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Abstract 

Background: Breast cancer is a leading cause of cancer-related death in women. Classifications 

of pathological images are important for its diagnosis and prognosis. However, the existing 

computational methods can sometimes hardly meet the accuracy requirement of clinical 

applications, due to uneven color distribution and subtle difference in features.  

Methods: In this study, a novel classification method DeepBC was proposed for classifying the 

pathological images of breast cancer, based on the deep convolution neural networks. DeepBC 

integrated Inception, ResNet, and AlexNet, extracted features from images, and classified  

images of benign and malignant tissues. 

Results: Additionally, complex tests were performed on the existing benchmark dataset to 
evaluate the performance of DeepBC. The evaluation results showed that, DeepBC achieved 92% 

and 96.43% accuracy rates in classifying patients and images, respectively, with the F1-score of 

97.38%, which better than the state-of-the-art methods.  

Conclusions:These findings indicated that, the model had favorable robustness and 

generalization, and was advantageous in the clinical classifications of breast cancer. 
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Introduction 

Breast cancer is one of the most common malignant diseases that affect female health, which 

is linked with high morbidity and mortality [11]. The optimal treatment for breast cancer depends 

on sophisticated classification. Early diagnosis and classification of breast cancer are conducive to 

the option of therapeutic methods and the control over tumor cell metastasis, and this has 

significantly improved the patient survival rate [40]. Doctors who understand the breast cancer 

types can develop targeted treatment plans based on the unusual clinical manifestations and 

prognostic outcomes of various breast cancers. In short, classification treatment of breast cancer 

lays the foundation for accurate medical planning, which is of great significance for clinical 

diagnosis and prognosis[8]. 

Breast cancer can be diagnosed through breast ultrasound and breast biopsy, among which, 

biopsy is the only diagnostic approach to determine whether a suspicious area is cancerous [6]. 

For each patient, the breast tissue-derived cells are collected onto a glass slide for hematoxylin and 

eosin (H&E) staining by the pathologist [23]. Microscopic analyses of breast tissue slides at 

different magnifications are carried out to identify two types of lesions, namely, benign and 
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malignant [2]. Benign tumors are comprised of abnormal epithelial cells and are not cancerous, 

and most epithelial cells will not develop into breast cancer. Malignant tumors or cancer cells are 

cells that begin to divide abnormally and grow without rules [25]. Analyzing microscopic images 

is a complex, time-consuming and difficult task, and the excessive fatigue can result in 

misdiagnosis [14]. Therefore, only the trained pathologists are responsible for analyzing the 

histopathological images[1]. However, skilled pathologists are lacking in underdeveloped areas 

and small hospitals, such as primary hospitals and clinics [37]. Therefore, it is important to 

develop an automated system to distinguish the cancerous tissue (malignant tissue) from the 

non-cancerous tissue (benign tissue) [33]. Such a system should help pathologists to simplify the 

diagnosis, save time, and increase the diagnostic efficiency. 

In most automated systems, traditional machine learning-based methods are adopted to 

extract the texture, morphology, and structural features of cell image or cell nucleus[17]. 

Afterwards, the features built on images and textures are obtained and utilized to classify different 

pathological images and to establish an automated system. Some researchers analyze the nucleus 

by extracting the nucleus characteristics [21], thus providing essential information for classifying 

benign and malignant cells[39]. Notably, the methods for manual feature extraction include 

thresholds, clustering, active contours, watersheds, and graphic cutting. Based on the traditional 

machine learning algorithms, different nucleus segmentation algorithms are employed for feature 

descriptors, such as support vector machines and random forests [35]. Using these algorithms, the 

distinguishing features are extracted from the nucleus to distinguish the benign slides from the 

malignant one. An improved morphological feature to discover the single-cell regions using 

wavelet transforms is also applied in nucleus classification. Typically, nucleus segmentation and 

classification using clustering algorithms and Hough transform [12, 13] represent the similar 

principles. The active contour technology segments cells from the background of breast 

histopathological images. This method extracts the nucleus morphological features and divides 

them into two types, which are normal cells and tumor cells[15]. The watershed segmentation 

technology extracts nucleus information from breast cancer histopathological images. 

Noteworthily, most classification methods are performed on low-resolution images with different 

magnifications. 

