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Abstract 

Electronic Health Records (EHRs) often lack reliable annotation of patient medical conditions. Yu et al. recently 

proposed PheNorm, an automated unsupervised algorithm to identify patient medical conditions from EHR data. 

PheVis extends PheNorm at the visit resolution. PheVis combines diagnosis codes together with medical concepts 

extracted from medical notes, incorporating past history in a machine learning approach to provide an 

interpretable “white box” predictor of the occurrence probability for a given medical condition at each visit. 

PheVis is applied to two real-world use-cases using the datawarehouse of the University Hospital of Bordeaux: 

i) rheumatoid arthritis, a chronic condition; ii) tuberculosis, an acute condition (cross-validated AUROC were 

respectively 0.947 [0.944 ; 0.948] and 0.987 [0.983 ; 0.990]). PheVis performs well for chronic conditions, though 

absence of exclusion of past medical history by natural language processing tools limits its performance in French 

for acute conditions. It achieves significantly better performance than state-of-the-art methods especially for 

chronic diseases.  
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1. Introduction 

As the amount of data collected on a daily basis from hospital health care system keeps increasing,[1] the appeal 

for leveraging the full potential of these data for research purposes and to investigate clinical questions is also 

becoming stronger than ever.[2–5] Yet, EHR data are quite different from research oriented data (e.g. cohort or 

trial data): i) they are less structured, more heterogeneous, ii) they present finer granularity, iii) data collection is 

done for health care purpose.[1,6–8] Currently, one of the main barriers to use such data for studying disease risk 

factors is the necessity to first identify patients having diseases of interest, a task that we will denote as 

phenotyping. 

Several approaches have been recently proposed to phenotype patients.[9–13] They often rely on either 

rule-based algorithms specifically designed with clinicians, or on supervised models trained on annotated patient 

datasets. Such algorithms are limited because their development is disease specific, must be (re-)started from 

scratch for every new disease and demand a lot of clinician expertise time. In addition, portability and 

generalization to new databases (e.g. different hospitals) can often fail, requiring once again the process to be 

reiterated in the new institution. Hripcsak and Albers defined high-throughput phenotyping as an approach that 

“should generate thousands of phenotypes with minimal human intervention”.[8] In this perspective, multiple 

methods have been developed for automatic phenotyping. Agarwal et al. proposed XPRESS which learns on 

noisy labels.[10] Halpern et al proposed Anchor which learns on so-called “anchor patients”, i.e. patients with 

highly disease-specific features.[11] Wagholikar et al developed Polar, which learns on so called “polar 

patients”, i.e extreme patients which are almost certain to either have or not have the disease.[12] Finally Yu et 

al. developed PheNorm which learns the phenotype as a continuous score.[13] And they also developed SAFE 

which selects relevant features for phenotyping in an automated manner.[14] All those frameworks are 

unsupervised, in the sense that they require neither any manual chart review nor any complex rules definitions to 

classify phenotype, and thus allow automated high-throughput phenotyping.  

While those frameworks are appealing, they only consider phenotyping at the patient level and neglect 

the timing of illness onset and cure. Yet, we need increased resolution for phenotyping, especially for studying 

acute diseases (that can occur repeatedly) or for answering epidemiological questions (where temporal sequence 

is important): phenotyping at the visit level would allow to precisely take into account the dynamic evolution of 

patient’s conditions. Besides, those frameworks were developed using English databases, leveraging advanced 

NLP tools and relying on rich terminologies not necessarily available in languages  other than English.[15,16] 

Portability to other languages is not straightforward, as they still often lack resources of matching quality. 

We propose a new, portable, approach for unsupervised algorithm extending PheNorm at the visit level: 

PheVis. This new PheVis method cumulate past information to provide an up-to-date estimation of a phenotype 

probability at any given visit. This accumulation of previous information from EHR can be tuned to match the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.06.15.20131458doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.15.20131458
http://creativecommons.org/licenses/by-nc/4.0/


disease length, making PheVis a versatile tool suitable for both chronic and acute conditions. Section 2 presents 

the PheVis analysis and modeling strategy. Section 3 demonstrate PheVis performance for rheumatoid arthritis 

(RA) and tuberculosis (TB), a chronic and an acute condition respectively, using French EHRs from Bordeaux 

University Hospital. The method is compared to other state-of-the-art methods. Finally Section 4 discusses these 

findings and the limits of the approach, and offers a conclusion. 

