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Abstract 
Age is a common risk factor in many diseases, but the molecular basis for this relationship is 
elusive. In this study we identified 4 disease clusters from 116 diseases in the UK Biobank 
data, defined by their age-of-onset profiles, and found that diseases with the same onset 
profile are genetically more similar, suggesting a common etiology. This similarity was not 
explained by disease categories, co-occurrences or disease cause-effect relationships. Two 
of the four disease clusters had an increased risk of occurrence from age 20 and 40 years 
respectively. They both showed an association with known aging-related genes, yet differed 
in functional enrichment and evolutionary profiles. We tested mutation accumulation and 
antagonistic pleiotropy theories of aging and found support for both. We also identified drug 
candidates for repurposing to target multiple age-dependent diseases with the potential to 
improve healthspan and alleviate multimorbidity and polypharmacy in the elderly.  
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Introduction  
 
Aging is associated with a time-dependent decrease in the functional integrity of organisms 
and an increase in susceptibility to pathologies1. The worldwide increase in lifespan has not 
been matched by an increase in healthspan, and there is a growing period of loss of function, 
and disease at the end of life2. Aging thus poses a significant global challenge, because it is 
the major risk factor for chronic conditions, including cardiovascular disease, cancer, and 
dementia3. Although these diseases involve different organs and pathologies, they all show a 
strong dependence on age4 and could, therefore share common etiologies based upon the 
underlying mechanisms of aging. It is therefore important to understand if the aging process 
itself leads to different age-related conditions through common pathways, or if the age-
dependency of different diseases has independent, time-dependent causes.  
 
Despite the negative impact of aging on organismal fitness and functionality, it is widespread 
in the animal world as well as in humans5 and has therefore been described as an evolutionary 
paradox6. Aging can nonetheless evolve as the force of natural selection weakens with age 
due to extrinsic hazard. Mutations that are deleterious only in later life can accumulate in the 
population through mutation pressure, because the force of natural selection eliminating them 
from the population declines with the age of onset of their effects (mutation accumulation 
theory of aging)7. Pleiotropic variants that are beneficial during early life but detrimental later 
in life can also become prevalent in populations through natural selection (antagonistic 
pleiotropy theory of aging)8. Thus, genome-wide germline genetic variants that increase the 
risk of diseases at old age may not be pruned by natural selection or may be associated with 
beneficial phenotypes earlier in life.  
 
The risk of many age-related diseases (ARDs) is influenced by genetic variation. Genome-
wide association studies (GWAS) have identified genetic variants that alter complex traits. 
Pleiotropy, where variants or genes influence multiple traits, is more prevalent than previously 
thought9–12, indicating that different traits share common causal pathways13. Pleiotropy within 
the disease classification system12 and in certain disease classes, such as immune-related 
diseases14,15 and cancer16, has been studied, but the understanding of pleiotropy in ARDs 
more broadly is limited. Some studies have investigated the common pathways between 
manually curated age-related traits17–19. Despite the challenges of combining results from 
different published datasets, these studies provided the first clues that at least some ARDs 
share common pathways, which are also related to a significant but limited number of 
longevity-regulating genes in model organisms. In this study, using disease age-of-onset 
profiles, we extend the previous efforts by providing the first data-driven classification of a 
large number of diseases according to their age-profile, followed by a genetic analysis in one 
of the largest and most comprehensive cohorts available. In this way, we provide a 
comparative genetic analysis between ARDs and non-ARDs and also between ARDs with 
different age profiles. 
 
The UK Biobank (UKBB)20 includes genetic and health-related data for almost half a million 
participants. We extracted age-of-onset profiles for 116 diseases and identified unbiased 
clusters to define the relationship between disease incidence and age. We identified variants 
associated with each disease and compared the genetic associations between diseases 
based on these clusters. We first found that diseases with the same age profile share genetic 
associations, which cannot be explained by disease categories, co-occurrences, or mediated 
pleiotropy, and thus reflects a common etiology (Figure 1). We further characterized these 
shared associations compared to previously known longevity-associated genes and biological 
functions. We next performed a drug repurposing study to find drugs that could target multiple 
late-onset diseases simultaneously. Finally, we compared the variants associated with 
diseases that start to occur at different ages and identified different evolutionary 
characteristics, supporting the mutation accumulation and antagonistic pleiotropy theories of 
aging. 
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Figure 1: Summary of different models explaining the associations between diseases. Independent 
genetic associations (I) reflects the case where the number of shared genetic associations between 
diseases is not more than expected by chance. If the overlap is more than expected (II), it could either 
reflect (a) common etiology, which reflects shared causes, or (b) mediated pleiotropy, which suggests 
a common genetic factor influencing only one disease, which in turn increases the risk of a second 
disease. 
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Results 
 
Data 
We used self-reported diseases and age-at-diagnosis covering 484,598 participants, and their 
genotypes in the UKBB20. Details of the UKBB data, quality control steps, and exploratory 
analyses are given in the Supplementary Information and Supplementary Figures S1-8. Self-
reported diseases in the UKBB are hierarchically structured and the top nodes; such as 
cardiovascular or endocrine diseases, were considered as disease categories (Figure S6). 
We only analyzed common diseases (i.e. with at least 2,000 cases) that were not sex-limited 
(n=116 in 472 self-reported diseases). Importantly, we did not include cancer in our analyses 
as the interaction between genetic and environmental contributors is likely different from non-
cancer illnesses, even though they may have a similar age-of-onset profile (for details, see 
Methods).  
 
Age-of-onset clusters 
 

 
Figure 2: Age-of-onset profiles clustered by the PAM algorithm, using dissimilarities calculated with 
temporal correlation measure (CORT). The y-axis shows the number of individuals who were diagnosed 
with the disease at a certain age, divided by the total number of people having that disease. Values 
were calculated by taking the median value of 100 permutations of 10,000 people in the UKBB (see 
Methods). The x-axis shows the age-of-onset in years. Each line denotes one disease and is colored 
by disease categories. The heatmap in the right upper corner shows the percent overlap between 
categories and clusters. Numbers give the % of an age-of-onset cluster belonging to each category. 
Supplementary Figures S9-18 shows the distributions for each disease separately.  
 
Age is associated with increased risk of many diseases. In order to characterize the 
association between age and different diseases we first used age-at-diagnosis as a proxy to 
disease onset and derived disease age-of-onset profiles (Figure S9-18). On average, 
cardiovascular and endocrine diseases had a high median age-of-onset, while infections had 
the lowest age-of-onset (Figure S19). We then clustered diseases into 4 clusters (the optimum 
number determined by the gap statistic) using the PAM algorithm and disease dissimilarities 
calculated using CORT distance21 (Figure 2, Table S1). Cluster 1 diseases (n=25) showed a 
rapid increase with age after the age of 40; 11 were cardiovascular diseases, but the cluster 
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also included other diseases such as diabetes, osteoporosis, and cataract. Cluster 2 (n=51) 
diseases started to increase in the population at an earlier age of 20, but had a slower rate of 
increase with age; the diseases in this cluster were the most diverse, including 17 
musculoskeletal, 13 gastrointestinal diseases, as well as others such as anemia, deep venous 
thrombosis, thyroid problems, depression. Cluster 3 diseases (n=30) showed a low age 
dependency with a mostly uniform distribution across ages, but with slight increases around 
the ages of 10 and 60 years. This category included similar numbers of immunological, 
neurological, musculoskeletal, gastrointestinal and respiratory diseases but all have an 
‘immune’ component even if not classified in this way by the UKBB (e.g., inflammatory bowel 
disease (gastrointestinal), asthma (respiratory), psoriasis (dermatology)). Cluster 4 (n=10) had 
a peak at around 0-10 years of age and included respiratory diseases (n=5) and infections 
(n=4). Notably, all infectious diseases were in this cluster. 
 