The deep learning models are employed to solve the classification problems in breast cancer 

detection[34]. Deep learning is a non-linear representation learning method, which belongs to 

machine learning. Convolution neural network (CNN), a kind of deep learning, becomes a 

general-purpose feature extractor. CNN classifies the histopathological images of breast cancer 

with independent magnification, thus obtaining a higher recognition rate[10, 24]. In addition, 

CNN can more accurately detect breast cancer metastasis, which helps the pathologists to make a 

diagnosis[3]. For example, AlexNet divides the pathological images of breast cancer into two 

categories: benign and malignant [28], and achieves higher accuracy rate than those of traditional 

machine learning algorithms. Besides, ResNet and Inception are the fast and accurate models for 

cell-based image classification [16]. Among the various machine learning algorithms with 

artificial features, the most attractive feature about CNN is that there is no need to design the 

feature extraction methods [22]. However, the number of features generated by CNN may be 

significant, which may result in overfitting and information redundancy [7]. Consequently, the 

accuracy of the system gradually decreases with the increase in magnification. 

To accurately and reliably solve the classification problem of breast cancer, a deep CNN, 
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namely, the DeepBC model, was proposed. DeepBC was able to classify two types of pathological 

images of breast cancer. This article focused on classifying the malignant and benign tumor biopsy 

images using the BreaKHis dataset. Moreover, the DeepBC model was rigorously evaluated. Our 

evaluation results showed that, DeepBC achieved the accuracy rates of 92% and 96.43%, 

respectively, in distinguishing patients and images, with the F1-score of 97.38%, and DeepBC 

attained superior efficiency to other methods. 

Methods 

BreakHis dataset 

In this study, BreakHis [29], the breast cancer dataset of microscopic images, was utilized to 

evaluate the performance of DeepBC. BreakHis contains 7,909 breast cancer biopsy images at 

different microscopic magnifications (x40, x100, x200, and x400). Each pathological image is a 

700x460 pixel png format file with 3 RGB channels. Later, BreakHis was stained with 

hematoxylin and eosin (H&E), and images were divided into two categories: malignant and 

benign. A total of 2480 samples were included, including four types of benign breast tumors 

(namely, adenosis A, fibroadenoma F, phyllodes tumor PT, and tubular adenona TA), and four 

types of malignant tumors (breast cancer: carcinoma DC, lobular carcinoma LC, mucinous 

carcinoma MC, and papillary carcinoma PC). In this study, 70% images were employed for 

training, while the remaining 30% were utilized for independent testing. Each type of image was 

allocated with a training set and a test image ratio of 7: 3. 

Input layer  

This layer loads breast cancer images from the database and outputs to fill the convolutional 

layer. The input image is a pathological tissue image with a size of 227 × 227, which consists of 

three 2-D arrays with the red, green, and blue channels. 

Convolutional layer 

The convolutional layer performs the convolution operation on input data through a filter to 

create a feature map. A filter represents the weight of a two-dimensional matrix shared by neurons, 

and the common filter kernels are 1x1, 3x3, 5x5, 7x7, 9x9, and 11x11. Then, the distance between 

two neighboring patches is called stride. A filter slides along the height and width of the input 

image, calculates the dot product, and produces a two-dimensional feature map. Afterwards, the 

convolutional layer sends all local weight values to the next layer by rectified linear activation 

(ReLU), a non-linear function to avoid linearization of the convolutional layer [19]. The gradient 

of activation function is larger, whereas the optimization of loss function is simpler and more 

effective.  

Pooling layer 

The pooling layer mainly functions to combine the semantically similar features into one 

feature, and its output remains the same ratio, but the number of parameters decreases. The 
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pooling layer reduces the size and noise, which thereby accelerates the convergence speed and 

improves the model generalization performance. There are three strategies in the pool layer, 

namely, maximum pooling, average pooling, and random pooling. The MaxPool layer [9] is used 

in this architecture, and the maximum value of patches is calculated by merging units. 

Inception module 

The Google network model holds the Inception architecture for large-scale visual recognition 

challenges [32]. Inception architecture is a method that gradually increases the feature size, and 

saves the depth of CNN without increasing the computational memory. Each Inception 

architecture can normalize data, and decomposes a large convolutional layer into a series of 

parallel convolutional layers [31]. The convolution kernel is limited to 1×1, 3×3, and 5×5. 

