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Abstract 12 

Genome-wide association studies (GWAS) have discovered numerous genetic variants associated 13 

with human behavioural traits. However, behavioural traits are subject to misreports and longitudinal 14 

changes (MLC) which can cause biases in GWAS and follow-up analyses. Here, we demonstrate that 15 

individuals with higher disease burden in the UK Biobank (𝑛 = 455,607) are more likely to 16 

misreport or reduce their alcohol consumption (AC) levels, and propose a correction procedure to 17 

mitigate the MLC-induced biases. The AC GWAS signals removed by the MLC corrections are 18 

enriched in metabolic/cardiovascular traits. Almost all the previously reported negative estimates of 19 

genetic correlations between AC and common diseases become positive/non-significant after the 20 

MLC corrections. We also observe MLC biases for smoking and physical activities in the UK 21 

Biobank. Our findings provide a plausible explanation of the controversy about the effects of AC on 22 

health outcomes and a caution for future analyses of self-reported behavioural traits in biobank data.  23 
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 2 

Introduction 24 

Behaviours and lifestyles are modifiable risk/protective factors for common diseases in humans. In 25 

the past few decades, one of the most controversial debates in public health is on the effect of alcohol 26 

consumption (AC) on common diseases, especially cardiovascular/metabolic diseases. Large-scale 27 

meta-analyses of epidemiological studies1,2 on AC concluded that “no level of alcohol consumption 28 

improves health”3. This conclusion, however, is contradictory to the negative estimates of genetic 29 

correlation (rg) between AC and several diseases such as obesity4-7, major depressive disorder 30 

(MDD)6,7, Parkinson’s disease5 and type 2 diabetes (T2D)5 reported in recent genome-wide 31 

association studies (GWAS) and also contradictory to the protective effects of moderate drinking 32 

reported in observational studies8,9. Different hypotheses have been proposed to explain these 33 

discrepancies, including: 1) heavy AC might alter metabolism or impair nutrient absorption10,11, 34 

meaning that the effect is dosage-dependent; 2) people who had health problems may quit or reduce 35 

drinking, or underreport their intake level12; and 3) some other common explanations include 36 

confounding factors6 (e.g., socio-economic status and physical activities) and collider bias13,14. 37 

Nevertheless, to date, no study has provided in-depth investigation into the causes of the 38 

discrepancies. 39 

 40 

In epidemiological or genetic studies, phenotypic data of behavioural and lifestyle traits are often 41 

collected from self-reported questionnaires, which are subject to misreporting (i.e., self-report biases), 42 

especially for questions related to smoking, drinking and drug use15-18. These behaviours are also 43 

subject to change during lifetime19-22, for instance in response to disease diagnosis, but data to track 44 

such longitudinal variations are rarely available. Both misreports and longitudinal changes (hereafter 45 

referred to as MLC) could change the distribution of behavioural phenotypes and thus may affect the 46 

results of both epidemiological and genetic studies. 47 

 48 

In this study, we set out to investigate biases due to MLC in genetic analyses of self-reported 49 

behavioural traits including AC, tobacco smoking, and physical activities in the UK Biobank 50 

(UKB)23. The UKB includes detailed questionnaires of these behavioural traits, providing a unique 51 

resource to investigate the potential pitfalls in the analyses of self-reported phenotypes. We 52 

demonstrate that MLC could induce biases in GWAS for these traits and follow-up analyses that use 53 

summary statistics from the GWAS. We then propose a correction procedure to mitigate the MLC 54 

biases and elaborate on why some of previous studies might suffer from MLC. 55 

 56 

Results 57 

Misreports and longitudinal changes in alcohol consumption 58 

Misreports are common in self-reported data sets15-18 but often overlooked in genetic analyses. Here, 59 

we focused on the analyses of AC because 1) its relationship with common diseases is controversial; 60 
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2) the data required by our investigations and corrections are available; and 3) the sample size is large 61 

(𝑛 = 455,607). In this study, our definition of misreports for AC includes misreporting about 62 

drinking status24, underreporting the AC level15,17, and selective recall of the question about AC 63 

level25, all of which might occur in the UKB. These kinds of misreports are mainly attributed to26,27 64 

social desirability28,29 (i.e., the tendency of participants to answer questions in ways that make them 65 

viewed favourably by others) and recall bias30,31 (i.e., the accuracy and completeness of past events 66 

recalled by participants are influenced by subsequent events that they experienced). First, 14,488 67 

UKB participants identified themselves as never drinkers, but combining additional data from follow-68 

up questionnaires and medical records32 revealed that at least 10% of these individuals were very 69 

likely to have drinking history, e.g., previously diagnosed as having alcoholic hepatitis or alcohol use 70 

disorder (Supplementary Note 1). This means that classifying self-reported never drinkers as lifetime 71 

abstainers could be problematic24. Thus, our analyses on AC were mainly focused on current drinkers 72 

unless specified elsewhere. Second, 9,064 individuals are classified as current drinkers but reported 73 

zero consumption level, indicating possible underreporting. Third, 66,058 individuals (15.6% current 74 

drinkers) reported their alcohol intake frequency and other related questions but did not report their 75 

AC levels, suggesting a potential selective recall bias. It has been shown previously that heavy 76 

drinkers tend to be unresponsive25, and a high non-response rate could lead to an underestimate of the 77 

average AC level in the sample33. To investigate the characteristics of the suspected misreporting 78 

individuals, we examined the phenotypes of 18 common diseases in the UKB and used disease count 79 

