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Abstract  

 

COVID-19 is bringing scenes of sci-fi movies into real life, and it seems to be far from over. 

Infected individuals exhibit variable severity, suggesting the involvement of the genetic 

constitution of populations and previous cross-reactive immune contacts in the individuals' 

disease outcome. To investigate the participation of MHC alleles in COVID-19 severity, the 

combined use of HLA-B*07, HLA-B*44, HLA-DRB1*03, and HLA-DRB1*04 grouped affected 

countries presenting similar death rates, based only on their allele frequencies. To prospect 

T cell targets in SARS-CoV-2, we modeled 3D structures of HLA-A*02:01 complexed with 

immunogenic epitopes from SAR-CoV-1 and compared them with models containing the 

corresponding SARS-CoV-2 peptides. It reveals molecular conservation between SARS-

CoV peptides, evidencing that the corresponding current sequences are putative T cell 

epitopes. These structures were also compared with other HCoVs sequences, and with a 

panel of epitopes from unrelated viruses, looking for the triggers of cross-protection in 

asymptomatic and uninfected individuals. 229E, OC43, and impressively, viruses involved in 

endemic human infections share fingerprints of immunogenicity with SARS-CoV peptides. 

Wide-scale HLA genotyping in COVID-19 patients shall improve prognosis prediction. 

Structural identification of previous triggers paves the way for herd immunity examination 

and wide spectrum vaccine development. 
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Introduction 

 

COVID-19 is bringing scenes of sci-fi movies into real life. Considering more than 

eleven million of already diagnosed cases and the growing number reported in the past few 

months, it seems to be far from over. The coronaviridae family also includes other 

respiratory syndrome causative agents in humans, the SARS-CoV, and MERS-CoV viruses1. 

The emergence of this viral pneumonia started in December/19 in the Hubei province, 

central China2, rapidly spreading around the globe, receiving the pandemic status at the 

beginning of March 2020. In the global actual scenario, there are almost 525.000 virus 

causative deaths, according to COVID-19 Dashboard by the Center for Systems Science 

and Engineering (CSSE) at Johns Hopkins University3- recovered at July 03, 2020. 

Nevertheless, we should consider that there is not a regular correlation between the number 

of diagnosed individuals and mortality, among the affected countries, as shown in Table 1. 

 

The United States, for example, shows the highest number of cases, which may be 

due to a better diagnosis rate, which influences the death rate calculation. In this context, 

Russia is the third country with a high number of cases, although its low mortality rate (one 

to 67.7 cases). Other countries with the most infected populations also present a low 

proportion of morbidity in diagnosed individuals as Germany (1:22). These values are quite 

different from those found in Italy (1:7) and France (1: 5.6), for example. It becomes even 

more alarming when we realize that each number is a human life.- calculated data recovered 

at July 03, 2020. 

 

What elements could be dictating these differences? Social and cultural differences? 

The diverse starting point of government measures? Or genetic background presented by 

the different populations and SARS-CoV-2 strains around the world, causing distinct immune 

response profiles in critical patients? The present work will discuss this last question. 

 

In the current pandemics, the first clues over the importance of cellular response are 

arising. For example, a work from Diao et al. (2020) found a negative correlation between 

CD4+ and CD8+ cell counts and disease severity in 522 patients from Wuhan, with 

laboratory-confirmed COVID-19. This fact places a pool of especial proteins orchestrating 

cellular immune mechanisms, as central players. Most of their genes are located on MHC 

locus. The MHC is the most polymorphic locus in the human genome4. This great variability 

enables that animal species could be able to fight, especially in a populational level, with the 

comparable mutational potential of pathogens, as viruses. Briefly, it is involved with the 

processing and presentation of small peptides in cell surfaces, derived from intracellular 



proteins, allowing the immune system to discriminate self from non-self, thus eliminating 

pathogens and tumors. At this point, a critical question is raised. We mentioned the MHC 

locus intentionally, not only MHC genes,  considering that other proteins, fundamental to 

produce true epitopes, belong to this genomic region. Many studies, aiming to prospect 

tumoral or vaccine targets, focuses its prediction only on the pathogen or cancer sample 

MHC ligandome5. A potential to bind to different alleles do not confer to peptides their full 

potential to be a T cell epitope. A full T cell synapsis triggering demands additional 

requirements such as epitope immunodominance and pMHC:TCR physicochemical 

complementarity. Thus, in silico analysis considering additional steps on the antigen 

processing pathway and comparisons among putative targets and immunogenic epitopes, 

could present a better performance to prospect actual T cell epitopes, as in the current 

situation where no previous information is available. 

 

Presenting a central role in this process, the HLAs (peptides presenting molecules in 

humans) constitute a link between the immune system surveillance and intracellular space 

status. It is known that different HLA alleles can bind and present a specific viral protein 

region (peptides) with altered efficiencies, which could provoke both susceptibility or 

resistance to a disease caused by a specific pathogen, depending on the type of MHC that 

the individual possesses.6,7 

 

Thus, some HLA allotypes are unable to present some immunodominant epitopes (those 

responsible to initiate T-cell responses) from a specific virus, precluding the detection and 

fighting by the immune system. The opposite also occurs, the existence of HLAs with 

improved potential to present optimal viral targets, allowing the infection control8. The HLA 

alleles frequency vary among different populations. Some researches suggest that HLA 

alleles conferring pathogen resistance are most prevalent in areas with endemic diseases. 