ResNet module 

 The generally stacked CNNs tend to overfit the training data and perform poorly on the 

actual data. In our model, the ResNet layer was employed to address the degradation problem of 

deep learning networks. The ResNet network turns several layers in the original network into a 

residual block[38], which accelerates the training speed of deep networks, and renders faster 

network convergence.  

AlexNet module 

The AlexNet [18] module contains 5 convolutional layers and 2 pooling layers. There are 96 

(11×11), 256 (5×5), and 384 (3×3) filters in the first, second and the last three convolution layers, 

respectively. Meanwhile, there is a ReLU activation function after each convolutional layer, and 

the maximum pooling layer follows the first and second convolutional layers. 

Fully connected layer 

Although the convolutional layer can obtain multi-scale information from the input data, the 

connection between the feature map and the classification score remains a black box. The fully 

connected layer declares many hidden layers with specified neurons and activation functions, and 

these hidden layers map the convolution features into a classification score. 

When the number of feature maps or trainable parameters is equal or greater than that of 

samples, there is a risk of overfitting. To avoid overfitting, the number of features should be much 

lower than that of samples. The dropout layer [30] is located between two fully connected layers, 

and some neurons are discarded with the probability value of p=0.5. The dropout layer can reduce 

excessive merging behavior, so as to improve the CNN classifier performance.  

Structure of the DeepBC model 

The DeepBC deep learning model helped to better understand the inherent laws and 

characteristics of breast cancer. In this study, the network structures of Inception, ResNet and 

AlexNet were adopted. In the fields of medicine and digital pathology, AlexNet is representative 
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of CNN. Inception structure is a parallel convolutional layer that contains singular convolution 

kernels, while ResNet is an advanced network structure to calculate residuals block. Figure 1 

shows the DeepBC network architecture. The architecture of DeepBC was constructed through a 

series of stages, including the input layer, the “Inception + ResNet + AlexNet” structures. The 

fully connected layer had 512 neuron nodes and two output classes. The DeepBC realized the 

transfer of features from low-level to more abstract high-level, which was beneficial to learn the 

feature rules inherent in the pathological image. 

As observed in Figure 1, DeepBC directly trained or evaluated the BreakHis dataset. By 

learning the hierarchical features in the training model, DeepBC fitted the parameters of weight 

and bias. Then, DeepBC started learning the underlying features, such as color, texture, and shape, 

after inputting the breast cancer pathological images to the input layer. Later, DeepBC extracted 

the semantic features and sent them to the fully connected layers for classification through 

progressively learning  “Inception +ResNet + AlexNet” . 

 

Figure 1. the architecture of DeepBC 

Training strategy 

In this study, no preprocessing, dimensionality reduction or data enhancement method was 

employed before the image was input into the network. This experiment was conducted by Nvidia 

GTX1060 GPU equipped with 6GB RAM. The Pytorch package was the deep learning framework 

for implementing DeepBC. The size of each input image was resized to 227×227 pixels, and the 

epoch was 78, with Adam optimizer and 10e-4 learning rate. We used each epoch-trained model to 

predict the test set respectively, and selected the prediction probability file with the highest 

accuracy. It took nearly one day to train and predict.  

Evaluation metrics 

To quantify and compare our results, the following evaluation metrics were adopted: 

1. Patient accuracy. Mean patient level accuracy [5] is defined as:  

p

p

T

coreS
AvgAcc ∑=

              (1)  

 

Where Tp stands for the total number of patients in the test set. Patient score is defined 

as follows: 

p

c
p N

N
coreS =

                 (2)

 

Where Np represents the number of biopsy images of patient P, and Nc indicates the 
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correctly classified frames of images for patient P. 

2. Image accuracy [5]. Image accuracy is calculated at the image level (in other words, 

patient information is not taken into consideration), which represents a method to evaluate the 

accuracy of CNN model image classification. Image accuracy is defined as follows, 

total

ture

N

N
ccA =

             (3)

 

Where Ntrue is the number of correct classifications, and Ntotal  represents the total number of 

pictures. 