(the number of diseases carried) as an indicator of disease burden for each participant (Methods, 80 

Table 1, and Supplementary Table 1). We observed that unresponsive individuals had a much 81 

higher mean disease count than individuals with complete responses (1.63 vs. 1.37, Welch t-test 𝑃 =82 

6.35 × 10−294; Table 1). The suspected underreporting individuals (𝑛 = 9,064) also showed a higher 83 

mean disease count than the remaining current drinkers (1.73 vs. 1.36, Welch t-test 𝑃 =84 

2.68 × 10−87).  85 

 86 

Another important source of bias is the change in drinking behaviour during the life course for 87 

reasons such as changes in health status. For instance, if people change their AC level because they 88 

are affected by a disease, such a disease ascertainment will give rise to a bias in observed or genetic 89 

relationship between AC and the disease. In the UKB, all the current drinkers (𝑛 = 424,507) were 90 

asked a question “compared to 10 years ago, do you drink less/the same/more nowadays?” 91 

(Methods), and ~62% of them reported “less” or “more”. We denote the three groups of individuals 92 

as LESS, SAME and MORE, respectively. The LESS group (𝑛 = 191,653) had a lower average AC 93 

level, higher disease prevalence for several common diseases, and higher mean disease count than 94 

individuals in the other two groups (Table 1 and Supplementary Table 1). A follow-up question was 95 

to ask the participants to choose the reason(s) why they reduced drinking, and the available options 96 
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include illness, health precaution, and financial reasons (Table 2). There were 15,889 individuals 97 

choosing illness/ill health or doctor’s advice as the primary reason for reducing drinking, and their 98 

mean disease count was nearly twice that of all other current drinkers (Table 2). In the subgroup of 99 

individuals who reported AC and had reduced drinking due to illness or doctor’s advice (n = 11,886), 100 

the prevalence of cardiovascular disease (CVD) was 0.411, ~2.7 times higher than that in all current 101 

drinkers (0.154), providing strong evidence of disease ascertainment of AC (Supplementary Table 102 

1). 103 

 104 

Biases in GWAS for alcohol consumption due to MLC 105 

We conducted GWAS analyses for AC with and without correcting for MLC. The MLC corrections 106 

included excluding individuals who might underreport AC level, excluding individuals who reduced 107 

drinking due to illness/doctor’s advice, and adjusting the mean and variance difference in three 108 

longitudinal change groups (Methods and Supplementary Figures 1-2). There were 53 and 47 109 

independently genome-wide significant loci (𝑃GWAS < 5 × 10−8) before and after the corrections, 110 

respectively (Supplementary Table 2 and Supplementary Figure 3). We identified 16 loci that 111 

became non-significant after the corrections (𝑃GWAS ≥ 5 × 10−8, Supplementary Table 2). By 112 

searching the top associated SNPs at these loci in an online database PheWAS34 (URLs), we found 113 

that 44.9% of associated phenotypes (𝑃PheWAS < 5 × 10−8) were metabolic/cardiovascular traits 114 

such as body mass index (BMI), triglyceride (TC), and coronary artery disease (CAD) (Figure 1). We 115 

showed by a down-sampling analysis that the number of loci that became non-significant after the 116 

MLC corrections was significantly larger than that expected from a loss of sample size, and that 10 117 

loci that became genome-wide significant after the MLC corrections were likely to be masked by 118 

MLC in the uncorrected GWAS (Methods, Supplementary Table 2-3). These results were in line 119 

with the simulation results (Methods and Supplementary Note 2) that MLC could reduce the power 120 

to detect true signals and induce spurious signals due to disease ascertainment (Supplementary 121 

Figures 3-9). 122 

 123 

Estimates of genetic correlation biased by MLC 124 

Biases in GWAS data due to MLC are expected to carry over to follow-up analyses using summary 125 

statistics of the GWAS, such as the genetic correlation (𝑟𝑔) analysis. To demonstrate such biases, we 126 

estimated 𝑟𝑔 between AC and 18 common diseases in the UKB by the bivariate LD score regression35 127 

(LDSC) (Methods) using AC GWAS data from each of the three longitudinal change groups or the 128 

whole sample. Before the MLC corrections, we observed substantially differences between �̂�𝑔 129 

(between AC and diseases) estimated using AC GWAS data from the LESS, SAME and MORE 130 

groups (Table 1). We also estimated 𝑟𝑔 between different AC GWAS data sets (Supplementary 131 

Tables 5-6, and Supplementary Figure 10) and found that the �̂�𝑔 between AC in the LESS and 132 
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MORE groups was significantly different from 1 (�̂�𝑔 = 0.796, standard error (s.e.) = 0.074). All 133 

these results suggest that there was heterogeneity between AC data from the three longitudinal change 134 

groups. The heterogeneity was also demonstrated in an additional analysis where we estimated 𝑟𝑔 135 

between AC (using data from the UKB) and 234 traits (using data from LD-Hub36) and found that the 136 

�̂�𝑔 using AC GWAS data from the LESS group were substantially different from those using AC 137 

GWAS data from the MORE group, with more than half of the �̂�𝑔 (143/234) in the opposite direction 138 

between the two groups (Supplementary Figure 11). Notably, after the MLC corrections, the �̂�𝑔 139 

between all pairwise AC GWAS data sets were close to 1 (ranging from 0.91 to 0.99; Supplementary 140 