2. Material and methods 

PheVis combines ICD10 (international classification of diseases 10th revision) billing codes together with medical 

concepts extracted from clinical notes, incorporating past information through a user-tunable exponential decay. 

This creates a silver-standard surrogate of the medical condition of interest. Then variable selection (through 

elastic-net logistic regression) and pseudo-labelling (using random-forest) are performed, leveraging extreme 

values of this silver-standard. Finally, a logistic regression model is estimated on those noisy labels to provide 

an interpretable “white box” predictor of the occurrence probability for a given medical condition at each visit. 

The different steps of PheVis are outlined in Figure 1 and are described below. 

1. Input data 

The input data of the PheVis approach are the clinical notes and the ICD10 codes from an EHR datawarehouse. 

All the notes and ICD10 codes are collapsed by visit, and IAMsystem, a dictionary-based named entity 

recognition tool, is used to extract relevant UMLS concepts unique identifiers, CUIs (i.e. CUIs associated with  

disease to be phenotyped – see Section 2.3 for details).[17,18] ICD10 codes are aggregated at the category level 

(i.e. the first three characters, M05.1 and M05.2 codes are both counted under the same category code M05). This 

result in a matrix 𝑋 of dimension 𝜑 × 𝑃 , where 𝜑 is the total number of visits and 𝑃 the total number of ICD 

and CUI concepts. We will denote 𝑖 ∈ {1, … , 𝑛} the patient index and 𝑗 ∈ {𝑣1, … , 𝑣𝑖} the visit index. 

2. Build a surrogate of the disease status 

As there are no disease labels for the visits (hence requiring a phenotyping algorithm), a supervised model cannot 

be trained right away. To be able to train our phenotyping algorithm, we first build a surrogate variable expected 

to be close to the true disease status. This surrogate is based on the main ICD and UMLS codes that represent a 

disease. 

We define 𝑚𝐶𝑖𝑗 the standardized sum of main disease concepts as: 

𝑚𝐶𝑖𝑗 = 𝑍(𝑚𝑎𝑖𝑛𝐼𝐶𝐷𝑖𝑗) + 𝑍(𝑚𝑎𝑖𝑛𝐶𝑈𝐼𝑖𝑗) + 𝑚𝑖𝑛 (𝑍(𝑚𝑎𝑖𝑛𝐼𝐶𝐷𝑖𝑗) + 𝑍(𝑚𝑎𝑖𝑛𝐶𝑈𝐼𝑖𝑗))  and 𝑍(𝑥) =
𝑥−𝜇

𝜎
  (1)  

𝑚𝑎𝑖𝑛𝐼𝐶𝐷 and 𝑚𝑎𝑖𝑛𝐶𝑈𝐼 are main concepts related to the disease. For example, for RA we used: 
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-  𝑚𝑎𝑖𝑛𝐼𝐶𝐷𝑖𝑗 = 𝑀05𝑖𝑗 + 𝑀06𝑖𝑗 with 𝑀05𝑖𝑗 the number of times the code M05 Rheumatoid arthritis 

with rheumatoid factor was recorded for patient 𝑖 at visit 𝑗, and similarly for 𝑀06𝑖𝑗 and M06 Other 

rheumatoid arthritis 

- 𝑚𝑎𝑖𝑛𝐶𝑈𝐼𝑖𝑗 = 𝐶0003873𝑖𝑗 with C0003873 Rheumatoid arthritis 

At this stage, standardization (centering and scaling) is critical because CUIs occurrences often largely 

outnumber ICD code occurrences. Without such standardization, the weight of ICD codes in the prediction would 

be negligible. 

To phenotype a given visit, it is necessary to take into account information available from previous visits as well. 