3. F1-score [27]. F1-score is adopted to better highlight the sensitivity to (positive) 

malignancy, which is defined as the harmonic mean between sensitivity (also called Recall) and 

Precision [4]: 

ecisioncall
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4. Misclassification rate. The ratio is the number of misclassified images in each 

sub-category to the total number of each sub-category. 

sub_total

sub_true

N

N
Misrate =

            (5)

 

Where truesubN _  is the number of misclassified images in each sub-category, totalsubN _  is  

the total number of each sub-category. 

Results 

Confusion matrix and misclassification rate 

To evaluate the model performance, the confusion matrix was utilized in this study to 

describe the classification results of the test set. As shown in the confusion matrix (Figure 2), the 

benign and malignant tumors achieved the high classification accuracy rates of 95.83% and 

96.71%, respectively. However, 4.17% malignant tumors were incorrectly classified as benign, 

whereas 3.29% benign tumors were wrongly classified as malignant. 
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Figure 2. confusion matrix  

We compared the subclass misclassification rates of benign and malignant (Table 1). Table 1 

shows misclassification rates of the benign and malignant for DeepBC were meager compared 

with other tools, but VGG16 and AlexNet were higher. It was worth noting that the 

misclassification rate of fibroadenoma and lobular carcinoma by the GoogLeNet was slightly 

lower than the DeepBC. For all methods, the misclassification rate of benign was generally higher 

than the malignant. It indicated that the relatively low missed diagnosis rate for malignant tumors, 

the misdiagnosis rate for benign tumors was relatively high. The reason might be ascribed to the 

few clinically records of benign subtypes. Therefore, the DeepBC model attained a higher 

sensitivity and performed better in the detection and classification of breast cancer.  

Table 1. misclassification rates of several methods 

Tumor Type DeepBC GoogLeNet ResNet VGG16 AlexNet 

benign adenosis 0.79  10.32 10.32 15.87 20.63 

 fibroadenoma 3.17  2.82 7.39 22.54 21.13 

 phyllodes tumor 7.75  10.85 16.28 33.33 31.78 

 tubular adenoma 5.73  12.10 14.65 30.57 28.03 

malignant ductal carcinoma 1.04  1.35 4.36 2.49 3.22 

 lobular carcinoma 5.00  3.33 10.00 6.11 4.44 

 mucinous carcinoma 10.96  10.50 9.59 24.20 21.46 

 papillary carcinoma 4.52  8.39 10.97 21.94 16.13 

Classification comparison of accuracy and F1-score  

 We used the sklearn.metrics package to calculate the accuracy and F1-score. The overall 

accuracy rates of DeepBC for images and patients were 96.43% and 92.00%, respectively, with 

the F1-score of 97.38%, which was higher than those obtained by other tools (Table 2). We further 

focused on the impact of magnification on the classification accuracy. Firstly, at the magnification 

of 40×, the accuracy rates for images and patients achieved by DeepBC were 97.31% and 

100.00%, respectively with the F1-score of 98.03%, which was superior to those by other 

tools(Table 3). When the magnification was 100x, the accuracy rates of images and patients 

attained by DeepBC were 96.06% and 83.33%, respectively, and the F1-score was 97.11% (Table 
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4), which was superior to those obtained by other tools. At the magnification of 200x, the accuracy 

rates of images and patients achieved by DeepBC were 97.53% and 100.00%, respectively, and 

the F1-score was 98.21%(Table 5) , which outperformed other methods. When the magnification 

was 400x, the accuracy rates of images and patients achieved by DeepBC were 94.66 % and 

85.71%, respectively, and the F1-score was 96%(Table 6). According to the above results, the 

feature learning ability of DeepBC was much better than the state-of-the-art classifiers. 