Diseases in the same age-of-onset cluster show higher genetic similarity 
Using linear mixed models implemented in BOLT-LMM22, we performed GWAS for case 
versus control on each disease separately and included approximately 10 million common 
variants that pass quality control (see Methods). Considering associations with the literature-
standard p-value lower than 5 x 10-8 as significant23,24, we next quantified the associations for 
each disease, category, and age-of-onset cluster (Figure S20). The major histocompatibility 
complex (MHC) region is excluded from all analyses, as in the literature, because of its 
unusually high effect sizes and LD patterns (chr6: 28,477,797 - 33,448,354)25,26. Out of 116 
diseases, 36 had no significant association and the total number of polymorphic sites with at 
least one significant association was 93,817. The maximum number of significant associations 
per disease was 35,001 (hypertension) and the median and mean were 13.5 and 1389.3, 
respectively. We also checked if diseases from different age-of-onset clusters vary in the 
number of associations. Cluster 4 had hardly any significant associations (the disease with 
the maximum number of associations had only 3 significant variants). Although cluster 1 had 
the highest number of significant associations on average, the values across clusters 1, 2, and 
3 were not significantly different (Figure S20b). Moreover, endocrine, immunological, 
cardiovascular diseases had the highest number of associations and infections had the lowest 
(Figure S20c). Only 1% of the significant polymorphisms (n=932) were in coding regions, and 
of these 49% (n=452) were missense and only 1% (n=10) were nonsense. We further found 
that 47% of significant variants (n=43,810) were associated with multiple diseases, but only 
~9% were associated with multiple diseases from different categories (n=8,048) and again 
~9% with different age-of-onset clusters (n=8,801) (Figure S21).  
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Figure 3: (a) Network representation of the genetic similarities. Nodes (n=47) show diseases with a 
significant genetic similarity to at least one disease and are colored by the age-of-onset cluster. Edges 
(n=167) are weighted by the genetic similarity corrected by disease categories and co-occurrences. (b) 
The difference between genetic similarity within and across the age-of-onset clusters. The y-axis shows 
genetic similarity corrected by category and co-occurrence (raw values are available in Figure S22). 
The x-axis groups similarities into different or same age-of-onset clusters. c) Network representation of 
the causal relationships between diseases. Each node (n=48) shows a disease, colored by the age-of-
onset cluster. Size of the nodes represent the number of significant causal relationships between 
diseases, including both in and out degrees. Arrows show the causal relationship between pairs with 
FDR corrected p≤0.01 and GCP>0.6. The inset bar plot shows the percent significant causal 
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relationships among all possible pairs (y-axis) between disease 1 (x-axis) and disease 2 (bars colored 
by the age-of-onset). 
 
We next sought to characterize the genetic similarities between diseases using a score that 
shows the excess of overlapping associations between diseases, given the number of 
significant associations for each disease (see Methods). Importantly, we calculated genetic 
similarities between 80 diseases that have at least one significant association, excluding the 
pairs that are vertically connected (i.e. ancestors to child) in the disease hierarchy (e.g. 
essential hypertension and hypertension). We found 47 significant overlaps and diseases with 
similar age-of-onset profiles showed a higher genetic similarity, even when controlled for 
disease categories and co-occurrences (F-test p=1.19 x 10-8, Figure 3a-b). Moreover, this 
trend was reproducible when each cluster was analyzed separately (Figure S23). While 
correcting for the disease categories and co-occurrences, some true positive signals may be 
removed from the analysis. However, this correction is necessary, as we used the same cohort 
for multiple diseases and, thus, diseases that co-occur use the same set of samples. 
Nevertheless, we retained a significant signal even after this correction, demonstrating that 
diseases with a similar age-of-onset profile show increased genetic similarity compared to 
those with different profiles, suggesting shared genetic associations (Figure 1). 
 
We further confirmed the results using 1,703 previously defined LD blocks27 instead of 
considering all SNPs as independent. There was no significant genetic similarity between 
diseases from different age-of-onset clusters (Figure S24) and the similarities within the same 
age-of-onset cluster were not explained by the disease categories (p=0.89) and co-
occurrences (p=0.15).  
 
Mediated pleiotropy does not explain higher genetic similarities within age-of-onset 
clusters 
Following the models described in Figure 1, we next asked if mediated pleiotropy, rather than 
a common etiology, may explain higher similarity within age-of-onset clusters. Using a recent 
methodology developed by O’Connor & Price, we tested for partial or fully causal relationship 
between diseases28. In particular, the method identifies if a latent causal variable (LCV) 
mediates the genetic correlation between diseases. Using a genetic causality proportion, it 
assigns a causal relationship if one of the diseases is more strongly correlated with the LCV. 
The authors report that, unlike mendelian randomization, this method can distinguish between 
the correlation due to common etiology and causation. We tested for potential causation 
between 60 diseases, excluding the ones with less than 10 significant genetic variants and 
low heritability estimates (Zh<7)28. Also, similar to genetic similarities, we did not calculate the 
causation between diseases that are vertically connected in the disease hierarchy. Following 
the same significance criteria proposed in the methods article (FDR corrected p≤0.01 and 
mean Genetic Causality Proportion (GCP)>0.6), we found significant evidence for full or partial 
genetic causality in 91 disease pairs between 48 out of 116 diseases in our analysis (Figure 
3c, Table S2). Using Fisher’s exact test, we tested if mediated pleiotropy was more common 
between diseases in certain age-of-onset clusters but did not find any significant difference 
(FDR corrected p>0.1 for all comparisons, inset bar plot in Figure 3c). Thus, although we 
detected mediated pleiotropy between some diseases, higher genetic similarities within the 
same age-of-onset clusters (Figure2a-b) were not explained in this way and were more likely 
to be driven by common etiologies.  
 