Table 6).  141 

 142 

In the 𝑟𝑔 analysis using AC GWAS data from the whole sample without the MLC corrections, AC 143 

showed nominally significant (p < 0.05) negative �̂�𝑔 with 3 diseases (i.e., T2D, hypertensive disease 144 

and iron deficiency anemias) (Figure 2 and Supplementary Table 4). Negative estimates of 𝑟𝑔 145 

between AC and diseases have also been reported in the literature. For instance, Clarke et al.4 show a 146 

negative �̂�𝑔 between AC and obesity, and Liu et al.5 show that AC is negatively genetically correlated 147 

with several common diseases including Parkinson’s disease, obesity, and T2D. However, after the 148 

MLC corrections, AC showed nominally significant �̂�𝑔 with 8 diseases, all of which were positive 149 

(Figure 2). These results imply that the negative estimates of 𝑟𝑔 between AC and diseases from the 150 

analyses without the MLC corrections (including those in prior works) were caused by disease 151 

ascertainment. Nevertheless, this conclusion is not definitive because the ground truth is unknown in 152 

real data analysis. Hence, we sought to verify it by simulation (Methods and Supplementary Note 153 

2), and the results showed that the estimated SNP effect correlation (�̂�𝑏) between a simulated 154 

phenotype and disease gradually changed to the opposite direction as the strength of disease 155 

ascertainment increased (Supplementary Note 2 and Supplementary Figures 5 and 7), supporting 156 

our conclusion. The simulation results also showed that after MLC corrections, 𝑟𝑏 was slightly 157 

underestimated but with no bias in direction in the presence of disease ascertainment 158 

(Supplementary Figure 9).  159 

 160 

Socio-economic status (SES) has been shown to affect people’s alcohol use and health outcomes, and 161 

several studies have shown that people with higher SES tend to have higher AC levels and lower 162 

disease risks than people with lower SES37,38. Clarke et al.4 and Liu et al.5 show positive �̂�𝑔 between 163 

AC and educational attainment (EA). We observed a similar estimate in our study (�̂�𝑔 = 0.082, 𝑠. 𝑒. =164 

 0.021) before the MLC corrections, but the estimate became non-significant after the MLC 165 

corrections (Figure 3), likely because MLC are associated with EA. For example, the mean years of 166 

schooling of individuals who reduced AC due to illness/doctor advice (12.76, 𝑠. 𝑒. 𝑚. =  0.05) was 167 
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significantly lower than that of the remaining current drinkers (14.23, 𝑠. 𝑒. 𝑚. =  0.01). We also 168 

included household income (HI) and social deprivation (SD) in the analysis (Methods), and our 169 

results showed that �̂�𝑔 between AC and HI or SD could also be biased by MLC (Supplementary 170 

Table 9). 171 

 172 

Estimates of causal effect biased by MLC 173 

Mendelian randomization (MR) is a method that uses genetic variants as instrumental variables to 174 

infer causal relationship between exposure and outcome39,40. As the MR analysis relies on GWAS 175 

data, it may also be affected by the MLC biases as described above. We used BMI in the UKB as an 176 

example to demonstrate the performance of MR in the presence of MLC, based on several commonly 177 

used MR methods including IVW (inverse variance weighted)41, MR-Egger42, GSMR43, weighted 178 

median44. While the estimates from weighted median, MR-Egger and GSMR were all positive and 179 

consistent across all the analyses with or without the MLC corrections, the estimates from IVW, 180 

simple median44 and MR-PRESSO45 seemed to be sensitive to MLC with some of them being 181 

negative (Figure 4). The negative estimates from the analyses without the MLC corrections were 182 

likely to be driven by the 16 loci that were removed by the MLC corrections (note that the mean per-183 

SNP MR estimate at the 16 loci was -0.077). GSMR provided the most robust estimates among the 184 

MR methods tested (Figure 4 and Supplementary Table 10) because it has a step (called HEIDI-185 

outlier filtering) that can identify and remove some of the genetic instruments whose effects were 186 

biased by pleiotropy/confounding, diminishing the bias in the estimated causal effects 187 

(Supplementary Figure 14). Notably, after the MLC corrections of AC, the estimates from all the 188 

MR methods were largely consistent (Supplementary Table 10). We also ran the GSMR analysis in 189 

a reverse direction without the MLC corrections and found significant negative effect of BMI on AC 190 

(�̂�𝐵𝑀𝐼→AC =  −0.076, 𝑃 = 1.11 × 10−33) (Supplementary Table 11), consistent with the 191 

observation above that high BMI might be one of reasons to reduce AC (Table 1). 192 

 193 

In addition to the UKB data, we also analysed GWAS summary data for AC from Liu et al.5 with a 194 

sample size of ~1 million consisting of ~42.9% of the sample from 23andMe and ~33.0% from the 195 

UKB (Methods). The results were similar to those from the analyses above using the AC GWAS data 196 

from the UKB only (Supplementary Table 10 and Supplementary Figure 15), which implies that 197 

MLC may not be UKB-specific but also exist in other data sets because otherwise the biases would be 198 

smaller in this analysis given only one-third of the AC data were from the UKB. We further 199 

confirmed the biases in MR analyses from MLC by simulation (Supplementary Figures 6 and 8), 200 

and demonstrated that the estimates of causal effects from MR were nearly unbiased after the MLC 201 

corrections (Supplementary Figure 9). 202 

 203 
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The J-shaped relationship between AC and CVD 204 