 

An important point to highlight in the current situation is that, even if the allele 

frequencies do not directly correlate with the percentage of the infected individuals on 

affected countries, what it can be explained by the probably enhanced affinity of SARS-CoV-

2 spike protein by the ACE2 receptor9,10, the same cannot be said about differential 

outcomes of critical patients, without a deep HLA genotyping and investigation. 

 

One can argue that this has already be done, in the 2003 SARS outbreak, with few of 

none significant associations. Nevertheless, we should consider that the number of 

genotyped individuals in that situation was extremely low compared with the current 

pandemic. Beyond that, many volunteers in those studies were health workers with putative 



contact with the virus11. Now, unfortunately, we are facing a scenario where we could extract 

more reliable correlations with alleles indicating better/worse prognosis in COVID19 patients. 

Large populational samples are essential in studies where we are dealing with a vast 

number of alleles (variables), as indicated above, contributing to minor effects, which could 

be important at a global level. 

 

Results and Discussion 

The HLA frequency relation and its apparent effect in COVID-19 immune responses 

 The virus's ability to infect and spread in its pandemic should be related to a shared 

common global characteristic, as mentioned before. So, it is clear that the infection 

propagates disconnected from populations' habits and origins, but the lethality varies 

between them. Important information arises from attending for the most frequent/rare MHC 

alleles in the most affected regions. The frequencies of these different HLA alleles vary 

widely among the countries with the highest number of cases 12. It may indicate a variation in 

the infection responses, which can influence morbidity. A close examination pointed out that 

none of the alleles frequency seems to be able to explain the death rate disparities 

independently. 

 

Aiming to verify the alleles frequencies influences in disorder outcomes, and in the 

pandemic picture, we incorporated them into a Hierarchical Clustering Analysis (HCA) using 

the pvclust package at the RStudio platform. The inclusion of specific human leukocyte 

antigens (HLA) was refined based on previous studies references and its frequencies on the 

alleles data bank (considerable prevalence) distributed among some of the more 

predominant countries in terms of COVID-19 cases, plus the country where occurs the first 

epicenter of pandemics. Starting from 40 alleles we were excluding them by considering an 

absence of frequency information for some of the investigated countries and the preliminary 

HCA results. The final alleles selection includes four allotypes: HLA-B*07, HLA-B*44, HLA-

DRB1*03, and HLA-DRB1*04. Each of them is a representative member of a distinct 

supertype (determining differential recognition and responses in the immune system).  The 

HLA alleles DRB1*03 and DRB1*04 were already described as involved with autoimmune 

reactions elicitation 4. In 2006, some works detected autoantibodies directed against lung 

epithelial cells antigens, which could be mediating tissue damage, in some stages of the 

disease13. In this sense, alleles from the DRB1 gene may play a role in presenting targets 

from the virus sharing features with self-antigens. Furthermore, some studies highlighted the 

role of B*07 and DRB1 alleles in the development of SARS susceptibility and resistance14, 



and described HLA-B*44 as a predictive element in Hepatitis C Virus clearance15. Even 

considering the prevalence and importance of HLA-A*02 supertype, it was not included in 

HCA analysis considering its low contrast ratio between the countries. The values used in 

the HCA were the weighted average of serotype frequencies from all populations belonging 

to each considered country. Table 1 summarizes the cited data.  Additional negative 

symbols were artificially attributed to DRB1*03 values intending to detach its alleles 

frequencies in the HCA. This action was a result of a previous visual inspection correlating 

its subtle prominence in countries presenting a worse prognosis, classifying the allele as a 

potential determinant factor.  

 

Figure 1 shows the result for the HCA. The formed clusters seem to explain (in a 

general way) the global pandemic scenario with exciting results that indicate active 

contribution of the selected alleles and its consequent impact on how the COVID-19 affects 

countries population. Italy and France are the two more closely related countries, forming a 

ternary group with Spain. They have, respectively, a mortality index for closed cases of 1 to 

6.49, and 1 to 3.57, while in Spain it is from 1:7.94. Taking into account the active cases the 

death per case rate decreases, being of 1:6.92, 1:5.57, and 1:10.48, in Italy, France, and 

Spain, respectively  (all values were calculated considering numbers recovered by July, 03) 

3. This group comprises three relevant nations considered as former significant pandemic 

epicentres, presenting high lethality indexes. A related cluster includes the United States, the 

United Kingdom, and Brazil. Currently, these countries represent a prominent alarming 

status, possessing an elevated contagious level. Its estimations of death per closed cases 

and death per general cases show quite a difference (from 1:15.76 to 1:25.21 in Brazil; 

1:10.06 to 1:21.58 in the US), indicating they are in their epidemic course. The UK has no 

available information about the closed cases, only the death per case index (1 to 6.45), 

contrasting with the other nations in the cluster. Considering the deaths per million 

inhabitants, Brazil, the US, and the UK show values of 306, 401, and 652, respectively. 