We also investigated the diseases with the highest involvement in mediated pleiotropy. DVT 
(n=14), venous thromboembolic disease (n=13), and pulmonary embolism (n=9) had the 
highest number of out degrees, meaning they were found as causal for multiple diseases, 
including all 3 age-of-onset clusters and 5 different disease categories. Gastro-esophageal 
reflux (GORD)/gastric reflux (n=10) and esophageal disorder (n=8), on the other hand, had 
the highest number of in degrees, meaning there are multiple diseases detected as causal. 
These causal diseases spanned 5 disease categories and age-of-onset clusters 1 and 2.  
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Genes associated with the age-dependent disease clusters overlap with known cellular 
senescence and longevity modulators 
We next mapped all variants to genes based on proximity or known eQTLs using the GTEx 
eQTL associations30 (see Methods). To assess the reproducibility of the genes identified, we 
compared the significant hits with all those reported in the GWAS Catalog. We verified that 
most of the diseases had significant overlaps with the same or associated traits in the GWAS-
Catalog (e.g. osteoporosis and bone density), confirming that our results were reproducible 
with independent data (Table S3). We next compiled the genes associated with multiple 
diseases and multiple categories and grouped them based on the age-of-onset cluster of the 
associated diseases (Table S4). In particular we created two sets of genes, ‘multidisease’ and 
‘multicategory’, for clusters 1, 2, and 3. We excluded cluster 4 because the number of variants 
significantly associated with this cluster was low (n=7 associated with 5 diseases), mapping 
to only 2 genes (ZPBP2, NPC1L1). We also compiled genes associated with multiple diseases 
or categories in combinations of different age-of-onset clusters. Importantly, genes associated 
with multiple clusters are not in the gene sets for individual clusters as the latter only include 
the genes specific to individual clusters, i.e. cluster 1, cluster 2 and cluster 1 & 2 genes were 
all include mutually exclusive sets.  
 
Using these lists, we sought to understand if the common genes between diseases with the 
same age-of-onset profile had previously been associated with aging. We compared the 
multidisease and multicluster gene lists with the literature-based aging databases: GenAge 
human (genes associated lifespan in humans or closely related species), human orthologs in 
GenAge model organism (genes modulating lifespan in model organisms), CellAge (genes 
regulating cellular senescence), DrugAge targets (drugs modulating lifespan in model 
organisms), and all databases combined31–33 (Figure 4a). In general, genes associated with 
clusters 1 and 2, but not Cluster 3, showed significant enrichment with known aging-related 
genes. The list of overlapping genes is given in Table S5. The CellAge database showed the 
largest number of significant overlaps, with genes associated with clusters 1, 2, and ‘1 & 3’. 
DrugAge targets had a significant overlap with clusters 1, 2, and ‘1 & 2’. GenAge Human only 
had significant association with genes associated with cluster ‘1 & 2’. GenAge model organism 
data significantly overlapped with genes associated with cluster ‘1 & 2’ and all clusters (1 & 2 
& 3). In conclusion, although the association is established through a small subset of genes 
as also reported in the literature17,18, the clusters 1 and 2, constituting age-dependent profiles, 
shared a significant genetic component with known longevity- and senescence-modulators, 
while cluster 3 did not. 
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Figure 4: a) Overlap between known aging-related genes in databases and genes associated with 
diseases in different clusters. The x-axis shows log2 enrichment score, and the y-axis shows the age-
of-onset clusters. The numbers of genes in each cluster (for both Multidisease and Multicategory genes) 
are given. The size of the points shows the statistical significance (large points show marginal p-
value≤0.05, small ‘x’ indicate non-significant overlaps) and the color shows different databases. The 
colored numbers near the points show the numbers of overlapping genes. b-f) Gene Ontology (GO) 
Enrichment results for genes associated with diseases in b) Cluster 1, c) Cluster 2, d) Cluster 3, e) 
Cluster ‘1 & 2’, f) Cluster ‘1 & 2 & 3’. Representative GO categories for significantly enriched categories 
(BY-adjusted p-value ≤ 0.05) are listed on the y-axis (see Methods). Log2 enrichment scores are given 
on the x-axis. The color of the bar shows the result for multidisease and multicategory genes. There 
was no significant enrichment for cluster 1 & 3 and 2 & 3.  
 
Genes associated with different age-of-onset clusters have different functions 
Gene Ontology (GO) enrichment analyses were applied to the gene lists, including Biological 
Process (BP), Molecular Function (MF) and Cellular Component (CC) categories. Cluster 1 
was associated with many lipoprotein-related categories, cellular signaling, cellular response, 
cell cycle arrest, and blood pressure (Figure 4b). Cluster 2 showed association to MHC class 
II binding, fibrinolysis, and negative regulation of epithelial cell (Figure 4c). Cluster 3 had 
associations to many immune-related categories and cell adhesion (Figure 4d). Genes in 
clusters ‘1 & 3’, and in ‘2 & 3’ did not have any significant associations. Genes associated with 
cluster ‘1 & 2’ were related to nucleosome complex, gene silencing, glucose homeostasis, 
retinoic acid binding (Figure 4e). Genes associated with at least one disease in all clusters (‘1 
& 2 & 3’) showed association with interleukin-7 response, differentiation, telomere as well as 
nucleosome complex and gene silencing (Figure 4f). Since cluster 3 did not have an age-
dependent profile, the association with gene silencing and nucleosome complex could 
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represent pleiotropic genes in general. Here we listed the categories that are representative 
to all other significant functional groups. The full list is given in Table S6, and the procedure of 
selecting representatives is described in the Methods. Overall, these results suggest that, 
although cluster 1 and cluster 2 genes were both linked to previously identified aging-related 
genes, they have distinct functional profiles.  
 
Drug repurposing to improve healthspan 
 

 
Figure 5: ‘Drug-target gene’ interaction network for the drugs that specifically target multicategory 
cluster 1, cluster 2 or cluster ‘1 & 2’ genes as determined by Fisher’s exact test. Blue diamonds show 
the drugs with significant association or targeting only one gene in these gene groups. Diamonds 
without written names are only represented with the ChEMBL IDs in the datasets and did not have 
names. Drug labels written in bold are drugs approved for different conditions. Circles represent the 
genes targeted by the significant hits, colored by their age-of-onset cluster. Gray circles show the genes 
targeted by these drugs but are not among the gene set of interest. 
 
Identification of drugs that can target the multicategory genes associated with diseases in 
clusters 1 and 2 could enable the treatment of many diseases simultaneously and improve 
healthspan in the elderly. Thus, we investigated if there are drugs that target these genes 
specifically (p≤0.01 or having only one specific target, Figure 5). We found drugs targeting 
multicategory cluster 1 genes i) ABCC8 and KCNJ11, which code for parts of K-ATP channels, 
ii) CCND1, iii) MTAP, iv) NPC1L1. There were also several drugs targeting multicategory 
genes associated with both cluster 1 and 2 diseases, such as PPARG, INSR, FGFR4, 
MAPKAPK5, ALDH2, PTPN11. One of the drugs we identified, prunetin (targeting ALDH2), 
was previously shown to increase the lifespan of male Drosophila melanogaster34. Importantly, 
the significant hits included approved drugs for 14 conditions, including diabetes, 
hyperlipidemia, osteoporosis, cardiovascular diseases (list of all drugs and indications 
available in Table S7). Although the majority of these conditions are age-related, drugs used 
to treat these conditions do not necessarily target the multicategory genes we identified 
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(Figure S25), and thus, the drugs identified here offer new possibilities to prevent 
polypharmacy in the elder population if their use is prioritized to treat multiple diseases. 
Moreover, some of these drugs are already considered for multiple diseases from different 
categories. For example, acetohexamide, which targets the K-ATP channel, is in use for 
diabetes mellitus and is undergoing clinical trials for cataracts35.  
 