Table 2. overall accuracy rates of several methods 

Method 
Accuracy 

(Image) 

Accuracy 

(Patient) 
F1-score 

DeepBC 96.43  92.00  97.38  

GoogLeNet 95.08  92.00  96.41  

ResNet 92.05  72.00  94.16  

VGG16 86.59  56.00  90.39  

AlexNet 87.26  84.00  90.89  

Table 3. accuracy rates of several methods at the magnification of 40× 

Method 
Accuracy 

(Image) 

Accuracy 

(Patient) 
F1-score 

DeepBC 97.31  100.00  98.03  

GoogLeNet 96.06  83.33  97.15  

ResNet 94.27  83.33  95.89  

VGG16 84.77  50.00  89.09  

AlexNet 85.48  83.33  89.63  

Table 4. accuracy rates of several methods at the magnification of 100× 

Method 
Accuracy 

(Image) 

Accuracy 

(Patient) 
F1-score 

DeepBC 96.06  83.33  97.11  

GoogLeNet 95.38  83.33  96.60  

ResNet 93.15  83.33  94.96  

VGG16 86.82  83.33  90.62  

AlexNet 86.64  83.33  90.39  

Table 5. accuracy rates of several methods at the magnification of 200× 

Method 
Accuracy 

(Image) 

Accuracy 

(Patient) 
F1-score 

DeepBC 97.53  100.00  98.21  

GoogLeNet 95.41  100.00  96.72  

ResNet 92.05  66.67  94.25  

VGG16 87.81  33.33  91.43  

AlexNet 87.63  83.33  91.34  
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Table 6. accuracy rates of several methods at the magnification of 400× 

Method 
Accuracy 

(Image) 

Accuracy 

(Patient) 
F1-score 

DeepBC 94.66  85.71  96.00  

GoogLeNet 93.28  100.00  94.99  

ResNet 88.34  57.14  91.07  

VGG16 86.96  57.14  90.35  

AlexNet 89.53  85.71  92.37  

Discussion 

The computer-assisted biopsy analysis is mainly carried out to minimize the manual 

operation of microscopically stained slides [26]. Using the image processing and machine learning 

technology, a classification computer-aided system can automatically diagnose breast cancer. In 

recent years, breakthroughs have been made in primary medical image analysis and detection 

methods. Many researchers have established the computer-aided systems to automatically classify 

benign and malignant tissue images. This improves the diagnosis efficiency, reduces the tedious 

work of pathologists, and avoids the possibility of misdiagnosis. Fortunately, the mortality of 

breast cancer dramatically reduces, even though its incidence significantly increases.  

However, the color appearance changes in H&E stained histopathological images have 

afflicted researchers in automatic image analysis. The benign and malignant cells show irregular 

morphology, excessive overlapping, and uneven color distribution [36]. The histopathological 

images of breast cancer are unique in different classifications, but the pathological images of the 

same tumor tissues also have significant differences in features such as resolution, contrast, and 

appearance, making it difficult to distinguish breast cancer. Notably, pathologists have quickly 

adapted to various color changes without affecting the diagnosis accuracy. However, the color 

variability has adversely affected computer analysis[20]. Many approaches can be utilized to 

standardize colors, among which, color standardization becomes an essential tool for the 

quantitative analysis of histopathologically stained color images. However, these approaches 

depend on artificial methods to extract features, which needs great efforts and expertise and thus 

severely restricts the application of machine learning methods in the histopathological 

classification of breast cancer. In this study, the DeepBC model does not require color 

standardization of the image, and it also extracts features of the pathological tissue image. 

Typically, our proposed method extracts not only the low-level features but also the representative 

features, which is suitable for classifiers with discriminatory analysis abilities. Based on findings 

in this study, DeepBC displays useful application prospects. 

Conclusion 

Breast cancer is a leading cause of cancer-related death in women. Multiple classifications 

are important for its diagnosis and prognosis. In this study, to accurately and reliably solve the 

multi-classification problem of breast cancer, a deep CNN, namely, the DeepBC model, was 

proposed. DeepBC integrated AlexNet, ResNet, and Inception, extracted features from images, 
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and classified images of benign and malignant tissues. DeepBC was able to classify multiple types 

of pathological images of breast cancer. This article focused on classifying the malignant and 

benign tumor biopsy images using the BreaKHis dataset. Moreover, the DeepBC model was 

rigorously evaluated. Our evaluation results showed that, DeepBC achieved the accuracy rates of 

92% and 96.43%, respectively, in distinguishing patients and images, with the F1-score of 97.38%, 

and DeepBC attained superior efficiency to other methods. These findings indicated that, the 

model had favorable robustness and generalization, and was advantageous in the clinical multiple 

classifications of breast cancer. 
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