In epidemiological studies, there are debates about whether moderate drinking is protective against 205 

CVD because of an observed J-shaped relationship between AC and CVD2,19,46. We showed that the 206 

moderate drinking group (0 < AC ≤ 25 gram/week), often used as the reference group to compute the 207 

effect (odds ratio, OR) of AC on disease risk, was enriched with individuals from the LESS group 208 

which had a higher CVD incidence than the SAME and MORE groups (Supplementary Figure 12). 209 

This could result in a higher CVD incidence in the reference group than average, leading to a J-shaped 210 

relationship between AC and CVD (Supplementary Figure 13A). Although the J-shaped relationship 211 

between AC and CVD did not change much after MLC corrections (Supplementary Figure 13B), it 212 

became monotonically increasing after excluding the LESS group from the reference 213 

(Supplementary Figure 13C). Polygenic predictor of AC showed no evidence for any protective 214 

effect of moderate drinking against CVD (Supplementary Figure 13D), consistent with the result 215 

from a previous study46. Our results indicated that the J-shaped relationship between AC and CVD 216 

observed in epidemiological studies might be driven by disease ascertainment (Supplementary Note 217 

3). 218 

 219 

Biases from MLC in other self-reported behavioural traits 220 

Self-reported smoking data in the UKB is also likely to suffer from MLC. Similar to that for AC, all 221 

the current smokers were asked “Compared to 10 years ago do you smoke less/the same/more 222 

nowadays?”. We partitioned the current smokers (𝑛 = 32,801) into the LESS, SAME, and MORE 223 

groups (Supplementary Note 4). The LESS group had a higher disease count (1.69, 𝑠. 𝑒. 𝑚. = 0.01) 224 

than the SAME group (1.56, 𝑠. 𝑒. 𝑚. = 0.01) but a lower disease count than the MORE group (1.84, 225 

𝑠. 𝑒. 𝑚. = 0.03) (Supplementary Table 12); these results were different from those observed in AC. 226 

In the LESS group, individuals who had reduced CPD because of illness/doctor’s advice had nearly 227 

twice the disease count (2.73, 𝑠. 𝑒. 𝑚. = 0.03) compared to the mean in the entire sample (1.45, 228 

𝑠. 𝑒. 𝑚. = 0.002) or all current smokers (1.66, 𝑠. 𝑒. 𝑚. = 0.01), indicating that smoking intensity was 229 

also ascertained by disease burden. However, unlike AC, the �̂�𝑔 between CPD and common diseases 230 

were mostly consistent across the LESS, SAME and MORE groups (Supplementary Figure 16), and 231 

there were negligible differences between the �̂�𝑔 estimated using the CPD GWAS data of the whole 232 

sample before and after correcting for MLC (Methods; Supplementary Table 13 and 233 

Supplementary Figure 16). These results are partly due to the difference in longitudinal change 234 

pattern between AC and CPD in the UKB (Supplementary Tables 1 and 14). For example, the mean 235 

AC in the subgroup of individuals who reduced AC due to illness (7.33 units/week) was lower than 236 

that in the entire LESS group (8.56 units/week) but with a significantly higher mean disease count, 237 

resulting in a negative correlation between AC and diseases (Table 2 and Supplementary Table 12), 238 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.15.20131284doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.15.20131284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

whereas the mean CPD in the subgroup due to illness (12.28 cigarettes/day) was higher than that in 239 

the entire LESS group (11.70 cigarettes/day) (Supplementary Table 12). 240 

 241 

Finally, we investigated physical activities (PA) in the UKB. The PA traits included self-reported 242 

METT (Metabolic Equivalent Task in Total) scores, IPAQ (International Physical Activity 243 

Questionnaires - short form, URLs), and overall acceleration average (OAA, measured by wrist-worn 244 

accelerometers). IPAQ is a derived categorical trait (low, moderate, and high) that utilizes information 245 

from the METT and its three subsets: walking, moderate, and vigorous activities (Methods, URLs). 246 

We first estimated 𝑟𝑔 between METT, IPAQ and OAA and between METT from the three IPAQ 247 

subgroups (Supplementary Figure 17). We found a significant genetic heterogeneity between METT 248 

and IPAQ (�̂�𝑔 = 0.795, 𝑠. 𝑒. = 0.016) and a small genetic overlap of either METT or IPAQ with 249 

OAA (�̂�𝑔 = 0.232 with 𝑠. 𝑒. = 0.037 for METT and �̂�𝑔 = 0.390 with 𝑠. 𝑒. = 0.034 for IPAQ). We 250 

then estimated 𝑟𝑔 between PA and 18 common diseases. While the �̂�𝑔 of IPAQ and OAA with the 251 

diseases were mostly negative, METT showed positive �̂�𝑔 with most diseases (Supplementary Table 252 

15 and Supplementary Figure 18). We also found that the �̂�𝑔 of METT from the low IPAQ subgroup 253 

with the diseases were highly consistent with those of IPAQ and OAA but mostly in the opposite 254 

direction to those of METT from the moderate and high IPAQ subgroups (Supplementary Figure 255 

18), indicating potential biases in METT from the moderate and high IPAQ subgroups, in line with 256 

the finding from a previous study47. In addition, the phenotypic correlation between the first and third 257 

assessment (𝑛 = 11,484) of METT was only 0.431, implying substantial longitudinal changes. 258 