Evolution of aging and age-related diseases  
 

 
Figure 6: Risk allele frequency distributions (y-axis) for different age-of-onset clusters (x-axis) in the 
UKBB for a) SNPs associated with one disease (excluding antagonistic associations), b) SNPs specific 
to one cluster (excluding antagonistic associations) (ns: p>0.05, *:p≤0.05, **: p≤0.01, ***: p≤0.001, ****: 
p≤0.00001), and c) SNPs that have antagonistic association with cluster 1 and 2 (excluding agonists 
between cluster 1 and 2). d) The same as panel c but for different 1000 Genomes super-populations 
(ALL: complete 1000 Genomes cohort, AFR: African, AMR: Ad Mixed American, EAS: East Asian, EUR: 
European, SAS: South Asian). 
 
Lastly, we sought to understand the abundance of disease-associated variants in the 
population and their relationship with the evolutionary theories of aging. We first hypothesized 
that, according to the mutation accumulation theory of aging, SNPs associated with later-onset 
diseases (Cluster 1) would have a higher frequency than the SNPs associated with diseases 
that occur at earlier ages (Clusters 2 and 3), which are presumably under stronger selection 
pressure. Following a similar methodology to Rodriguez et al. to compare allele frequencies 
associated with different traits36, we compared the allele frequencies associated with different 
age-of-onset clusters. As SNPs which are close together in the genome are expected to have 
similar allele frequencies due to linkage, we calculated the median risk allele frequency for 
SNPs within previously defined LD blocks27. Supporting the mutation accumulation theory of 
aging, diseases of cluster 1 had significantly higher risk allele frequencies than cluster 2, both 
for the SNPs associated with one disease (Figure 6a, Wilcoxon test p=0.00033) or with one 
cluster (Figure 6b, Wilcoxon test p=0.0068, also confirmed by bootstrapping n=100 loci for 
B=1,000; Figure S26). We further confirmed that this trend is not specific to the UK population, 
as we obtained comparable results in all super-populations of the 1000 Genomes Project37 
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(Figure S27-28). Variants associated with cluster 3, which includes immune-related diseases, 
were not significantly different from those associated with cluster 1, although cluster 3 
diseases can occur even at an earlier age. Moreover, although the difference in the median 
allele frequencies was not significant, the shapes of distributions were different, with a 
significant shift towards higher risk allele frequencies only in cluster 1 (pcl1=0.05, pcl3=0.86 
calculated using 10,000 permutations). High minor allele frequencies, thus a higher variation 
we observed in cluster 3 is in line with the previous suggestion that immune-related genes are 
under long-term balancing selection in humans38, although positive selection also influences 
immunity39–41.  
 
To test the antagonistic pleiotropy theory (AP), we first asked if the diseases with different 
onsets have an excess of antagonistic SNPs. Similar to a previous study36, we defined a 
pleiotropic biallelic SNP as agonistic if the risk allele is the same for different diseases, and as 
antagonistic if opposite alleles are associated with increased risk for different diseases. If one 
of these diseases is under a stronger negative selection, then the risk allele of the other 
disease could increase over time. Comparing the proportion of agonist and antagonist SNPs 
within and between the age-of-onset clusters, we found that there is an excess of antagonistic 
pleiotropy between diseases with different age-of-onset profiles (Fisher’s exact test p<0.001, 
Table S8). Next, we tested the differences in risk allele frequencies between the clusters, as 
AP predicts a higher risk allele frequency for late-onset diseases. Interestingly, the difference 
between the risk allele frequencies for cluster 1 and cluster 2 was not significant for the UKBB 
population (Figure 6c). However, all 1000 Genome super-populations except for Europeans 
had higher risk allele frequencies for cluster 1 diseases (Figure 6d). We hypothesized that this 
is mainly due to false positive disease associations in the UKBB, due to increased power when 
testing the antagonistic associations with frequency closer to 0.5. We thus investigated the 
allele frequency differences for the significant variants with increased effect sizes. Indeed, 
associations with a larger effect size showed the expected differences in allele frequencies, 
although the number of independent loci was limited (Figure S29). We also examined the type 
of diseases and genes associated with antagonistic pleiotropy. The main driver of the pattern 
was the loci with ABCG8 and ABCG5 genes, showing antagonistic relationship for high 
cholesterol (cluster 1) and other lipid-related diseases in cluster 2, such as gallbladder disease 
and cholelithiasis. Another locus included variants that show antagonistic relationship with 
cardiovascular disease (cluster 1) and the cluster 2 diseases gout (ADH1B), osteoarthritis and 
joint disorder (SLC39A8), and osteoarthritis (BANK1). Another potential candidate was a locus 
associated with hypertension (cluster 1) and musculoskeletal diseases (cluster 2), but this 
locus included multiple candidate genes (Table S9). Nevertheless, our comparison is between 
common diseases that occur after the age of 20 and 40, which are both after the average age 
at first reproduction and therefore the start of the decrease in the force of natural selection42. 
Thus, a better comparison would include the mutations causing rare developmental diseases, 
which are not available in the UKBB. 
 
Discussion 
 
The number and the incidence of diseases increase with age. In this study, we explored 
whether this results from a common genetic component among ARDs, which might also be 
linked to aging. We compared genetic associations and age-of-onset distributions of 116 self-
reported diseases in the UKBB and found shared variants, genes and pathways, which were 
also associated with aging.  
 
Using an unsupervised, data-driven approach to classify diseases based on their age-of-onset 
profiles, we found 4 main clusters; i) diseases that rapidly increase after 40 years of age, ii) 
diseases that increase after 20 years of age, iii) diseases with no age-related pattern, and iv) 
diseases that peak at around 10 years of age. Notably, unlike previous studies18,43, by using 
this unsupervised approach, we detect a distinction between cluster 1 and cluster 2, which 
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both show age-dependency but distinct age-of-onset distributions. These two clusters were 
associated with genes with different functional and evolutionary characteristics, although they 
both overlap with known aging-related genes.  
 
Based on genetic associations, diseases with similar age-of-onset profiles showed a higher 
genetic similarity on average, compared to diseases in other clusters, even when controlled 
for disease categories and co-occurrences (Figure 2a-b). Moreover, this similarity within age-
of-onset clusters was not explained by mediated pleiotropy, in which one of the diseases is 
causal for the other one, suggesting instead a common etiology. We then studied the genes 
involved and found that genes associated with clusters 1 and 2 (both constituting ARDs) are 
enriched with known longevity- and senescence-modulators, while genes associated with 
cluster 3, which does not show an age-dependent profile, did not show this enrichment. In 
addition, we found that genes associated with different age-of-onset clusters have different 
functions. Comparing the risk allele frequencies of variants associated with different age-of-
onset profiles, we found support for both mutation accumulation and antagonistic pleiotropy 
theories of aging, although the number of independent loci supporting the second was limited. 
Lastly, we identified drugs that can target the common genetic component between ARDs, 
which may also limit the multimorbidity and polypharmacy associated with late life. 
 