For example, a patient can be diagnosed RA at the age of 50, have a visit at 52 for an infectious event containing 

no information about RA. RA being a chronic disease, we want to be able to predict RA in both visits. To do so 

we propose to cumulate past history information with an exponential decay as follow: 

𝑚𝐶𝑢𝑚𝑢𝑙𝑖𝑗 = 𝑚𝐶𝑖𝑗 + 𝑚𝐶𝑢𝑚𝑢𝑙𝑖𝑗−1𝑒−𝜆𝐷𝑖𝑗  with 𝑚𝐶𝑢𝑚𝑢𝑙𝑖1 = 𝑚𝐶𝑖1 and 𝐷𝑖𝑗 = 𝑡𝑖𝑗 − 𝑡𝑖𝑗−1 (2) 

𝜆 is a constant parameter tuned by the user that controls the “memory loss” of the algorithm. For easier 

interpretation one can prefer to set the value of half-life equals to 𝑙𝑛 (2) 𝜆⁄  . The natural half-life chosen is the 

usual duration of the disease (e.g. 180 days for TB and +∞ for RA — being a chronic disease currently without 

a cure). Setting +∞ for RA is equivalent to simply cumulate the information of all previous visits. 

The same exponential decay accumulation is applied to each ICD and UMLS codes. We also define five other 

features: 

- 𝑙𝑎𝑠𝑡𝑣𝑖𝑠𝑖𝑗 = 𝑚𝐶𝑖𝑗−1 

- 𝑙𝑎𝑠𝑡5𝑣𝑖𝑠𝑖𝑗 = ∑ 𝑚𝐶𝑖ℎ
𝑗−1
ℎ=𝑗−5  

- 𝑙𝑎𝑠𝑡𝑚𝑜𝑛𝑡ℎ𝑖𝑗 = ∑ 𝑚𝐶𝑖ℎ × 𝟏𝑚
𝑗−1
ℎ=1  with 𝟏𝑚 = 1 if 𝐷𝑖𝑗 − 𝐷𝑖𝑝 ≤ 30𝑑𝑎𝑦𝑠, 0 otherwise 

- 𝑙𝑎𝑠𝑡𝑦𝑒𝑎𝑟𝑖𝑗 = ∑ 𝑚𝐶𝑖ℎ × 𝟏𝑦
𝑗−1
ℎ=1  with 𝟏𝑦 = 1 if 𝐷𝑖𝑗 − 𝐷𝑖𝑝 ≤ 365𝑑𝑎𝑦𝑠, 0 otherwise 

- 𝐶𝑢𝑚𝑖𝑗 = ∑ 𝑚𝐶𝑖𝑗
𝑗
1  

This yields an augmented matrix 𝑋𝑎 of 𝜑 × (2𝑃 + 5) dimensions: CUIs and ICDs (P), their cumulated counts 

(P),  and 5 new variables. 

3. Variable selection and pseudo-labelling 

We use the SAFE algorithm to select predictive variables of interest and reduce the dimensionality of the 

optimization problem. First we use IAM system to extract ICD10 and UMLS concepts in external resources: 

medical text books and Wikipedia disease specific chapter or page.[19–22] A concept and its cumulative count 

are kept in the model only if it is found in the two resources. Then we categorize 𝑚𝐶𝑢𝑚𝑢𝑙𝑖𝑗 into 𝑆𝑖𝑗 = {0, 0.5, 1}. 
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To define the two thresholds separating the three categories of 𝑆𝑖𝑗, we used 𝑚𝑎𝑖𝑛𝐼𝐶𝐷𝑖𝑗 which takes into account 

prevalence variability depending on the disease and the cohort. We first count the proportion of visit with at least 

one occurrence of mainICD code (i.e the mainICD ≥ 1 prevalence) that we denote 𝑞𝑢𝑎𝑛𝑡𝑚𝑎𝑖𝑛𝐼𝐶𝐷 as : 

𝑞𝑢𝑎𝑛𝑡𝑚𝑎𝑖𝑛𝐼𝐶𝐷 =
1

𝜑
∑ 𝑚𝑎𝑖𝑛𝐼𝐶𝐷𝑖𝑗 ≥ 1

𝑖,𝑗

    with 𝑞𝑢𝑎𝑛𝑡𝑚𝑎𝑖𝑛𝐼𝐶𝐷  ∈ [0; 1] (3) 

We divide this quantity by a constant 𝜔 that we set to 2 to define 𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒 as : 

𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒 =
𝑞𝑢𝑎𝑛𝑡𝑚𝑎𝑖𝑛𝐼𝐶𝐷

𝜔
 with 𝜔 a constant (4) 

This 𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒 proportion allows to define three categories: [0; 𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒], ]𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒; 1 −

𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒[, [1 − 𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒; 1] and we define the surrogate 𝑆𝑖𝑗 as: 

𝑆𝑖𝑗 = {

0, if visit belongs to the 𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒visits with the lowest 𝑚𝐶𝑢𝑚𝑢𝑙𝑖𝑗

1, if visit belongs to the 𝑞𝑢𝑎𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑚𝑒visits with the most 𝑚𝐶𝑢𝑚𝑢𝑙𝑖𝑗    

0.5 otherwise                                                                                                           

 (5) 

One can note that the higher the 𝜔 constant (i.e the extreme patients are more extreme), the more confident we 

are in the specificity of  𝑆𝑖𝑗 in {0,1}  toward the true phenotype but the smaller training size is for next steps. We 

found 𝜔 = 2 to work well in our setting. 

Then we train a logistic regression with elastic-net penalization to select a subset 𝑋′ of relevant predictors from 

the 𝑋𝑎 matrix using only the visits for which 𝑆𝑖𝑗 is either 0 or 1. 𝑋′ is the subset of predictors with non-zero 

estimated coefficients. Of note, 𝑚𝑎𝑖𝑛𝐼𝐶𝐷 and 𝑚𝑎𝑖𝑛𝐶𝑈𝐼 are always forced into the set of selected variables in 

𝑋′, while 𝐶𝑢𝑚𝑖𝑗 is systematically removed for acute conditions. 

We then assign a pseudo-label {0,1} to all visits. This increases the number of visits available to train the final 

logistic regression, and also adds visits with more uncertain phenotype status which overall results in smoother 

predicted probabilities and better performance. To perform this pseudo-labelling, we train a random-forest with 

majority vote for trees aggregation for which 𝑆𝑖𝑗 is either 0 or 1. The trained model is then used to predict the 

pseudo-label 𝑃𝐿𝑖𝑗 = {0,1} status for each visit. 

4. Probability estimation 

To estimate the disease occurrence probability, we used a noising-denoising logistic regression with random 

intercept similarly to PheNorm. First, 𝑚𝑎𝑥 (105, 𝜑) visits are randomly sampled with replacement with inverse 

probability weighting depending on 𝑃𝐿𝑖𝑗 in order to balance the training set. This new matrix is denoted 𝑋𝑏. 

Then we perform a noising-denoising step to force the algorithm to use other variables than the main ICD and 

UMLS concepts (and thus avoid overfitting with respect to the surrogate construction). Every value of 
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explanatory variables has a probability of 𝑝𝑏𝑒𝑟𝑛 = 0.3  to be replaced by the mean of the explanatory variable as 

in PheNorm.[13] For instance if M05 ICD10 code mean occurrence is 0.2 then each visit has a probability of 0.3 

to have its true M05 value replaced by 0.2. This noisy matrix is denoted 𝑋𝑛: 

{
if 𝑟𝑏𝑒𝑟𝑛𝑖𝑗𝑐

= 1 then 𝑋𝑛
𝑖𝑗𝑝 = 𝑚𝑒𝑎𝑛(𝑋𝑏

𝑝)

if 𝑟𝑏𝑒𝑟𝑛𝑖𝑗𝑐
= 0 then 𝑋𝑛

𝑖𝑗𝑝 = 𝑋𝑖𝑗𝑝
𝑏                

     with 𝑟𝑏𝑒𝑟𝑛 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑏𝑒𝑟𝑛) (6) 

For the denoising step a logistic regression with random intercept is used: 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑃𝐿𝑖𝑗 = 1)) = 𝑋𝑛𝑇𝛽 + 𝑏0𝑖  with 𝑏0𝑖  ~ 𝑁(0, 𝜎0
2) (7) 

And finally the probability of having the disease is estimated on the noise free matrix as: 

𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1) =
𝑒𝑋𝑏𝑇𝛽

1 + 𝑒𝑋𝑏𝑇𝛽
(8) 

