layer  

Convolutional-Layer 

(filter: 150, kernel size: 3, 

activation: ReLU) 

Global-Max-Pooling-Layer 

Fully-connected-Layer 1 

(units: 32, activation: 

ReLU) 

Fully-connected-Layer 2 

(units: 2, activation: 

softmax) 

 
* All DL-methods used callbacks (1) early stopping after 10 epochs with no further increasing of accuracy; (2) reduce learning 

rate on plateau with patience 5 effectively reduced the learning rate by 10%.
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Supplement Table 3: 2x2 table – conventional machine learning methods 

 Primary analysis (threshold: 0.5) Sensitivity analysis (threshold: 0.2) 

 True  

positive 

False 

positive 

False  

negative 

True 

negative 

True  

positive 

False  

positive 

False 

negative 

True 

negative 

Naïve Bayes     

R-1 29 380 8 681 29 381 8 680 

R-2 28 5110 2 1228 28 511 2 1228 

R-3 0 0 24 365 0 0 24 365 

Logistic regression     

R-1 33 199 4 862 35 356 2 705 

R-2 28 233 2 1506 29 365 1 1374 

R-3 18 66 6 301 21 156 3 211 

C5.0     

R-1 30 117 7 944 36 520 1 541 

R-2 25 256 5 1483 29 595 1 1144 

R-3 14 70 10 297 24 237 0 130 

Random Forest     

R-1 29 114 8 949 36 431 1 632 

R-2 23 185 7 1554 30 867 0 872 

R-3 18 55 6 312 24 229 0 138 

Support Vector Machine     

R-1 35 234 2 827 35 249 2 813 

R-2 29 364 1 1375 30 453 0 1286 

R-3 23 85 1 282 24 140 0 227 

K-Nearest Neighbor     

R-1 33 159 4 902 37 1056 0 5 

R-2 21 343 9 1396 27 1025 3 714 

R-3 22 116 2 251 24 276 0 91 
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Supplement Table 4: 2x2 table – Deep learning methods 

 Primary analysis (threshold: 0.5) Sensitivity analysis (threshold: 0.2) 

 True  

positive 

False 

positive 

False  

negative 

True 

negative 

True  

positive 

False  

positive 

False 

negative 

True 

negative 

MLP (BoW, 50 Epochs)     

R-1 33 156 4 905 33 164 4 897 

R-2 27 184 3 1555 27 191 3 1548 

R-3 20 79 4 288 20 84 4 283 

MLP (BoW, 20 Epochs)     

R-1 32 121 5 940 33 183 4 878 

R-2 27 223 3 1516 24 202 6 1537 

R-3 21 110 3 257 11 17 13 350 

MLP (50 Epochs)     

R-1 33 161 4 900 31 171 6 890 

R-2 24 184 6 1555 22 201 8 1538 

R-3 11 13 13 354 11 17 13 350 

MLP (20 Epochs)     

R-1 27 56 10 1005 34 354 3 707 

R-2 25 161 5 1578 27 304 3 1435 

R-3 14 30 10 337 21 96 3 271 

CNN (50 Epochs)     

R-1 33 285 4 776 33 164 4 897 

R-2 26 238 4 1501 27 210 3 1529 

R-3 20 61 4 306 19 58 5 309 

CNN (20 Epochs)     

R-1 32 215 5 847 33 269 4 792 

R-2 28 432 2 1307 19 122 11 1617 

R-3 21 80 3 287 11 17 13 350 

CNN & MLP (50 Epochs)     

R-1 32 214 5 847 32 208 5 853 

R-2 28 432 2 1307 22 201 8 1538 

R-3 21 80 3 287 22 135 2 231 

CNN & MLP (20 Epochs)     

R-1 30 77 7 984 34 354 3 707 

R-2 23 173 7 1566 29 351 1 1388 

R-3 20 106 4 261 21 96 3 271 
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Supplement Table 5: 2x2 table – Ensemble methods 

 Primary analysis (threshold: 0.5) Sensitivity analysis (threshold: 0.2) 

 True  

positive 

False 

positive 

False  

negative 

True 

negative 

True  

positive 

False  

positive 

False 

negative 

True 

negative 

Ensemble (Stack)     

R-1 32 152 5 911 34 222 3 841 

R-2 24 171 6 1567 26 305 4 1433 

R-3 17 62 7 305 24 126 0 241 

Ensemble (Soft-Voting)     

R-1 29 81 8 982 34 275 3 788 

R-2 27 242 3 1497 30 587 0 1152 

R-3 17 45 7 322 24 142 0 225 

DL Ensemble (Soft-Voting)     

R-1 32 273 5 788 35 390 2 671 

R-2 29 266 1 1473 29 438 1 1301 

R-3 19 89 5 278 22 132 2 235 
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