These values are similar to the related cluster containing Spain (607 death/1M population), 

Italy (577), and France (458) which also have elevated numbers, indicating the high level of 

virus spread in all these countries. It is even more evident if we compare them to China, 

where the pandemic remained more concentrated in a specific location (Wuhan), and the 

country shows an index of three deaths per million people. 

The next cluster includes Germany and Russia. These two countries present more 

bland pandemic indexes. The death per closed cases in Germany is similar to death per 

general cases (1:20.97 and 1:21.7, respectively), it does not occur in Russia (1:45.42 and 

1:67.74) due to a large number of active cases. Both nations have a more favorable score of 

death per million people if compared to the cited above countries (108 in Germany and 71 in 



Russia). Turkey branches apart from the above-indicated nations, with favourable values of 

the considered indexes (1:35.25 and 1:39.15). China (1:17.94 and 1:18.03) and Iran (1:18.45 

and 1:20.91) fell in a separate group, having very similar death rates, despite their ethnic 

divergences (Table 1). 

Trying to establish an initial validation of the noticed alleles effects, we include 

Pakistan, Portugal, and Peru (low-rate mortality indexes), and Romania, in four independent 

clustering approaches (Table S1 and Figure S1). Portugal (Figure S1A), Peru (Figure 

S1B), and Pakistan (Figure S1C) cluster with other nations (Turkey, China, and Germany, 

respectively) presenting low-rate death indexes. Romania grouped with Brazil (Figure S1D), 

both countries have death per closed case relatively high. As in the clustering presented in 

Figure 1, the groups depicted here share aspects of disease severity, indicating that the 

selected alleles (HLA-B*07, HLA-B*44, HLA-DRB1*03, and HLA-DRB1*04) are good 

predictors. However, it does not prevent the inclusion of additional alleles or elements to 

improve the predictability, on the contrary. 

HLA-A*02:01 as an example of universal protective alleles in human populations 

   

An alternative hypothesis is that the T cell response governing SARS-CoV-2 

recovering and clearance is through prevalent alleles in populations, as the HLA-A*02 

supertype, which could be a good sign. Initially, it seems to be a contradictory reasoning, but 

in light of the mortality rates in other SARS causative viruses (around 10% or above)16, the 

current values may indicate a more effective worldwide cellular response. This idea is 

supported by many studies reporting HLA-A*02:01 as a pivotal allele in viral infections. A 

consultation on Immune Epitope Database (www.iedb.org) returned 849 references 

describing positive T cell response against viral peptides presented in the context of HLA-

A*02:01 allele (accessed on May 26, 2020). Besides, 20 out of 34 immunogenic epitopes 

described for coronaviruses are restricted to HLA-A*02:01. In 2003 pandemics, lymphocytes 

from previously infected individuals were able to eliminate cells presenting SARS-CoV 

epitopes restricted to HLA-A*02:01 molecules11,17 up to six years later from recovering18, 

demonstrating the importance of this allele on viral clearance and T cell central memory. A 

conducted study with individuals from China and Hong Kong evidenced that more than half 

of the SARS recovered subjects were HLA-A*02:01 positive19. It is noteworthy, considering 

that the frequency of this allele is 0.1090 and 0.0620 in China and Hong Kong, respectively. 

The HLA-A*02:01 frequencies among the top 10 infected populations is high (median 

23.27).  

 

http://www.iedb.org/


In our analysis, most of the recovered HLA-A*02:01 epitopes described in past epidemics 

seem to present conserved sequences compared to their equivalent in SARS-CoV-2 (Table 

2), as described in other works 20,21. Nevertheless, in case of discordant peptide sequences, 

the simple sequences comparison of SARS-CoV and SARS-CoV-2 may provide us little 

information about the impact of these alterations on the immunogenic potential on current 

putative viral targets. The analysis of structural and physicochemical features in the peptide-

MHC (pMHC) surfaces that contact the T cell receptors, considers the combined molecular 

elements involved in T cell activation. Such structural investigation has already 

demonstrated its potential, explaining differential immunogenicity among epitopes from 

diverse viral strains or tumoral origins 22,23. Since usually there is no available crystal for all 

specific targets complexed in HLA-A*02:01 allele, we construct all customized complexes 

through our reliable DockTope tool for pMHC modeling (http://tools.iedb.org/docktope/) 24. 

This structural analysis gives us two alternative scenarios: the TCR interacting surfaces of 

both pHLA-A*02:01 complexes were similar (Figure 2A), pointing out for preserved 

immunogenicity in SARS-CoV-2 targets; or the targets presented subtle physicochemical 

alterations in complexes harboring SARS-CoV-2 peptides, compared to former SARS-CoV. 