Unfortunately, these changes are undocumented for the majority of UKB participants. Given that the 259 

�̂�𝑔 of IPAQ with diseases were highly consistent (in direction) with those of OAA (Supplementary 260 

Figure 18), IPAQ appears to be a more robust indicator for PA than METT. 261 

 262 

Discussion 263 

In this study, we raised concerns that genetic analyses of human behavioural traits could be biased by 264 

misreports and longitudinal changes. AC in the UKB was used as the main example to demonstrate 265 

the detrimental effects of MLC on several genetic analyses commonly used to identify variant-trait 266 

associations or estimate genetic or causative relationship between traits. Our results showed that 267 

disease ascertainment was likely to be a main cause of the MLC biases, which can be largely 268 

corrected for using additional information (e.g., intake frequency and medical records) and coarse 269 

longitudinal data (e.g., self-reported longitudinal change direction). Our results also showed that the 270 

MLC corrections procedure proposed in this study added value to the routine quality controls in 271 

GWAS for behavioural traits like AC. Additionally, biases due to longitudinal changes appeared to be 272 

larger than that due to misreports, because the longitudinal changes were observed in more than half 273 

of the participants, while misreports only accounted for 10~20% of the UKB sample (at least for those 274 
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 9 

we have identified thus far), as verified in our simulations (Supplementary Note 2 and 275 

Supplementary Figures 5-8).  276 

 277 

Our findings provide a plausible explanation for the long-standing controversy about the effects of 278 

AC on health outcomes in genetic4,5 and epidemiological studies2,3,19. While it seems that most 279 

inconsistent estimates in previous studies were due to MLC, there are several reasons why some 280 

studies suffered from stronger biases than others. First, the average AC level varied across datasets 281 

(from 2.9 to 19.3 units/week across 24 studies)5, suggesting heterogeneity in drinking behaviours 282 

among different regions/populations. Second, since we have demonstrated that biases from MLC were 283 

mainly attributable to disease ascertainment, difference in disease prevalence between populations 284 

may lead to different patterns of MLC. Third, as MLC are related to other factors, such as SES, 285 

adjusting those factors for AC may offset some of the biases in one way or another. Last but not least, 286 

MLC could vary for different age or sex groups. For instance, disease ascertainment is expected to 287 

have a larger influence in middle-aged populations than in younger populations because younger 288 

populations are less likely to be affected by common diseases investigated in this study48. This is 289 

supported by the observation that the older UKB participants had a higher mean disease count with a 290 

higher proportion of them reducing AC due to illness/doctor’s advice (Supplementary Figure 19). 291 

We also observed differences in the male/female ratio between the three groups (0.551 in the LESS 292 

group, 0.488 in the SAME group, and 0.373 in the MORE group were male). Note that we fitted age 293 

and sex as covariates in GWAS so the biases due to age or sex are likely to be limited.  294 

 295 

Our study certainly has limitations as it is almost impossible to correct for all the biases with limited 296 

availability of relevant data. First, the 9,064 individuals who were suspected to underreport their AC 297 

are very likely to be only a subset of all the underreporting individuals. Thus, more effective methods 298 

are needed to identify the remaining underreporting individuals. Second, ~58% of the individuals with 299 

reduced alcohol intake reported that the reduction was due to “other reasons” or “do not know” in the 300 

survey (Table 2). If some of these individuals reduced AC also because of illness, then not taking that 301 

into account could retain a bias in the analysis. Third, some participants may have misreported their 302 

longitudinal changes, leading to an incorrect classification of longitudinal change groups. Fourth, the 303 

coarse longitudinal change information itself is cross-sectional (10 years before the time point of the 304 

first assessment), meaning that some of the changes occurred beyond the time frame might not be 305 

accounted for in this study. Last but not the least, 15% of the current drinkers who did not report their 306 

AC level were removed from the analysis. One solution, as implemented in a previous study49, is to 307 

impute the missing values based on intake frequency and gender. However, 99.8% of the 308 

nonresponsive individuals in the UKB are occasional drinkers while this proportion is only 9.4% for 309 

the responsive individuals, which might lead to a systematic error between the observed and imputed 310 

data sets. 311 
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 312 

In conclusion, we advise awareness of the pitfalls when analysing data on behavioural traits in 313 

biobank data sets such as the UKB. Misreports and longitudinal changes of behavioural traits by 314 

disease ascertainment could create biases and thereby induce spurious signals and a loss of power in 315 

GWAS. Biases in GWAS summary statistics due to MLC could further lead to biased estimates in 316 

follow-up analyses such as genetic correlation and Mendelian randomization. As more biobank data 317 

sets have become accessible, it is important to identify, investigate and correct for these biases in all 318 

kinds of behavioural traits including smoking, drinking, diet, physical activity, sleep, and self-rated 319 

status. A longitudinal study of 1 million individuals for several decades seems impractical at present, 320 

but we have shown that the biases in AC can be largely corrected for by phenotypic QC and 321 

longitudinal adjustment when additional phenotype information (intake frequency, medical records, 322 

longitudinal change and reasons, etc.) are available. Questionnaires on lifetime use may provide more 323 

accurate estimates of the effects of behaviours on health outcomes at a much lower cost than a 324 

longitudinal follow-up study. Researchers should be more careful regarding these biases when 325 

conducting analyses for behavioural and other modifiable traits using biobank data sets with self-326 

reported records. 327 

 328 

Methods 329 

Phenotypic data and quality controls 330 

We obtained behavioural and disease traits from the UK Biobank (UKB) data50. UK Biobank has 331 

approval from the North West Multicentre Research Ethics Committee (MREC), and informed 332 

consent has been obtained from all participants. There were 455,607 individuals of European ancestry 333 

with complete information on sex, age and principal components (PCs). The self-reported drinking 334 

status classes (data-field ID: 20117) were: never drinkers (n = 14,488), previous drinkers (n = 335 