In this study, we had a limited age range, covering individuals up to 65 years old and thus, 
could not analyze diseases of later ages. Neither did we consider the cancers or changes in 
regulation of gene expression, which are affected not only by aging, but also various 
environmental or intrinsic factors.  Future cohorts with a broader age range and spanning 
multi-omics data, somatic mutations, health outcomes, and lifestyle information, will enable a 
better understanding of the genetic mechanisms of age-of-onset determination and 
establishing the causal link with candidate genes. Despite these limitations, we present a novel 
approach to study ARDs using an unbiased, data-driven approach and show that ARDs share 
common genetic associations linked to aging. We suggest that targeting the common 
pathways between multiple ARDs could offer compression of late life multimorbidity as well as 
alleviating the effects of polypharmacy. 
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Methods 
 
UK Biobank Data  
Data was downloaded using bash and following the guidelines provided by the UK Biobank.  
 
Sample quality control 
After excluding all samples from individuals who have withdrawn their data from UK Biobank, 
we first filtered out all samples without genotypes (N = 14,248). Then, we used the following 
criteria for the remaining 488,295 samples.  
 
Discordant sex: Data includes two entries for sex: 1) self-reported and 2) genetic sex 
determined using the call intensities on sex chromosomes. There are multiple reasons why 
these two entries may not correspond, such as sample mishandling, errors in data input, 
transgender individuals, and sex chromosome aneuploidies1,2. Since we used sex as a 
covariate in our GWAS model, we preferred to be cautious about this issue and excluded all 
cases where the genetic sex and self-reported sex did not correspond and all cases where 
sex chromosome aneuploidy was detected. Specifically, we used the fields ‘31-0.0’ (Sex) and 
‘22001-0.0’ (Genetic sex) to compile discordant information. There were 235 self-reported 
males being identified as female by the genetics, and 143 self-reported females being 
identified as males by the genetics. We excluded these 378 cases, 0.077% of the data. 
Moreover, field ‘22019-0.0’ (Sex chromosome aneuploidy) is used to exclude cases with sex 
chromosome aneuploidy. There were 651 cases of aneuploidy, 0.133% of all data. 181 of 
these cases (27.80% of aneuploidy cases) were also detected as discordant information in 
the first step. This corresponds to 47.88% of discordant sex cases. Overall, we identified 848 
samples to be excluded based on this criterion.  
 
Genotype call rate & Heterozygosity: Genotype missingness and heterozygosity are widely 
used as a measure of DNA sample quality. For quality filtering based on missingness and 
heterozygosity we only used the suggested exclusions by UK Biobank. Specifically, we used 
the field ‘22010-0.0’ (Recommended genomic analysis exclusions) and determined the cases 
with 'poor heterozygosity/missingness' (N = 469). We next used the field ‘22018-0.0’ (Genetic 
relatedness exclusions) and noted down the cases with 'Participant self-declared as having a 
mixed ancestral background' (N = 692), and the cases with 'High heterozygosity rate (after 
correcting for ancestry) or high missing rate' (N = 840). Lastly, there were 968 cases that are 
suggested as outliers for heterozygosity or missing rate, field ‘22027-0.0’ (Outliers for 
heterozygosity or missing rate).  We then checked the scatter plots for logit(Missingness) vs. 
Heterozygosity for each Ethnic Background, in accordance with the identification of samples 
to exclude by the UK Biobank2 (Figure S30). Logit transformation is used to linearize sigmoidal 
distribution of missingness. Investigation of heterozygosity can detect DNA sample 
contamination, inbreeding, or mixed ethnicity1. This quality check reveals when people with a 
mixed ethnicity tend to have a higher heterozygosity, even after correcting for PCs. We 
confirmed these are in accordance with the original article and excluded the samples 
suggested by the UK Biobank.  
 
Overall, there were 3,697 samples excluded based on these two criteria. Please note that the 
numbers presented above may not add up to this number, because there were some samples 
excluded based on multiple criteria. The percent overlap across multiple criteria is given in 
Figure S31.  
 
Preparing the trait data 
Using the samples that passed the quality control (N=484,598), we subsetted the data so that 
it included only the baseline visit. Apart from the data that is already available in UK Biobank, 
we calculated some other values: 1) BMI: Using the columns for ‘Weight’ and ‘Standing height’ 
we calculated BMI as: Weight / (Standing Height / 100)2, 2) Parent Age at Death - Minimum: 
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The youngest age at which either parent died. 3) Parent Age at Death - Maximum: The age of 
death for the parent who lived longest. 4) Parent Age at Death - Average: The average age of 
death for the two parents. If neither of the parents died, or if the data was unavailable, these 
values (2-4) were set to be NA. If only one parent died, we use the corresponding age as both 
the minimum, maximum, and average. 5) The number of self-reported non-cancer diseases: 
The number of unique self-reported non-cancer illnesses each participant recorded in the 
baseline recruitment. 6) The number of self-reported cancers: The number of unique self-
reported cancers each participant recorded in the baseline recruitment. 7) Self-reported 
diseases after taking the disease hierarchy into consideration (Propagated disease data): The 
self-reported diseases in UK Biobank are not independent, but rather are organized in a 
hierarchical manner. Using the relationship information between diseases, we propagated 
disease-participant associations, upwards, including terms higher up the tree. For example, if 
a person reports having “essential hypertension”, we also annotate that person with 
“hypertension”, and “cardiovascular disease”. 8) Age at diagnosis for the self-reported 
diseases after taking the disease hierarchy into consideration (Propagated age at diagnosis 
data): We re-defined age at diagnosis using the minimum age at diagnosis for all the diseases 
that were child term for a particular disease in the disease hierarchy. 9) The number of self-
reported non-cancer diseases after taking the disease hierarchy into consideration 
(Propagated number of non-cancer diseases): The number of unique self-reported diseases 
each participant records after taking into account the data propagation. 10) Age when the last 
deceased person died: We calculated the age of each person when the last death entry in the 
UKBB happened. This value is used to calculate the proportion of people who died at a certain 
age interval in Figure S1c.  
 
Selecting diseases to analyze 
We calculated the disease occurrences for all self-reported diseases in UK Biobank. 
Specifically, among the cohort we used, we calculated how many participants and what 
proportion of males and females reported each disease. Since we analyzed the same set of 
SNPs that have MAF>=0.01 across multiple diseases, to decrease the false positive rate in 
GWAS, we limited the diseases to a subset with at least 2,000 cases (n = 129 out of 472). 
Moreover, we only focused on diseases that were common and not sex-limited, i.e. we only 
considered diseases that are seen in 1 in every 1,000 males and females (n = 189 out of 472). 
The intersection of these two conditions was 116 diseases and we excluded all others. 
 