Amazingly, in this case, some of them turned into closely related surfaces presented by 

previously immunogenic epitopes, from non-related viruses (Figure 2B). In the depicted 

example, the SARS-CoV-2 peptide SIIAYTMSL demonstrates structural convergence of 

physicochemical features with the immunodominant epitope M158-66 GILGFVFTL, from the 

Influenza virus. Both epitopes share 2/9 amino acids, reinforcing the importance of structural 

investigation to prospect cross-reactive targets. In our analysis, to make it evident that the 

comparisons were not result from structural biases, we provide a small sample of unrelated 

models from our CrossTope database (www.crosstope.com) 25, containing TCR interacting 

surfaces from HLA-A*02:01 structures presenting immunogenic epitopes (Figure S2). These 

first comparisons uncovered interesting scenarios. Firstly, even those peptides with 

sequence alterations in SARS-CoV-2, but without molecular modifications in the TCR 

interacting surfaces, remain good candidates to immunization strategy. The examples where 

SARS-CoV-2 peptides shown subtle alterations compared to their corresponding SARS-CoV 

targets could indicate a change in immunogenicity or even a complete loss of it. However, in 

this situation it resembles highly immunogenic epitopes from other viral organisms. This 

evidence emphasizes the need to investigate this new face of the immunogenic prism. 

 

 

Searching for SARS-CoV-2 shared immunogenic fingerprints in targets from HCoVs 

and other prevalent viruses in human populations 

 

http://tools.iedb.org/docktope/
http://www.crosstope.com/


The observed molecular similarity between pMHCs complexes containing peptides from 

SARS-CoV-2 and Influenza viruses brings us toward another attractive hypothesis that 

refers to a universal previous cytotoxic response present in populations from all over the 

world, triggered by previous infections. The first suspects to investigate were past contact 

with targets from remaining betacorononavirus (OC43) and alphacoronavirus genus 

members (229E and NL63). Epidemiological studies reported that around 15-30% of the 

common cold are caused by this group of pathogens26.  Even considering that they are 

viruses with a zoonotic origin, we would expect many spillover events throughout the history 

of humans, maintaining regular contact with our species27. A codon usage analysis, involving 

BCoV and HCoV-OC43, suggests that an ancestor coronavirus could be present even 200 

kyr ago, in early men28. Therefore, we would expect that this group of pathogens has also 

contributed to shaping our current immune system repertoire. Guided by this supposition, we 

compared the immunogenic SARS-CoV epitopes with 229E, OC43, and NL63 corresponding 

protein sequences, looking for shared elements involved in immunogenicity triggering. Such 

analysis presented a clear example where sequence comparison might be hiding shared 

patterns not detectable by single amino acid identity alignment. In Table 2, the sequences 

identities ranged around 50%, a value usually not detected by regular alignments methods 

prospection. Nevertheless, when we inspect these same epitopes in the context of pMHC 

structural models harboring these peptides sequences from SARS-CoV-1, SARS-CoV2, and 

alphacoronavirus in HLA-A*02:01 alleles, intriguing fingerprints arose. A similar electrostatic 

distribution and topography, on the TCR interacting surfaces from the pMHCs, can be 

observed among SARS-1, SARS-2, and other coronaviruses members (229E and OC43) 

(Figure 3A). It is important to reinforce that both 229E and OC43 putative epitopes were 

predicted as strong binders to HLA-A*02:01 (data not shown), strengthening their potential 

as actual triggers for SARS-CoV cross-reactivity. The peptides from the beta-CoVs are quite 

similar (GLMWLSYFL and GLMWLSYFV, between SARS-1 and 2, respectively). However, 

the peptides from 229E (LVMWVMYFA) and OC43 (IIMWIVYFV) are distinct, evidencing the 

importance of the structural investigation. Furthermore, other peptides derived from alpha-

CoV viruses presented a less prominent similarity in physicochemical features to 

immunogenic SARS-CoV-1 epitopes (data not shown). However, they are also potential 

targets to investigate. A work recently deposited in bioRxiv showed that 34% SARS-CoV-2 

of seronegative healthy individuals presented S-reactive CD4 T cells. These cells react 

almost exclusively with the C-term epitopes region, characterized by higher homology with 

spike protein of human endemic common cold coronaviruses. Nevertheless, none of the 

putative cross-reactive epitopes are pointed-out, nor the structural basis hypothesized, but it 

reinforces our propositions29. Evidences of many CD4+/CD8+ cross responses against many 

SARS-CoV proteins in unexposed individuals were extensively described in Griffoni et al. 20, 



without the specific identification of sequence targets. Other work describing correlations of 

CD4+/CD8+ T cell differential phenotypes between acute (highly activated cytotoxic) and 

convalescent (stem-like memory) patients, was conducted by Karolinska COVID-19 Study 

Group30. Interestingly, they described the occurrence of SARS-CoV-2-specific T cell 

responses elicited in the absence of circulating antibodies in non-infected individuals, 

suggesting that previous contacts could be the triggers of these cross-reactive events.  