This final probability illustrates the level of confidence of the estimated phenotype based on the used variables. 
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INPUT 

 matICD: ICD codes matrix, one column per ICD10 code and one row by visit. ICD10 codes are 

aggregated at three characters (e.g M05.1 -> M05) 

matText: medical text matrix, one column and one row per visit 

mainICD: sum of the disease of interest ICD10 codes by visit 

mainCUI: sum of the disease of interest CUI codes by visit 

matextRessources: the external resources text matrix, one column, each row is a text related to the disease 

of interest from a different resource 

BEGIN 

 (1) /* DATA STRUCTURATION */ 

matCUIs := extract CUIs from matText with IAM system, one column per CUIs code and one row per 

visit 

matStructExt := extract CUIs and ICD10 codes from matextRessources with IAM system (or other name 

entity recognition algorithm), one column per CUIs code and one row per resource 

𝑋𝑎 := matCUIs + matICD 

 (2) /* BUILD SURROGATE */     

mC := Standardised sum of mainICD and mainCUI 

mCumul := cumulate mC with exponential decay 

S := categorise mCumul in three categories (0: do not have the disease, 1: has the disease, 0.5: uncertain 

disease status). Thresholds depend on mainICD prevalence. We denote 𝑣𝑥𝑡𝑟 visits where 𝑆𝑖𝑗 = {0,1}. 

 (3) /* VARIABLE SELECTION AND PSEUDO-LABEL */ 

Xfilt: = filter 𝑋𝑎 where CUI and ICD is in majority of matStructExt rows 

ENmodel := train (model = elastic-net, predictors = Xfilt[𝑣𝑥𝑡𝑟,], outcome = S[𝑣𝑥𝑡𝑟]) 

X’ := select concepts of interest as non-zero beta in ENmodel 

 RFmodel := train (model = random-forest, predictors = 𝑋′[𝑣𝑥𝑡𝑟,], outcome = S[𝑣𝑥𝑡𝑟]) 

 PL := predict (model = RFmodel, new.data = X’) for all observation (S = {0, 0.5, 1}) 

 (4) /* PROBABILITY ESTIMATION */ 

𝑋𝑏𝑜𝑜𝑡 := weighted bootstrap of X’, weight is inverse probability from PL 

𝑋𝑛𝑜𝑖𝑠𝑒 := replace 30% of matrix cells by the corresponding mean of the column variable (noising step) 

LRmodel := train (model = logistic regression with random intercept, predictors = 𝑋𝑛𝑜𝑖𝑠𝑒, outcome = PL) 

Return FinalProba := predict (model = LRmodel with fixed coefficient only, new.data = X’) 

END 

Figure 1: Pseudo-code of PheVis. 
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3. Results 

3.1. Application design 

We illustrate the PheVis method on RA, a chronic disease which cannot be cured, and active TB, an acute disease 

which usually last between 6 to 12 months.[19–22] The model performance was evaluated on an imperfect gold 

standard for both diseases: for RA we used the presence of at least one rheumatoid arthritis form, a form 

specifically used by rheumatologists at the University Hospital of Bordeaux in usual RA care, for tuberculosis 

we manually reviewed patients with at least one mention of tuberculosis treatment while other patients were 

considered not having the disease. Latent tuberculosis was labelled as tuberculosis negative because, even if the 

bacterium is the same, symptoms, diagnosis and treatment are different. Patients were included if i) they had 

been hospitalized at the University Hospital of Bordeaux at least once since 2010 and ii) if they had either one 

primary or secondary ICD code of RA (M05 or M06), or one biology measurement of Anti-Citrullinated Peptide 

Antibody. The cohort was split into training and test datasets at patient level with a 70% to 30% ratio. The cohort 

is described in Table 1, highlighting the discrepancy between ICD, CUI and gold-standard justifying the need for 

automated phenotyping algorithms. 

Table 1 Description of phenotyping cohort. University Hospital of Bordeaux. 