We only analyzed self-reported non-cancer diseases (field ‘20002’) and did not combine self-
reported cancers (field ‘20001’), mainly because i) the number of cases is low (45,224 
compared to 384,906 for other diseases), ii) cancer is thought as a result of a complex 
interaction between germline and somatic mutations3,4, whereas the evidence for the effect of 
somatic mutations in other diseases is limited to rare and neurological disorders5,6, iii) the 
relationship between cancer and aging is complex, e.g. while telomere attrition and cellular 
senescence are thought to be evolved as a tumor suppressor mechanisms; aging-related 
changes in epigenomic landscape and genomic instability contribute to cancer occurrence7. 
Thus, although a similar analysis using cancers would be interesting, we only focused on non-
cancer self-reported diseases in this study. Since we did not exclude the individuals with 
cancer, we also checked if there is a significant overlap in individuals with cancer with the 
other diseases we analyzed (Figure S32). However, there was no such association. 
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Disease co-occurrence calculations 
Table 1: Contingency table for disease comorbidities. 
 

 Disease B No disease B Total 

Disease A Nab Nanb Ta 

No disease A Nnab Nnanb Tna 

 
Relative risk (RR) score 
Relative risk is an estimate of having the disease A, when already affected by disease B. 
Overall it measures if disease A co-occurs with disease B more frequently than expected if 
these diseases were independent in the population. It is calculated as a fraction between the 
number of patients diagnosed with both diseases and a random expectation based on disease 
prevalence8. Mathematically it can be expressed as follows, using the values from Table 1: 
 

𝑃!"#$%!& =
'!"
(!

, 𝑃)$*!"#$%!& =
'#!"
(#!

 
 

𝑅𝑅 =
𝑃!"#$%!&
𝑃)$*!"#$%!&

 

 

𝐶𝐼	 = 	𝑙𝑛𝑅𝑅	 ± 1.96.
𝑇+ − 𝑁+,
𝑁+,
𝑇+

+

𝑇)+ − 𝑁)+,
𝑁)+,
𝑇)+

 

 
 
ɸ value (Pearson correlation for binary variables) 
The ɸ value measures the robustness of the association between diseases based on co-
occurrences9. Mathematically, it can be expressed as: 
 

𝜙-. =
𝐶-.𝑁	 −	𝑃-𝑃.

3𝑃-𝑃.(𝑁 − 𝑃-)(𝑁 − 𝑃.)
 

 
N: the total number of individuals 
PA: Prevalence of disease A 
CAB: Number of patients with both diseases 
 
ɸ ranges between -1 and 1, where the sign indicates the type of association.  
 
Disease age-of-onset 
 
Disease dissimilarity measure 
 
Temporal correlation: In order to calculate dissimilarities among diseases, we use CORT10 
distance as included in R package TSclust11. Euclidean distance and dynamic time warping12 
are the two most widely used proximity measures for time series proximity. However, they are 
both calculated based on the closeness of the values and disregard the growth behavior. 
Correlation-based measures are also used to calculate the similarity between time series. 
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However, Pearson correlation overestimates the similarity because of the underlying temporal 
dependency and Spearman correlation fails to consider the growth rate as it is based on ranks. 
Chouakria et al., on the other hand, suggested a measure that also considers the proximity-
based on growth behavior, CORT10. Temporal correlation between two time series objects 
S1=(u1,u2,...,up) and S2=(v1,v2,...,vp) is calculated as follows: 

𝐶𝑂𝑅𝑇(𝑆/, 𝑆0) 	= 	
∑ (𝑢(23/) − 𝑢2)(𝑣(23/) − 𝑣2)
#5/
26/

<∑ (𝑢(23/) − 𝑢2)0
#5/
26/ <∑ (𝑣(23/) − 𝑣2)0

#5/
26/

 

 
CORT ranges between -1 and 1. A value of CORT = 1 implies that two time series increase 
or decrease simultaneously with the same growth rate, whereas a value of -1 shows the same 
growth rate but in opposite direction. If the value is 0, it means there is no temporal correlation 
between the series.  
 
Dissimilarity Index: The dissimilarity index suggested by Chouakria et al.10, is calculated based 
on an automatic adaptive tuning function and considers similarity based on both values and 
behavior, i.e. the strength of monotonicity and closeness of the growth rates as calculated by 
CORT measure introduced in the previous section. They suggest a dissimilarity index D as 
follows: 
 

𝐷(𝑆/, 𝑆0) 	= 	𝑓(𝐶𝑂𝑅𝑇(𝑆/, 𝑆0)). 𝛿7$)8(𝑆/, 𝑆0) 
 

Where 𝑓(𝑥)is an exponential adaptive tuning function: 
 

𝑓(𝑥) =
2

1 + 𝑒𝑥𝑝(𝑘	𝑥)
	 , 𝑘 ≥ 0 

 
As k increases, the contribution of behavior increases. We use k = 2 and as a result behavior 
(CORT) contributes 76.2% to D and values (𝛿$%&') contribute 23.8%. For 𝛿$%&' we used 
conventional Euclidean distance.  
 
Clustering diseases by age-of-onset 
We clustered data using ‘partition around medoids (PAM)’ algorithm13 based on the distance 
measure calculated using the previous step. The aim of this algorithm is to minimize the 
average distance (based on any dissimilarity measure) between the objects and their closest 
selected medoid object. It works very similarly to k-means, except instead of defining arbitrary 
points as the means, it defines medoids among the objects. Thus, it can incorporate any 
distance measure instead of just using the mean distance between points (i.e., euclidean 
distances). The algorithm first searches for k number of objects that represent the structure of 
the data (Here the number k is assumed to be known a priori but see the next section for the 
determination of k). After finding a set of k medoids, k clusters are constructed by assigning 
each observation to the nearest medoid. Overall, the goal is to find k representative objects 
such that the sum of dissimilarities of the observations to their closest representative is as 
small as possible. After each assignment, medoid and non-medoid data points are swapped 
and a cost (sum of distances of points to the new medoid) is calculated. If the total cost of 
configuration is decreased, then the new configuration is maintained, otherwise, it is reversed. 
We used ‘pam’ function in the ‘cluster’ package14 in R to apply this algorithm.  
 
Choosing the optimum number of clusters 
The clustering algorithm we used, PAM, clusters data into k clusters, which is determined by 
the user. So, even if there is no real structure in data, as we increase the number of clusters, 
we can get more and more clusters. A potential way to decide on the number of clusters is 
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using the gap statistic15. This value is calculated by comparing the logarithm of the within-sum-
of-squares (WSS) to averages from simulated data without any structure.  
 

𝑊𝑆𝑆9 =H H 𝑑0(𝑥2 , 𝑥:J)
"(∈<)

9

:6/

 

𝑘: number of clusters 
𝐶*: objects in the l-th cluster 
x*: the average point.  
 