 In this regard, given the previous identification of a similar target from the Influenza 

virus (M158-66 GILGFVFTL) with a SARS-CoV epitope, the next step was to scrutinize other 

trigger candidates on previous described viral epitopes. To perform the comparison, we 

recover pMHC structures on CrossTope  T cell epitope databases (http://crosstope.com/ 

25) looking for immunogenic fingerprints common to SARS-CoV-1 epitopes and unrelated 

viruses. As demonstrated before, considering that SARS-CoV-1 and SARS-CoV-2 peptides 

are sequence and structurally related, the comparison with experimentally described 

epitopes from SARS-CoV-1 seems to be more appropriate.  The results from these 

comparisons were extraordinary. When we look for pHLA-A*02:01 structures, not only the 

previous example of M158-66 IAV epitope matched with SARS epitopes, but 13 out 20 

CD8+ coronavirus epitopes, recovered from Immune Epitope Database, has counterparts in 

targets from common circulating viruses, concerning depicted molecular features. Figure 3B 

presents three examples of SARS-CoV peptides presenting stunning structural identity with 

viral epitopes. The matched targets belong to viruses from three different families 

(Herpesviridae, Poxviridae, and Flaviviridae). It is important to think that these targets would 

probably not be investigated and selected in an approach using regular methods, given that 

no apparent identity is evidenced by any of these structurally related epitopes with SARS-

CoV sequences. The remaining comparisons can be viewed in Figure S3. Importantly, when 

we consider these images correspondences, the comparisons with pMHCs from unrelated 

viruses were more conspicuous than those from other representatives of HCoVs. It seems a 

paradox, given the natural expectation (considering its phylogenetics proximity) of a more 

intimate relation between alpha and beta CoVs peptides with SARS-CoV epitopes. 

 

Concluding Remarks 

 

  In COVID-19, the aetiological agent, SARS-CoV-2, is well established. Nevertheless, 

the same cannot be regarding all elements participating in severe acute respiratory 

syndrome (SARS) etiology. For this purpose, two aspects of cellular response were here 

approached: the impact of the MHC allelic constitution of populations on COVID-19 outcome 

and the structural analysis of immunogenic elements presented by SARS-CoV and putative 

SARS-CoV-2 T cell epitopes.    

http://crosstope.com/


In the first section, an HLA allele frequency investigation was conducted on some of 

the most affected nations (considering COVID-19 cases number) to elucidate populations' 

genetic elements probably involved in lethality indexes. By only using four frequencies of 

prevalent alleles, we were able to cluster countries presenting similar death rates profiles 

concerning both closed and active cases. It seems to contribute with the determination of 

population response facing COVID-19, in addition to the political and medical interventions 

which are, in every country context, also extremely essential. It is necessary to emphasize 

that this approach prototype was just a primary prospection of how these components could 

operate in complex scenarios. May have countless more factors (and alleles, probably in 

haplotypes) involved with the mortality determination ratio. Nonetheless, it highlights the 

importance of a worldwide genotyping effort to clarify this landscape. 

The epitope structural analysis and their relationship with other HCoVs and unrelated viral 

targets unveiled noteworthy observations. These pieces of evidence may open two avenues 

of investigation. The high degree of molecular conservation between SARS-CoV-1 epitopes 

and its corresponding sequences in SARS-CoV-2 allows its use in vaccine development to 

stimulate cross-reactive responses, covering distinct SARS-CoV-2 strains, for example. In 

this regard, animal reservoirs should be inspected looking for beta CoVs with the potential to 

spill out of their natural hosts to humans. Peptides sequences from these putative HCoVs 

pathogens could be structurally compared searching for cross-reactive T cell targets to be 

used in a virtual future occurrence of a new coronavirus spillover phenomenon. Such 

preventive strategy could abbreviate steps to develop immunotherapeutic methods, avoiding 

the emergence of new pandemics. The second line of the investigation resulted in an even 

more attractive hypothesis. Previous infections with different alpha/beta-CoVs and unrelated 

common viruses can be generating memory T cells against SARS-CoV-2, in a significant 

portion of the population. This pool of cells in different individuals is providing a universal 

immunogenic shield against SARS-CoV-2 and, probably, against other potentially emergent 

and endemic viruses. This mechanism seems to be evolutionarily constructed by regular 

cross-reactive contacts. Moreover, the defense appears to be associated with prevalent 

alleles, which probably present peptides harboring fingerprints of immunogenicity shared by 

epitopes that regularly infect humans. 

 

Methods 

 

Alleles search and data evaluation: To start the investigation, we selected highly affected 

countries concerning the number of COVID-19 cases 3 (recovered at July 03, 2020), plus 

China, which was the first pandemic epicenter, and other selected countries to validate our 

analysis. The alleles having a frequency equal to or higher than 10% (in at least one of the 



selected countries) were examined. Some HLAs were rejected due to their lack of 

information in some selected countries or considering their similar frequencies across 

nations, which could give little information on the clusterization method. The data were 

recovered from The Allele Frequency Net Database (AFND)12, selecting the locus and allele 

of all populations for each specified country included in the analysis. A list of country 

populations, including sample size from where the allele frequencies were obtained, is 

provided. A weighted average was calculated for each allele to avoid size sample biases. A 

better description of the applied methodology can be visualized as a graphical scheme at 

Figure S4.  