15,912), current drinkers (n = 424,507), and unknown (446 participants preferred not to answer and 336 

254 provided no response). We removed “former drinkers” from all analyses in this study, 337 

considering the occurrence of the “sick quitter phenomenon”51. Among the 424,507 current drinkers, 338 

there were 358,449 individuals who reported their intake level. The AC level was summed up as a 339 

weekly total intake score (units/week) of all the alcoholic drink subtypes including beer plus cider, red 340 

wine, champagne plus white wine, spirits, and fortified wine. The mean of AC was 10.67 units per 341 

week (s.d. = 10.23). One unit was defined as one measure for spirits, one glass for red wine/white 342 

wine/champagne, or one pint of beer/cider. The raw AC units were transformed by log2 (raw AC units 343 

+ 1) to avoid having a heavily skewed distribution. Smoking intensity was measured in cigarettes per 344 

day (CPD) in all current smokers (data-field ID: 3456; 𝑛 = 32,801). Physical activity traits in the 345 

UKB were collected from both self-reported questionnaires and devices (wrist-worn accelerometers). 346 

METT is a total score of the Metabolic Equivalent Task (MET) minutes per week for walking, 347 
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moderate activity, and vigorous activity (data-field IDs: 864, 874, 884, 894, 904, and 914; 𝑛 =348 

417,938). IPAQ is a derived categorical trait that utilizes the information from the METT and its 349 

three subsets mentioned above (see transformation criteria via the link in the URLs). The three IPAQ 350 

categories are denoted as low, moderate, and high (𝑛 = 100,611, 190,056, and 127,271). OAA 351 

(overall acceleration average) is an objective assessment of physical activity using a wrist-worn 352 

accelerometer (data-field ID: 90012; n = 97,006). The participants were voluntary, and the 353 

measurements were collected for seven days (see Doherty et al.52 for more details). 354 

 355 

We extracted the phenotypic data of common diseases from the UKB following the disease 356 

definitions used in Zhu et al.43. There were 22 common diseases in total, and we filtered out 4 diseases 357 

with a prevalence < 3% in the UKB. The mean disease count was 1.45 (s.d. = 1.56) in the whole 358 

sample and 1.41 (s.d. = 1.53) in current drinkers. Body mass index (BMI) was obtained from the 359 

physical measurements (data-field: 21001). Educational attainment was indexed by years of school 360 

derived from qualification data (data-field ID: 6138). For quantitative traits, extreme phenotypic 361 

values outside the mean ± 7 s.d. range in each sex group were excluded (see below for a more 362 

stringent QC step to remove phenotypic outliers after standardisation). 363 

 364 

Correcting for misreports and longitudinal changes 365 

Our MLC corrections consist of two steps. The first step is a phenotypic quality control (QC) 366 

procedure used as an attempt to minimize the effects of misreports. We removed the individuals who 367 

self-reported as 1) never drinkers (𝑛 = 14,488), 2) current drinkers with a reported weekly 368 

consumption of zero (𝑛 = 9,064), and 3) current drinkers who provided no response to AC (𝑛 =369 

66,058), and retained a total of 349,385 individuals. The second step is to account for self-reported 370 

longitudinal changes compared to 10 years ago (data-field ID: 1628). We partitioned the individuals 371 

who passed the QC above into three groups based on the longitudinal change (i.e., LESS, SAME or 372 

MORE) and conducted GWAS within each group. In the LESS group, we further removed individuals 373 

who reduced their AC because of being ill or doctor’s advice, i.e., longitudinal change due to disease 374 

ascertainment (data-field ID: 2664; 𝑛 = 11,886). We then performed an inverse-variance weighted 375 

meta-analysis of the GWAS results from the three groups (𝑛 = 336,469). This partitioning strategy 376 

efficiently removed any difference in mean or variance between the three groups. More details of the 377 

MLC corrections are shown in Supplementary Figures 1 and 2. 378 

 379 

Genome-wide association analysis 380 

The UKB genotype data were cleaned and imputed into the Haplotype Reference Consortium 381 

(HRC)53 panel by the UKB team23. We selected a subset of the sample of European ancestry (𝑛 =382 

456,426) from the whole UKB cohort by projecting the individuals onto the PCs from the 1000 383 
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Genome Project (1KGP). Genotype posterior probabilities were converted to hard-call genotypes 384 

using PLINK2 (--hard-call-thresh 0.1)54. We removed SNPs with a minor allele count < 5, Hardy-385 

Weinberg equilibrium test P-value < 1×10-6, missing genotype rate > 5%, or imputation info score < 386 