 Train set  Test set 

 

 
Patients Visits  Patients Visits 

n 9102 237875  2359 62004 
      

Gold standard PR (%) 27,077 (11.4) 953 (10.5)  7,883 (12.7) 274 (11.6) 

ICD RA1 ≥ 1 (%) 21,448 (9.0) 3,682 (40.5)  5823 (9.4) 901 (38.2) 

CUI RA ≥ 1 (%) 32,775 (13.8) 3,703 (40.7)  8,632 (13.9) 952 (40.4) 
      

Gold standard TB (%) 618 (0.3) 49 (0.5)  90 (0.1) 5 (0.2) 

ICD TB2 ≥ 1 (%) 277 (0.1) 88 (1.0)  50 (0.1) 15 (0.6) 

CUI TB ≥ 1 (%) 2,393 (1.0) 647 (7.1)  439 (0.7) 147 (6.2) 

1: ICD RA: M05, M06 

2: ICD TB: A15, A16, A17, A18, A19 

 

Ten different prediction models were evaluated for each disease: (i) our proposed PheVis approach, for which 

we set 𝜆𝑅𝐴 =
𝑙𝑛 (2)

𝐼𝑛𝑓
= 0 and 𝜆𝑇𝐵 =

𝑙𝑛 (2)

180
 (tuberculosis typically lasting around 6 months), (ii) XPRESS for which 

we defined the silver standard as the main ICD code presence, (iii) ANCHOR for which we defined the anchor 

visits as the one with at least one main ICD and main CUI code, (iv) the elastic-net and (v) the random forest 

POLAR algorithms for which we adapted the polar patient definition to our setting (negative polar visits neither 

main ICD codes and neither main CUI codes, whereas the positive polar visits had both), (vi) PheNorm, (vii) a 

supervised elastic-net with cumulated variables (denoted as ENET_CUM) and also viii) without cumulated 
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variables (ENET_NOCUM), (ix) a supervised random forest with cumulated variables (RF_CUM) and (x) 

without cumulated variables (RF_NOCUM). Of note, ENET_CUM and RF_CUM can be considered as oracle 

predictors as they are supervised and learn on both cumulated and non-cumulated variables. We used SAFE to 

select variables used for prediction by each algorithm in order to ease their comparison. 

3.2. Application results 

Figure 2 shows individual PheVis and other state-of-the-art methods predictions for four patients. For RA, as the 

information is cumulated over time in PheVis, the model is able to maintain relatively stable predictions over 

time even if there is not much information about RA in a visit. Without this feature, other approaches display 

highly variables predictions oscillating over time. For TB, the advantage of cumulating information is confronted 

to the problem of cumulating too much. This problem is increased in French because the majority of natural 

language processing tools and terminological systems were developed for the English language. Tools to detect 

negation and past history are not yet implemented in Bordeaux University Hospital datawarehouse.[23] 

Prediction of PheNorm is really close to 0.5 for all visits. This can be explained by the final step of the PheNorm 

algorithm which is a mixture model on the predicted sum of main ICD and main CUI. As our dataset is largely 

imbalanced, with many more negative patients than positive ones, both normal distributions of the mixture model 

are concentrated on the negative class. Because they are close to each other, the probability of belonging to each 

class (positive or negative phenotype) is really close. However, as shown on figure 3 and 4, those probabilities 

are not constant and still give good prediction performance according to AUROC and AUPRC, in spite of being 

poorly interpretable. Other methods do not have this problem, as they mainly learn on binary silver standard. 

Figure 3 shows the performance of PheVis and the other methods on the test set for both TB and RA. 

For RA, PheVis brings significantly better performance than any other unsupervised method, both in term of 

AUROC (RA: 0.947 CI [0.944 ; 0.948], TB: 0.987 CI [0.983 ; 0.990]) and AUPRC (RA: 0.739 CI[0.729 ; 0.748], 

TB: 0.212 CI[0.142 ; 0.300]). Table with detailed performances of the algorithms is available in the 

supplementary material. As expected, for TB the advantage of PheVis is less important because the information 

is cumulated over a shorter time period, still it performs well especially in term of AUROC compared to other 

unsupervised methods. Supervised methods worked significantly better with cumulated variables supporting the 

importance of taking into account past history to predict actual phenotype. Among the other unsupervised 

methods, we can denote that PheNorm and the random forest POLAR seem to be the best methods, however, as 

shown on figure 2 PheNorm has serious calibration problem on unbalanced datasets. XPRESS failed to reach 

convergence in our setting possibly because it uses lasso penalization instead of elastic-net as in SAFE or PheVis, 

or ridge as in ANCHOR or POLAR. Both for POLAR and the supervised “oracle” methods, random forest was 

able to significantly improve the performance of the model, probably because it is able to learn more complex 

structure than penalized linear regression. 
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Table 2 shows point performance for two arbitrary phenotyping decision rules: i) a predicted probability 

above 0.5 ii) a probability above the threshold maximizing the sum of the precision and the recall. Specificity 

and negative predictive values are good partly because the diseases are rare at the visit level. Matching the results 

from figures 3 and 4, the sensitivity/positive predictive values trade-off is better for RA than for TB. 