 

Hiararchical Clustering: In the second step, the weighted average of B*07, B*44, 

DRB1*03, and DRB1*04 frequencies values for each country was used to fuel a hierarchical 

clustering analysis (HCA ) on package Pvclust 31. The HCA allow the classification of several 

objects (countries) into some groups (clusters) according to similarities between them 

(allele’s values). Pvclust calculates probability values (p-values) for each cluster using 

bootstrap resampling techniques. Two types of p-values are available: approximately 

unbiased (AU) p-value and bootstrap probability (BP) value. Multiscale bootstrap resampling 

is used for the calculation of AU p-value, which has superiority in avoid bias over BP value 

calculated by the ordinary bootstrap resampling. Generally the AU p-value is a better 

estimator of the reliability of the clusters obtained. The bootstrap analysis was performed 

with the number of bootstrap replications being B = 10.000. 

 

SARS-CoV Epitopes propections: 

We prospected the IEDB database for experimental coronavirus epitopes, finding 20 

immunogenic epitopes restricted to HLA-A*02:01 allele. Those epitopes were derived of the 

N (nucleocapsid) protein, Surface (spike) protein, and Membrane glycoprotein. To verify if 

those epitopes have a counterpart in the SARS-CoV-2 proteome, we used a Needleman-

Wunsch Global Align Nucleotide Sequences (BLAST) using the protein sequences of the 

2002/2003 SARS virus and the SARS-CoV-2 from Wuhan. To check if the binding affinity 

was preserved in discordant SARS-CoV-2 sequences, we predict it through NetMHCcons 

tool (http://www.cbs.dtu.dk/services/NetMHCcons/) 32. The same tool was used for the 

remaining HCoVs peptides. 

 

HCoVs epitope prediction 

We selected viruses from the Alphacoronavirus (229E and NL63), and Betacoronavirus 

(OC43), checking if these strains possess corresponding SARS-CoV epitopes that could 

generate similar surfaces, and consequently, act as triggers of cross-reactivity. To this, we 

http://www.cbs.dtu.dk/services/NetMHCcons/


screened the protein sequences of different HCoVs searching for some amino acid identity 

with immunogenic targets described for SARS-CoV-1. Then, they were modeled to verify if 

their surfaces of interaction with TCR present structural conservation throughout different 

coronaviruses.  

 

 

 

Structural analysis: To generate customized peptides anchored in the desired MHCs 

(pMHC), all coronavirus epitopes were modeled in HLA-A*02:01 allele by Docktope Tool. 

The 3D models were used as input in the Pymol software 

(https://www.schrodinger.com/pymol) to calculate their electrostatic surfaces to verify how 

much the amino acid changes impacted the overall charge disposition in those models.   

 

Structural Hierarchical Clustering: 

We compared the pMHC complexes of both viruses with several other complexes from 

selected HCoV sequences and from those included in the Crosstope Database 

(www.crosstope.com), which harbors several previously described epitope sequences of 

immunogenic targets from the IEDB. All images of SARS-CoV and CrossTope HLA-A*02:01 

epitopes were used to perform the comparisons. We utilized ImageJ33 to extract the Red-

Blue-Green (RGB) values from electrostatic surface regions that contact T cell receptor. 

These regions were inferred by contact calculation of ternary crystals comprising p:HLA-

A*02:01:TCR. The regions present colors that can be more positive, neutral or negative in 

that regards to the electric charges and this color information was converted in numeric 

values of mean, mode and standard deviation to feed the hierarchical clustering program 

pvclust, ran by the R Studio to perform this pairwise comparison and group the most similar 

surfaces together. 

 

 

 

 

 

 

 

 

 

 

https://www.schrodinger.com/pymol
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Figure Legends  

 



Figure 1. Hierarchical Clustering Analysis from the most affected countries in number 

of COVID-19 cases reported, based on its HLA frequencies. The image represents the 

HCA result for a clusterization concerning the frequencies of the following alleles: HLA-B*07, 

HLA-B*44, HLA-DRB1*03, and HLA-DRB1*04. Four clusters comprising countries with 

similar death rates are showed. High-rates countries as Spain, Italy, and France grouped. In 

the same way, low-rate nations like Germany and Russia fall in the same branch. Its 

required frequencies were obtained from Alleles Frequency Net Database 

(http://www.allelefrequencies.net/) and are also compiled in Table 1. Values at branches are 

AU p-values (left), BP values (right), and cluster labels (bottom). Clusters with AU ≥ 95 are 

indicated by the rectangles. Death per case ratios of each country are expressed as 1: X 

(one death in X cases). The calculated values for "X" are depicted in HCA. 