0.3. For binary traits, we performed BOLT-LMM analysis55 with sex, age and the first 10 PCs fitted 387 

as covariates and then transformed the estimates of SNP effects on the observed 0-1 scale to odds 388 

ratios (OR) by LMOR56. For quantitative traits, we adjusted the phenotypic values for sex and age, 389 

standardised the adjusted phenotypes to z-scores, excluded individuals with |𝑧| > 5, and conducted 390 

the BOLT-LMM analysis55 with the first 10 PCs as fitted as covariates in the model. 391 

 392 

Considering a loss of power due to decreased sample size by MLC corrections, we randomly down-393 

sampled the GWAS data by 21,940 individuals and repeated this process 30 times. We used a z-394 

statistic to test if the number of loci that became non-significant (or changed from non-significant to 395 

significant) after the MLC corrections is significantly different from that expected by random down-396 

sampling. The average number of loci that became non-significant due to down-sampling was 10.03 397 

(standard error of the mean (𝑠. 𝑒. 𝑚. ) = 0.85), significantly (𝑃 = 2.08 × 10−12) smaller than the 398 

decrease in the number of genome-wide significant loci due to the MLC corrections (i.e., 16). For the 399 

GWAS signals that lost due to down-sampling, the average proportion of significant associations with 400 

the metabolic/cardiovascular traits in PheWAS was 31.2% (𝑠. 𝑒. 𝑚. = 3.8%), which was significantly 401 

lower than the observed 44.9% (𝑃 = 3.61 × 10−4), supporting the enrichment of the 16 loci in 402 

metabolic/cardiovascular traits (Supplementary Table 3). We also identified 10 loci that became 403 

genome-wide significant only after the MLC corrections (Supplementary Table 2). The down-404 

sampling analysis showed that only 3.27 loci (𝑠. 𝑒. 𝑚. = 0.52) would be expected by chance 405 

(Supplementary Table 3), indicating that most of the 10 loci were likely to be masked by MLC in 406 

the uncorrected GWAS. 407 

 408 

Estimating heritability and genetic correlation 409 

We used the LD score regression57 (LDSC) to estimate SNP-based heritability for a trait and the 410 

bivariate-LDSC35 to estimate genetic correlation between traits using ~1.2 million SNPs in common 411 

with those in HapMap 3 (Ref58). For the 234 traits for which we obtained GWAS summary data from 412 

LD Hub (URLs), the LDSC analyses was performed online in LD Hub36. Note that due to the 413 

restricted access to the full summary statistics of the 23andMe data sets, we did not perform the 414 

genetic correlation analysis for AC using the full GSCAN data5. 415 

 416 

Mendelian randomization analysis 417 

Mendelian randomization (MR) is a method to estimate causative effect of an exposure on an 418 

outcome using instrumental variables (IVs) associated with the exposure39,40. MR assumes that the 419 

IVs are independent of possible confounders that may associate with both the exposure and outcome. 420 
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Also, the IVs are assumed not to be associated with the outcome other than mediated through the 421 

exposure. However, in real data, these assumptions can be violated, leading to a biased estimate of the 422 

causal effect59. We performed MR analyses to test the causal effect of AC on BMI using IVW, MR-423 

Egger and weighted median implemented in the R package ‘MendelianRandomization’ (URLs), MR-424 

PRESSO in R and GSMR implemented in GCTA (v1.91.8beta) (URLs). The IVs were selected from 425 

a clumping analysis of the GWAS summary statistics in GCTA-GSMR (clumping criteria: window 426 

size = 1 Mb, 𝑃 = 5 × 10−8 and LD 𝑟2 = 0.01). 427 

 428 

Simulating data with disease ascertainment 429 

We carried out simulations to mimic the bias due to disease ascertainment in GWAS and its follow-up 430 

analyses. If individuals who are affected by a disease tend to change a behaviour, such a change of 431 

behaviour would lead to a spurious correlation between the disease and behaviour. We considered 432 

four scenarios in the simulation: I) the disease liability (D) is independent of the behavioural trait (Y), 433 

and 100 SNPs are associated with Y only; II) Y had a causal effect on D, and 100 SNPs are associated 434 

with Y (and D mediated through Y); III) Y and D are independent, and 100 SNPs are associated with 435 

D only; IV) Y had a causal effect on D, 100 SNPs affected Y (and D mediated through Y), and 436 

another set of 100 SNPs affected D directly. In each scenario, to mimic the disease ascertainment, we 437 

reduced the values of Y for the individuals who had high values of D. More specifically, if the D 438 

value of an individual passed a threshold (e.g., top 10%), the corresponding Y value would be 439 

subtracted by a constant. We set the disease ascertainment threshold to be 10%, 20%, 30%, or 40% 440 

and considered a subtraction from Y value by 1, 2, 3, 4 or 5 standard deviations. We then conducted 441 

GWAS and estimated SNP effect correlation between Y and D using the rb approach developed in a 442 

previous study60 as well as the causal effect of Y on D using GSMR. To demonstrate the effectiveness 443 

of our MLC corrections, we performed an adjustment for longitudinal change in our simulation 444 

setting under scenario IV. We divided the individuals into two groups (LESS and SAME) and then 445 

conducted the GWAS separately, followed by a meta-analysis. Details of the simulation process and 446 

parameter specifications can be found in the Supplementary Note 2. 447 

 448 

URLs 449 

PheWAS: http://atlas.ctglab.nl/PheWAS 450 

LDSC: https://github.com/bulik/ldsc 451 

LD Hub: http://ldsc.broadinstitute.org/ldhub/ 452 

GSMR: http://cnsgenomics.com/software/gsmr/ 453 

MR-PRESSO: https://github.com/rondolab/MR-PRESSO 454 

Other MR methods: https://CRAN.R-project.org/package=MendelianRandomization 455 

IPAQ data processing: http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/ipaq_analysis.pdf 456 