Calculating only WSS, however, is not enough as it would be minimized when each point has 
its own cluster. Thus, we use the gap statistic which suggests calculating 𝑙𝑜𝑔(𝑊𝑆𝑆+)for a 
range of values of k and compare it to that obtained by WSS calculated based on simulated 
data. So, after WSS is calculated for various values of k, the algorithm involves generating B 
(we choose B=1,000) reference datasets, using Monte Carlo sampling from a homogeneous 
distribution and re-calculate WSS for all k values. Using these values gap(k) statistic is 
calculated as: 
 

𝑔𝑎𝑝(𝑘) 	= 𝑙9J − 𝑙𝑜𝑔(𝑊𝑆𝑆9)	 
 

𝑙9J =
1
𝐵
H 𝑙𝑜𝑔(𝑊9,

∗ )
.

,6/

 

If the clustering is good (i.e. WSS is small) we expect 𝑙9J 	to be higher than log(WSS). Thus, 
gap statistic is mostly positive and we are interested in the highest value. Tibshirani et al.15 
suggests using the smallest k such that, 
 

𝑔𝑎𝑝(𝑘) 	≥ 𝑔𝑎𝑝(𝑘 + 1) 	− 𝑠93/>  
 

where 

𝑠93/> = 	𝑠𝑑93/<1 +
/
.
 and 𝑠𝑑90 =

/
.5/

∑ (𝑙𝑜𝑔(𝑊9,
∗ ) − 𝑙9J)0.

,6/  
 
Using this approach, we determined k = 4. 
 
Genome wide association study 
 
Preparing the files required for GWAS 
 
Fixing FAM files: In UK Biobank FAM files, the column for ‘phenotype’ includes batch that is 
coded with characters. In order to use BOLT-LMM16, we updated all the entries in this column 
to numeric values17. 
 
‘Remove’ files for BOLT-LMM: BOLT-LMM accepts a list of individuals to be removed from the 
analysis as an input. These files are called ‘remove’ files and are in the FAM format. We 
prepared these files for i) withdrawn samples (n = 51), ii) samples that failed the quality control 
(n = 3,779), iii) samples that have information in PLINK files but lack BGEN files (n = 968). 
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Calculating the SNP statistics: In order to apply a quality filter for SNPs, using PLINK1, we 
calculated i) p-values for each SNP showing whether it deviates from Hardy-Weinberg 
equilibrium, and ii) Minor allele frequencies (MAF).  
 
SNP Quality Control: We excluded SNPs that deviate from Hardy-Weinberg equilibrium (p ≤ 
1e-6, n = 202,473) or with a minor allele frequency (MAF) smaller than 0.01 (n = 127,969). In 
total, we discarded 314,697 SNPs (Note that the numbers do not add up as these SNPs can 
overlap), resulting in 9,886,868 sites. 
 
Phenotype File: We created a phenotype file that can be used as an input for BOLT-LMM, 
including the following fields: sex, age when attended assessment center, calculated BMI, 
assessment center, ethnicity, batch, first 20 PCs, and self-reported diseases (one column per 
disease). 
 
GWAS run using BOLT-LMM 
For each disease, we run GWAS separately using BOLT-LMM with the following inputs: 

● We remove the samples that are in plink files but now in bgen; samples that did not 
pass our QC; samples from the individuals who have withdrawn their data from the 
UKBB 

● We excluded the SNPs that deviate from Hardy-Weinberg equilibrium, and have minor 
allele frequency lower than 0.01. 

● We used Sex, Age, BMI, assessment center, ethnicity, batch, and the first 20 PCs as 
covariates.  

● To run the mixed-model, a reference LD score table is required. We used LD scores 
generated using 1000 Genomes European-ancestry samples, which is provided with 
the BOLT-LMM download.  

● Genetic map for hg19 file provided in the BOLT-LMM website. 
● We set ‘bgenMinMAF’ argument to 1e-2 and ‘bgenMinINFO’ parameter to 0.5 to only 

include SNPs that pass these criteria.  
 
GWAS Results 
We removed MHC region (chr6: 28,477,797 - 33,448,354) from the analysis and considered 
positions with a p-value lower than 5x10-8 as a significant association. 
 
Coding Variants 
We used VarMap18 to map variants to proteins and domains. VarMap provides detailed 
information about coding variants, including annotations for the missense, synonymous, and 
nonsense variations. In our analysis, if a variant is not annotated as a coding variant in VarMap 
output, we assumed it is non-coding.  
  
Genetic similarities between diseases 
In order to calculate the overlap between diseases we used the number of SNPs that are 
significantly associated with both diseases, but corrected by the number that is expected by 
chance, if two diseases are independent: 
 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	 = 	
𝑁7$??$)
𝑁&/𝑥	𝑁&0

𝑥	𝑁*$*+: 
 
Ncommon: Number of SNPs in common. 
Ndx: Number of SNPs associated with disease X. 
Ntotal: Total number of SNPs analyzed in the study. 
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The statistical significance of these genetic similarities is calculated using the binomial test, 
and the similarity is only considered for downstream analysis if p<=0.01. Moreover, the value 
is only calculated if two diseases do not have any hierarchical relationships in the disease 
hierarchy.   
 
In order to assess the genetic similarity within age-of-onset clusters, we further used linear 
regression to correct log2 genetic similarity value by disease co-occurrences (risk ratios) and 
disease categories (binary data showing whether two diseases are of the same category). The 
‘corrected genetic similarity’ is the residuals from this linear model.  
 
LD Blocks 
In order to assess the similarity between different diseases we use overlaps across significant 
associations and thus preferred not to do fine mapping. However, a significant challenge is 
that genomic variations are not independent but instead linked in the genome. To understand 
the effect of linkage disequilibrium or overcome it, we made use of linkage disequilibrium 
blocks previously defined for human genome19. We repeated the analysis for genetic similarity 
after collapsing all positions within an LD block and thus creating independent genomic loci (n 
= 1,703). We use binary information for LD blocks, i.e. blocks with at least one significant 
association are considered as a hit, and the rest are not.  
 
Analysis of mediated pleiotropy between diseases 
Using the LCV method developed by O’Connor & Price, we tested the causal relationships 
between diseases20. We used the R functions developed by the authors and provided on 
GitHub (github.com/lukejoconnor/LCV/). We calculated the genetic causality proportion (GCP) 
between each disease pair, if the diseases have at least 10 significant variants and a 
significant heritability estimate as suggested by the developers (Zh≥7). We only calculated 
GCP if the diseases are not vertically connected on the disease hierarchy. Following the 
criteria applied by the developers, we considered pairs with FDR corrected p≤0.01 and mean 
GCP>0.6 as significant. 
 
SNP to gene mapping 
We map all SNPs analyzed in GWAS to genes based on proximity and eQTL results.  
 
Using proximity 
Using VariantAnnotation21, TxDb.Hsapiens.UCSC.hg19.knownGene22, and 
GenomicRanges23 packages in R, we mapped the genomic coordinates for each SNP to 
genes. Specifically, if a gene is within the coding region, intron, 5’ or 3’ UTR, or 1kb down- or 
up-stream of the transcription start site, we annotated that SNP to the gene. As a result, we 
had 4,443,872 SNP-gene associations for 4,236,176 SNPs and 22,228 Entrez gene IDs. We 
used the Ensembl biomaRt24 package in R to retrieve HGNC symbols (17,994), Ensembl Gene 
IDs (20,507), and gene descriptions for the Entrez gene IDs obtained from 
TxDb.Hsapiens.UCSC.hg19.knownGene database.  
 