 

Figure 2. Structural analysis of SARS-CoV HLA-A*02:01 epitopes. A sequence 

demonstrating the TCR-interacting surface is depicted above. From left to right we can 

observe 1) the MHCs in the cell membrane; 2) a side view of pMHC with alpha chain in pale 

blue, B2-microglobulin in pale purple and the peptide in green; 3) a top view of pMHC with 

the peptide region highlighted in green and 4) the pMHC surface with electrostatic potential 

distribution and topography, the main elements involved in immune response stimulation. 

Negative values are represented in red and positive ones in blue. A) SARS-CoV peptide 

sequences showing high similarity in sequence and structural features. B) SARS-CoV 

SIVAYTMSL/SIIAYTMSL sequences presenting subtle differences. An HCA analysis with 

the IAV GILGFVFTL epitope demonstrates that it is even more similar to SIIAYTMSL SARS-

CoV-2 peptide sequence.  

  

Figure 3. Comparison of electrostatic surface distribution and topography of SARS-

CoV peptides with alphacoronaviruses and other prevalent viruses in human 

populations. pMHCs models were compared in terms of topography and electrostatic 

distribution. In A, two beta (SARS-CoV) and two alpha (229E and OC43) coronaviruses 

show similar electrostatic distribution and topography despite its sequence divergences. In 

B, a panel of three SARS-CoV peptides is compared to pMHCs containing viral epitopes 

from members of other families. An unexpected shared structural similarity arises, 

disregarding their lack of sequence identity and phylogenetic relationship. Electrostatic 

calculations are represented as negative (red) and positive (blue) charges. Sequence 

identity is depicted as red letters in the peptide sequences. 

http://www.allelefrequencies.net/


  

Figure  S1. Additional Hierarchical Clustering Analysis based on countries HLA 

frequencies. The figure depicts the inclusion of four countries: Portugal (A), Peru (B), Chile 

(C), and Romania (D) in separate HCAs. It illustrates the results for clusterization concerning 

the frequencies of the following alleles: HLA-B*07, HLA-B*44, HLA-DRB1*03, and HLA-

DRB1*04. Values at branches are AU p-values (left), BP values (right), and cluster labels 

(bottom). Clusters with AU ≥ 95 are indicated by the rectangles. Death per case ratios of 

each country are expressed as 1: X (one death in X cases).  

 

Figure S2. TCR interacting surfaces from pMHC immunogenic structures. Nine pMHC 

from HLA-A*02:01 bound to experimental epitopes are represented. This panel of images 

was provided to evidence molecular signs diversity that can be found in these targets. 

 

Figure S3. Remaining comparison of SARS-CoV epitopes and immunogenic epitopes 

from CrossTope Database. Shared fingerprints are also observed in the above-exemplified 

pairs of structures indicating a general structural signature. 

 

Figure S4. Resume the method applied in “The HLA frequency relation and its 

apparent effect in COVID-19 immune responses” section. The weighted average (WA¹) 

of each allele´s frequency was obtained for the selected countries at the Allele frequency net 

database (AFND). It was used in a hierarchical clustering analysis (HCA) through the pvclust 

package in the R-Studio software. 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Alleles frequency information and data of the most affected countries considering the number of COVID-19 cases. 
 

 Country 
United 
States 

Brazil Russia Spain 
United 

Kingdom 
Italy France Germany Turkey Iran China E 

cases 2.837.681 1.502.424 667.883 297.183 283.757 240.961 166.378 196.738 202.284 235.429 83.542 
death 131.503 62.045 9.859 28.368 43.995 34.818 29.875 9.064 5.167 11.260 4.634 

active cases 1.514.340 524.232 220.131 71.857 N/A 15.060 59.701 6.674 20.152 27.723 409 
closed cases A 1.323.341 978.192 447.752 225.326 N/A 225.901 106.667 190.064 182.132 207.706 83.133 

population 
331.012.86

4 
212.566.4

22 
145.934.96

0 
46.754.92

2 
67.887.99

6 
60.461.0

36 
65.274.55

3 
83.785.708 84.341.594 

83.994.8
19 

1.439.323.77
6 

death:cases B 21,60 24,21 67,74 10,48 6.45 6,92 5.57 21,7 39,15 20,91 18,02 
death: closed cases B 10,06 15,8 45,42 7,94 N/A 6,49 3,57 20,97 35,25 18,45 17,94 

death:1 million 
people 

405 315 73 607 652 577 458 109 62 144 3 

A
lle

le
s 

Fr
e

q
u

e
n

cy
 C

 HLA-A*02 0.2016 0.2593 0.2843 0.2439 0.2550 0.2539 0.2710 0.2665 0.2525 0.1713 0.2836 

HLA-B*07 0.1144 0.0691 0.0947 0.0900 0.1215 0.0570 0.1035 0.1311 0.0428 0.0405 0.0277 

HLA-B*44 0.1292 0.1081 0.0908 0.1634 0.1265 0.0916 0.1552 0.1270 0.1110 0.0413 0.0372 

DRB1*03 0.1153 0.0973 0.0808 0.1234 0.1490 0.0995 0.1106 0.1055 0.0932 0.0867 0.0464 

DRB1*04 0.1625 0.1254 0.1109 0.1201 0.1911 0.0800 0.1355 0.1316 0.1362 0.1054 0.1206 

P
o

p
u

la
ti

o
n

 