 457 
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Data availability 458 

The individual-level genotype and phenotype data are available through formal 459 

application to the UK Biobank (http://www.ukbiobank.ac.uk). 460 
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Figure 1. PheWAS results for the 16 AC GWAS signals that became non-significant after the MLC corrections. The colour denotes the domain of the 

associated trait. There were 136 traits associated with the 16 SNPs with 𝑃 < 5 × 10−8, and 61 (44.9%) of them were metabolic/cardiovascular traits.  
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Figure 2. Estimates of genetic correlation between AC and common diseases in the UKB. The 

rows denote 8 GWAS summary data sets for AC with the sample size labelled in the bracket. The 

columns are 18 common diseases and disease count. The nominal significant effects (𝑃 < 0.05) are 

labelled with �̂�𝑔 [95% confidence interval] (P-value), and the significant effects after multiple testing 

correction (𝑃 < 0.05/152) are labelled with an additional asterisk. “Current drinkers excluding 

underreporting” represents current drinkers excluding 9,064 individuals who likely underreported 

their AC levels. LESS, SAME, and MORE represent current drinkers whose AC levels were reduced, 

maintained the same, and increased, respectively, compared to 10 years ago. “LESS with illness 

removed” represents the LESS group excluding the participants who reduced their AC intake level 

due to illness or doctor’s advice.  
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Figure 3. Estimates of genetic correlation between AC and complex traits using data from the 

UKB and other published studies. Genetic correlation was estimated by the bivariate-LDSC in LD 

Hub. The y-axis shows the estimate of rg, and the x-axis shows different complex traits. The error bars 

denote the standard errors of the estimates. The results using the summary statistics from our analysis 

were compared to those from Clarke et al. (2017, Molecular Psychiatry)4, who used self-reported AC 

from the interim release of the UKB data, and Liu et al. (2019, Nature Genetics)5, a meta-analysis that 

included the full release of the UKB data. 
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Figure 4. Estimates of causal effect of AC on BMI using different MR methods. The colour 

denotes five different GWAS summary data sets for AC. The y-axis shows the estimate of causal 

effects, and the x-axis shows different MR methods. The error bars denote the standard errors of the 

estimates. 
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Table 1. Alcohol consumption and health-related traits of current drinkers in different response 

and longitudinal change groups 

Intake 

level 

reported? 

Longitudinal 

change group 
N 

Mean phenotype Disease prevalence 

AC BMI Disease count CVD T2D DYSLIPID HYPER 

Yes 

All 358,449 10.67 27.17 1.372 0.154 0.051 0.169 0.184 

LESS 152,854 8.56 27.77 1.506 0.178 0.072 0.192 0.211 

SAME 134,808 10.82 26.72 1.274 0.141 0.038 0.158 0.167 

MORE 68,855 15.11 26.68 1.266 0.128 0.031 0.141 0.154 

No 

All 66,058 / 28.28 1.630 0.177 0.082 0.181 0.213 

LESS 38,799 / 28.70 1.730 0.194 0.096 0.195 0.229 

SAME 25,055 / 27.70 1.474 0.153 0.061 0.159 0.189 

MORE 1,599 / 27.40 1.448 0.138 0.049 0.147 0.162 

LESS, SAME, and MORE denote the current drinkers who reduced, maintained, and increased their 

alcohol consumption, respectively, compared to 10 years ago. N, sample size; AC, alcohol 

consumption measured by units per week; BMI, body mass index; Disease count, number of common 

diseases affected; CVD: cardiovascular disease; T2D: type 2 diabetes; DYSLIPID: dyslipidaemia; and 

HYPER: hypertensive disease. The proportion of the LESS group was 42.6% in the current drinkers 

who reported the intake level and 58.7% in the current drinkers who did not report the intake level. 
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Table 2. Descriptive statistics of the reasons for reducing alcohol intake 

Intake level 

reported? 
Reason of reducing N 

Mean phenotype 

AC BMI Disease count EA 

Yes 

Illness or ill health 8,555 7.33 28.53 2.77 12.81 

Doctor's advice 3,331 14.72 29.49 2.58 12.65 

Health precaution 48,483 9.98 27.44 1.54 14.17 

Financial reasons 7,323 10.27 28.54 1.74 11.57 

Other reason 68,066 7.54 27.71 1.28 13.90 

 Prefer not to 

answer 
268 5.77 27.69 1.75 10.90 

Do not know 16,729 7.28 27.96 1.35 13.00 

No 

Illness or ill health 3,541 / 29.28 2.81 12.35 

Doctor's advice 462 / 29.99 2.77 11.90 

Health precaution 6,767 / 28.26 1.87 12.86 

Financial reasons 1,600 / 29.05 1.91 11.26 

Other reason 21,362 / 28.62 1.51 12.88 

 Prefer not to 

answer 
101 / 28.23 2.10 9.56 

Do not know 4,934 / 28.79 1.53 11.89 

N, sample size; AC, alcohol consumption (units per week); BMI, body mass index; Disease count, 

number of common diseases affected; EA, educational attainment (years of schooling). A total of 132 

individuals did not have records for their reasons for reducing their alcohol intake. 
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