Using GTEx eQTL data 
Using SNP-gene associations based on GTEx v7 eQTL data (accessed on 04.09.2018)25, we 
associated SNPs with the genes they could potentially regulate. We generated a combined 
tissue list, which associates SNP to the gene if there is at least one tissue in which there is a 
significant (p <= 5e-8) association. As a result, there are 2,166,300 unique SNPs associated 
with 15,312 Ensembl Gene IDs. We used the biomaRt24 package in R to retrieve HGNC 
Symbols (12,292), Entrez IDs (10,163), and gene descriptions. 
 
Comparison of proximity and eQTL based mapping 
Instead of only focusing on disease-associated SNPs, we first mapped all SNPs that we 
analyzed to discover if there is a bias for certain genes (e.g. some genes could have many 
more SNPs because they are longer, or because they are already associated with certain 
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traits and the chip is designed in that way). There were as much as 19,195 SNPs mapped to 
one gene (CSMD1) by proximity, whereas there were 82 SNPs per gene on average (median). 
The number of SNPs per gene was on average, higher for the mappings by eQTL (Figure 
S33a). The maximum was 8473 SNPs for HLA-C gene and the median number of SNPs per 
gene was 218. However, we did not consider MHC region in our downstream analysis and 
thus this region is also excluded. The correlation between the number of SNPs per gene was 
low (rho = 0.13, Figure S33b). Since the proximity-based mapping is by definition dependent 
on the gene length, we also tested if there is a significant correlation between the number of 
SNPs per gene and gene length. While the correlation is low for gene mappings by eQTL 
(Spearman’s correlation rho = 0.03, p = 1.073e-4), mappings by proximity show a high 
correlation as expected (Spearman’s correlation rho = 0.87, p < 2.2e-16). This also explains 
the low correlation between eQTL and proximity-based mappings. We next checked the 
correlation between the number of SNPs per gene mapped by proximity but only to promoter 
region. The correlation between the number of SNPs and gene length decreased (rho = 0.21), 
and the correlation with the number of SNPs by eQTL slightly increased but was still low (rho 
= 0.08). Overall, we concluded that both eQTL data and proximity-based mapping could 
capture different information and decided to use both for the downstream analyses. 
 
GWAS Catalog analysis 
We accessed the GWAS Catalog on 30-07-2019 and used v1.0.2 e96 dataset26. We excluded 
all studies which used UK Biobank dataset (n = 190, data courtesy of GWAS Catalog team). 
Using the associations with a p-value lower than 5x10-8, we compiled significant associations 
between MAPPED_GENEs and MAPPED_TRAITs. We use GWAS catalog analysis to check 
if our GWAS hits are supported by previous studies and applied a Fisher test between all traits 
in GWAS catalog and the diseases in our study. P-values are corrected for multiple testing 
using FDR correction. 
 
Analysis of the association with aging 
We downloaded GenAge human, GenAge model organism27 and DrugAge28 data on Aug 13, 
2019 and CellAge29 data on Oct 02, 2019 (CellAge data is kindly provided by Avelar et al.). 
We used HGNC Symbols for GenAge and CellAge genes. In order to compile genes that are 
targeted by the drugs in DrugAge database, using the drug names in DrugAge data, we first 
compiled PubChem IDs using PubChem REST API30. Using UniChem31, we mapped 
PubChem IDs to ChEMBL IDs32. Next, using DGIdb33, we compiled the genes targeted by 
these ChEMBL IDs. As a result, we had 307 genes from GenAge human database, 902 genes 
from GenAge model organism database, 279 genes from CellAge database, and 714 genes 
targeted by DrugAge drugs. We next calculated the overlaps between these databases and 
the genes associated with multiple diseases or multiple categories in different age-of-onset 
clusters. To calculate the expected values and statistical significance, we used 10,000 
permutations calculating the overlap for the same number of random genes among genes that 
can be detected by GWAS. Then, an odds ratio is calculated by dividing the observed value 
to the mean of expected values.  
 
Functional Enrichment Test 
Using the goseq package in R34, which takes the gene length bias into account, we performed 
a functional analysis of the genes associated with different age-of-onset clusters. Using GO 
categories with more than 10 and less than 500 annotated genes, we applied an enrichment 
test for the Gene Ontology (GO)35,36 Biological Process (BP), Molecular Function (MF), and 
Cellular Compartment (CC) categories. BY correction37 is applied to the p-values for all tests 
for all clusters and 3 GO Categories (BP, MF, and CC) combined. We considered associations 
with a BY-corrected p-value lower than 0.05 as significant. For the ease of visualization and 
comprehension we selected representative categories for significant associations as follows: 
For each cluster and GO Ontology (i.e. BP, MF, CC) separately; i) Jaccard similarity index (i.e. 
number of genes in common divided by the number of unique genes in each category 
combined) is calculated between all significantly associated GO Categories; ii) Jaccard indices 
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are hierarchically clustered and cut to k number of groups, where k is the minimum number of 
clusters which ensures median Jaccard similarity within a cluster is above 0.5; iii) The category 
with the highest average similarity to other categories in the same cluster is assigned as the 
representative. 
 
Drug Repurposing  
We searched for the drugs that specifically target multicategory genes in cluster 1, cluster 2, 
or cluster 1 and 2. Using the Fisher’s exact test, we compiled the drugs in DGIdb33 that 
specifically target these genes (p≤0.01) and drugs that target only one gene in one of these 
clusters. Importantly, we excluded all non-specific drugs (i.e. targeting more than 10 genes) 
from the analyses. The interaction data is compiled from DGIdb, and the names, indications 
and phases of the drugs are obtained from ChEMBL REST API32.  
 
Evolutionary Analysis 
In order to test the mutation accumulation and antagonistic pleiotropy theories of aging we 
used the risk allele frequencies in UK Biobank and 1000 Genomes super-populations38. A risk 
allele is an allele that shows positive association with a disease. Since the SNPs are not 
independent and have similar allele frequencies in a given LD block, we analyzed LD blocks 
instead of individual SNPs and used the median risk allele frequency for a given LD block. We 
used only the biallelic SNPs for this analysis. Allele frequencies for UK Biobank are calculated 
using BOLT-LMM and the allele frequencies for 1000 Genome super-populations are obtained 
from the vcf file provided on the 1000 Genomes project website. To test the antagonistic 
pleiotropy excess, we calculated the proportion of antagonistic vs. agonist SNPs within the 
same vs. different age-of-onset clusters using Fisher’s exact test. We considered pleiotropic 
SNPs as agonist if the risk allele for two or more diseases are the same, and antagonist if the 
risk alleles are opposite. We only tested the risk allele frequency differences between cluster 
1 and cluster 2. Also, we excluded any SNPs that are antagonistic within an age-of-onset 
cluster and agonist between clusters. 
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