si
ze

 

re
p

o
rt

ed
 D

 HLA-A*02 2.833.193 2.854.388 11.521 6.518 7.987 165.944 15.429 81.446 512 16.743 72,136 

HLA-B*07 12.370 2.854.075 10.162 2.025 7.987 164.791 15.429 11.581 370 16.519 65.320 

HLA-B*44 12.370 2.854.075 10.162 2.025 7.987 164.791 15.429 11.581 370 16.519 65.433 

DRB1*03 11.988 2.853.876 10.563 10.679 980 171.535 15.397 11.407 528 16.455 40.114 

DRB1*04 11.988 2.853.876 10.240 4.274 980 171.588 15.397 11.407 528 16.513 66.380 

The data about reported cases and deaths was recovered from COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns 

Hopkins University (Dong et al., 2020)- on July 03, 2020.  

A Closed cases number was calculated excluding the active ones from total cases.  

B Death per case ratios of each country are expressed as 1: X (one death in X cases) and the X values were specified in the table.  

C The allele’s frequency for each HLA was obtained as a weighted average (considering the sample size) of all the populations reported in the allele frequency 

net database (http://www.allelefrequencies.net/) for each country.  

D Population size reported is the sum of the sample sizes included in the present study. 

E China was added due to its crucial role as the first pandemic epicenter of COVID-19. 

 

http://www.allelefrequencies.net/


Table 2. Recovered HLA-A*02:01 epitopes from SARS-CoV, SARS-Cov-2 and other alphacoronaviruses 

IEDB - experimental positive epitopes from coronaviruses A Peptides in other coronaviruses B 

Epitope 
ID 

Description Antigen Name Organism Name 
Experimental Assays 

(Positive/All) 
SARS-CoV-2 HCoV-229E HCoV-NL63 HCoV-OC43 

2801 ALNTLVKQL S protein SARS-related coronavirus 2/2  SLNHLTSQL ALNHLTSQL ALNNLLQQL 
2802 ALNTPKDHI Nucleoprotein SARS-related coronavirus 2/2  RVTVPKDHP  DVNTPADIV 

16156 FIAGLIAIV Spike glycoprotein precursor SARS-related coronavirus 2/2    FINGIFAKV 
21347 GMSRIGMEV Nucleoprotein SARS-related coronavirus 10/10     
27182 ILLNKHIDA Nucleoprotein SARS-related coronavirus 1/3     
27241 ILPDPLKPT Spike glycoprotein precursor SARS-related coronavirus 2/2 ILPDPSKPS    
34851 LALLLLDRL Nucleoprotein SARS-related coronavirus 4/4     
36724 LITGRLQSL Spike glycoprotein precursor SARS-related coronavirus 5/8  LITGRLAAL LITGRLAAL LINGRLTAL 
37473 LLLDRLNQL Nucleoprotein SARS-related coronavirus 11/12     
38881 LQLPQGTTL Nucleoprotein SARS-related coronavirus 4/6  QKLPNGVTV  GTVLPQGYY 
44814 NLNESLIDL S protein SARS-related coronavirus 3/4  NINSTLVDL  VLNHSYINL 
54690 RLNQLESKV Nucleoprotein SARS-related coronavirus 9/11 RLNQLESKM    
58730 SIVAYTMSL S protein SARS-related coronavirus 3/3 SIIAYTMSL    
69657 VLNDILSRL S protein SARS-related coronavirus 3/4   ETNDVSSML SLQEILSRL 
71663 VVFLHVTYV Spike glycoprotein precursor SARS-related coronavirus 5/5    LYFIHFNYV 

125100 ILLNKHID Nucleoprotein SARS-related coronavirus 1/1     
21041 GLMWLSYFV Membrane glycoprotein SARS coronavirus TJF 7 / 8 GLMWLSYFI LVMWVMYFA LCLWVMYFV IIMWIVYFV 
64710 TLACFVLAAV Membrane glycoprotein SARS coronavirus TJF 5 / 5   VLALSIFDCFV  
32069 KLPDDFMGCV Spike glycoprotein precursor SARS coronavirus BJ01 2 / 2 KLPDDFTGCV   YSFDSYLGCV 
54680 RLNEVAKNL Spike glycoprotein precursor SARS coronavirus BJ01 1 / 1  RLNYVALQT TLQEFAQNL RLQEAIKVL 

 

A  The selection and data of the epitopes were accessed on Immune Epitope Database and Analysis Resource (IEDB - https://www.iedb.org/ - acessed on 

May 26, 2020). 

B In the comparison among other coronoviruses peptides, the blank cells in the columns mean no amino acid difference among SARS-CoV-1 epitope and its 

equivalent in the viruses, the occurred discrepancies were bolded. 

 

 

 

https://www.iedb.org/




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 2. 



 