 

Figure 1 : Individual prediction of rheumatoid arthritis (RA) and tuberculosis (TB). Each column 

corresponds to a disease, each row to a patient. Patient 1 has no disease. Patient 2 has RA which is well 

estimated by PheVis, other algorithms have high variability in their prediction. Patient 3 and 4 have 

tuberculosis. For both of them, that information is still trailing behind after the patient is cured for PheVis, 
partly because of the lack of advanced natural language processing tool hindering the distinction between 

past and actual disease history. PheNorm predictions are close to 0.5 because the mixture model fails to 

learn meaningful probabilities in this extremely imbalanced setting. XPRESS fails to estimate any 

probability higher than 0 for TB because of convergence failure and RA probabilities are either almost 0 

or 1 providing a binary interpretation of the disease status rather than a continuous one. Both PL_RF and 

Anchor are too volatile to provide a trusted interpretation of their output probability.   
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Figure 2: Phenotyping unsupervised and supervised methods comparison. University Hospital of 

Bordeaux. Confidence Intervals for AUROC and AUPRC are represented by horizontal and vertical 

segments respectively. PL_RIDGE: POLAR method with ridge logistic regression. PL_RF: POLAR 

method with random forest. ENET: Supervised elastic-net logistic regression with (CUM) or without 

(NOCUM) cumulated variables. RF: Supervised random forest with or without cumulated variables.  
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Table 2 PheVis performance for different thresholds. 

Disease Threshold SE SP PPV NPV 

Rheumatoid arthritis 0.5 0.828 0.903 0.554 0.973 

 Optimal P-R* 
(0.941) 

0.771 0.932 0.622 0.965 

Tuberculosis 0.5 0.556 0.994 0.124 0.999 

 Optimal P-R* 
(2.10 10-5) 

0.989 0.948 0.027 1.000 

* Threshold maximizing the precision recall sum. 

4. Conclusions 

We developed PheVis as an unsupervised automatic phenotyping algorithm at the visit level. Our innovative 

approach resembles the human medical probabilistic approach of diagnosis as the output is a probability taking 

into account the uncertainty of the information inside EHR.[24] It is able to achieve good performances for RA, 

which is promising for other chronic conditions. While PheVis represent a significant improvement over the 

current state-of-the-art thanks to its versatile and tunable information cumulating feature, it also suffers from 

limitations when it comes to acute conditions such as TB. The algorithm is fully automated, not requiring any 

(time-consuming and expensive) manual chart review, and can in theory be used for different kind of medical 

conditions (either acute or chronic).  

PheVis adds many innovations to the previous PheNorm algorithm it builds upon: the needs for 

standardizing the information from medical notes and ICD codes, the accumulation of past history with 

exponential decay, the definition of silver standard using ICD codes to take into account prevalence of the disease, 

and pseudo-labelling to improve performance and increase stability of predicted probabilities. Also we 

demonstrated the portability (and limitations) of those methods in French and in a different datawarehouse than 

the one used to develop PheNorm, with consistent performances for phenotyping RA compared to Yu et al.[13] 

Our application setting is different from the other methods original paper, mainly because there is intra-

patient correlation between visits phenotype. This is not accounted for in Phenorm, XPRESS or POLAR where 

the learning is at patient level, nor in ANCHOR because it learns on acute diseases.[10–13] As in POLAR or 

ANCHOR, our dataset is largely unbalanced towards the negative class (e.g 1.1% epilepsy prevalence in POLAR, 

2.0% septic shock prevalence in ANCHOR) contrary to PheNorm (lowest disease prevalence was RA with 

22.5%). This unbalanced setting seems to favors unsupervised learning with silver standard (PheVis, POLAR, 

ANCHOR, XPRESS) in terms of calibration. In terms of performance, PheVis performed better for both diseases 

on both AUROC and AUPRC. Behind, the hierarchy between random forest POLAR and PheNorm is not clear-

cut. As those three methods rely on different approaches, future developments might be able to leverage and 

combine each of their strengths. 
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These phenotyping algorithms are highly sensitive to the input features, which emphasizes the needs for 

finer natural language processing tools able to perform semantic analysis. The use of other features such as 

biological test results or treatment should also be considered, as they should be highly predictive of the phenotype, 

but further works is needed to define how they could be integrated into the silver-standard surrogate strategy 

used in PheVis. 

Our performance evaluation is made against an imperfect gold standard, mainly due to the lack of large 

annotated patient reference sets. For TB, the gold standard was manually curated, while for RA, we used a highly 

specific form but which might lack sensitivity: interestingly, upon manual inspection it appeared that PheVis was 

able to accurately recover RA patients visits of 5 patients who were not treated in the Rheumatology department 

of the University Hospital of Bordeaux and thus had no record of this specific form, resulting in a failure of the 

gold standard. Such phenomena might underestimate the algorithm performance. 

PheVis can provide a probability for a large set of diseases and medical conditions with little effort. The 

performances might vary depending on the disease of interest, the database quality and the EHR language but 

were better than state-of-the-art method in our study. The use of those estimated probabilities opens new horizon 

for the use of EHR for medical and epidemiological research purposes. 
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Supplementary material 

ICD10 codes 

Table S1: Main ICD codes of rheumatoid arthritis and tuberculosis used by PheVis. 

Tuberculosis A15, A16, A17, A18, A19 

Rheumatoid Arthritis M05, M06 

Algorithm performance 

Table S2: Phenotyping unsupervised and supervised methods comparison. University Hospital of 

Bordeaux. PL_RIDGE: POLAR method with ridge logistic regression. PL_RF: POLAR method with 

random forest. ENET: Supervised elastic-net logistic regression with (CUM) or without (NOCUM) 

cumulated variables. RF: Supervised random forest with or without cumulated variables. 

Algorithm 
 Rheumatoid arthritis    Tuberculosis 
 AUPRC AUROC  AUPRC AUROC 

ANCHOR   0.578 [0.565 ; 0.590] 0.845 [0.840 ; 0.850]  0.075 [0.036 ; 0.134] 0.745 [0.687 ; 0.798] 

ENET_CUM   0.913 [0.908 ; 0.918] 0.957 [0.954 ; 0.961]  0.264 [0.163 ; 0.357] 0.909 [0.873 ; 0.945] 

ENET_NOCUM   0.717 [0.706 ; 0.728] 0.875 [0.871 ; 0.880]  0.225 [0.135 ; 0.318] 0.677 [0.631 ; 0.726] 

PHENORM   0.625 [0.612 ; 0.637] 0.870 [0.865 ; 0.875]  0.208 [0.123 ; 0.304] 0.722 [0.664 ; 0.789] 

PHEVIS   0.739 [0.729 ; 0.748] 0.947 [0.944 ; 0.948]  0.212 [0.142 ; 0.300] 0.987 [0.983 ; 0.990] 

PL_RF   0.616 [0.605 ; 0.626] 0.825 [0.819 ; 0.831]  0.248 [0.160 ; 0.338] 0.710 [0.647 ; 0.769] 

PL_RIDGE   0.533 [0.521 ; 0.544] 0.832 [0.826 ; 0.837]  0.011 [0.006 ; 0.021] 0.681 [0.620 ; 0.738] 

RF_CUM   0.975 [0.973 ; 0.977] 0.994 [0.993 ; 0.995]  0.475 [0.366 ; 0.576] 0.856 [0.807 ; 0.899] 

RF_NOCUM   0.742 [0.733 ; 0.750] 0.850 [0.844 ; 0.855]  0.279 [0.182 ; 0.377] 0.690 [0.640 ; 0.744] 

XPRESS   0.386 [0.376 ; 0.398] 0.699 [0.695 ; 0.705]  0.001 [0.001 ; 0.002] 0.500 [0.500 ; 0.500] 
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