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Abstract 
 
Non-pharmaceutical intervention measures, such as social distancing, have so far been the only 
means to slow the spread of COVID19. In the United States, strict social distancing has resulted 
in different types infection dynamics.  In some states, such as New York, extensive infection 
spread was followed by a pronounced decline of infection levels. In other states, such as 
California, less infection spread occurred before strict social distancing, and a different pattern 
was observed. Instead of a pronounced infection decline, a long-lasting plateau is evident, 
characterized by similar daily new infection levels. While these plateau dynamics cannot be 
readily reproduced with standard SIR infection models, we show that network models, in which 
individuals and their social contacts are explicitly tracked, can reproduce the plateau if network 
connections are cut due to social distancing measures. The reason is that in networks 
characterized by a 2D spatial structure, infection tends to spread quadratically with time, but as 
edges are randomly removed, the infection spreads along nearly one-dimensional infection 
“corridors”, resulting in plateau dynamics.  Interestingly, the plateau dynamics are predicted to 
eventually transition into an infection decline phase without any further increase in social 
distancing measures. Additionally, the models suggest that a potential second wave becomes 
significantly less pronounced if social distancing is only relaxed once the dynamics have 
transitioned to the decline phase. The network models analyzed here allow us to interpret and 
reconcile different infection dynamics during social distancing observed in various US states.   
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Introduction 
 

The COVID19 pandemic has caused significant mortality and morbidity around the world [1], 

and the only means to slow its spread has been the implementation of non-pharmaceutical 

intervention methods, most notably social distancing [2, 3]. In the United States, stay-home 

orders have been given and have been implemented to various extents in the different states, 

which has resulted in an overall reduction of disease burden [4]. Economic considerations, as 

well as social distancing fatigue in the population, however, lead to the relaxation of non-

pharmaceutical interventions. This in turn raises questions about the potential severity of a 

second wave of infection spread. 

 

As these events are unfolding, it is useful to understand the dynamics of infection 

spread during social distancing, and how this might relate to a possible resurgence as the social 

distancing measures are relaxed. Mathematical models have been useful for understanding 

different aspects of COVID19 spread dynamics, e.g. [5-7], including the analysis of optimal 

strategies to relax social distancing measures [8]. Much of this work, however, is based on SIR 

models that are expressed in terms of ordinary differential equations [9], which assume that all 

individuals in a population mix with each other. When social distancing measures are in place, 

however, this assumption is likely violated. On a phenomenological level, it is possible to 

approximate the effect of social distancing by assuming a reduced transmission rate of the 
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virus, because this is the net effect. On the other hand, to account for social distancing, it might 

be more realistic to consider modeling approaches that explicitly assume social connections 

among individuals, and that individuals are only connected to a subset of local contacts during 

stay-home orders.  

 

Epidemiological data of COVID19 spread while social distancing measures are in place 

are characterized by some patterns that are difficult to explain by SIR models based on ordinary 

differential equations. In these models, exponential growth of the infection is observed until a 

peak is reached, after which a phase of exponential decline occurs. The observed COVID19 

spread dynamics, however, have been found to be more complex. While exponential growth 

has been observed in certain locations, the infection spread seems to be better described by 

power laws in many other locations [10, 11], which could be brought about by the prevalence 

of local rather than more long-range interactions. In addition, when stricter stay-home orders 

are in place and the rate of infection spread is slowed down, different dynamics can be 

observed. In some states / counties, a pronounced decline of daily COVID19 cases is observed 

following strict social distancing. This tends to be the case if infection spread has been more 

severe, such as in New York (Figure 1a). In other locations, a relatively long-lasting plateau 

phase is observed, during which the number of daily cases seems to fluctuate around a steady 

average level (corresponding to a linear cumulative number of cases over time). This has been 

seen in places that implemented social distancing measures relatively early and controlled the 

spread effectively, such as in California or Washington State (Figure 1b). The standard SIR 
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models that are based on ordinary differential equations cannot easily account for such a 

prolonged plateau.  

 

 Here, we analyze the spread of COVID19 using network models, which assume that 

individuals in a population do not all mix with each other, but that individuals interact according 

to contact networks. We assume the existence of contact networks both before and during 

strict social distancing efforts. Strict social distancing is implemented by cutting these network 

 1 

  
 
Figure 1: (a) Different patterns of COVID19 spread during social distancing across different 
states in the USA. Group 0 states show a relatively sharp decline of infections. Group 1 states 
show an initial decline, followed by convergence to a plateau. Group 2 states show a plateau 
without a significant decline during social distancing. Group 3 states show a rise, followed by a 
plateau. Group 4 states show a rise without convergence to a plateau. See Supplementary 
Materials for grouping methodology. (b) Correlation between the COVID19 spread pattern 
during social distancing with the relative timing of the epidemic rise (see Supplement Section 3 
for details). A later rise of the epidemic is associated with a relatively early implementation of 
social distancing, which happens before the infection has spread significantly through the 
population. Thus earlier initiation of distancing correlates with the occurrence of a plateau or 
even a “rise” (which is thought to correspond to pre-plateau dynamics). Initiation of distancing 
after significant virus spread tends to correlate with a “hump”-shaped epidemic: a significant 
infection spread followed by a decline and lack of a plateau. (c) The same trend is seen when 
considering deaths as an indicator of the severity of infection when distancing is initiated. Less 
death correlates with the appearance of a plateau or a rise. More death correlates with a sharp 
rise of infection followed by a decline in the absence of a plateau.    
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connections to varying degrees. We find that such models can reproduce the above-described 

intricacies of COVID19 spread. Hence, such models can give rise to the observed power law 

growth of infection spread, as well as the long-lasting infection plateaus observed during strict 

social distancing. In particular, if strict social distancing is put in place relatively early, the 

models predict a prolonged plateau phase during which the daily number of infections remain 

relatively constant. Interestingly, these dynamics transition naturally into a decline phase 

without any additional cutting of network connections (i.e. without stronger social distancing).  

In contrast, if strict social distancing measures are implemented only after the infection has 

spread to higher levels in the model, the plateau phase is less pronounced or absent, and a 

decline phase is observed right away. Consistent with previous modeling approaches [8], we 

find that the predicted second wave can be lower if social distancing is relaxed later. In contrast 

to the predictions from standard SIR models, however, our network models suggest that a 

lower second wave is only observed if social distancing is relaxed once the steady plateau phase 

is over and the number of daily new infections has started to decline. Several other differences 

are observed compared to standard SIR models when predicting how different parameters 

affect the magnitude of the second wave after social distancing measures are relaxed.            

 

 

A basic SIR model if COVID19 transmission 

SIR models based on ordinary differential equations are a cornerstone of epidemiological 

infection models [9, 12], and they have also been an important component for COVID19 

modeling [13]. They distinguish between susceptible individuals, S, infected, I, and recovered, R, 
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individuals that are immune to infection. Also including a population of dead individuals, Z, the 

model can be written as follows: 

𝑑𝑆
𝑑𝑡 = −𝛽𝑆𝐼,								

𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼 − (𝑔 + 𝑎)𝐼,									

𝑑𝑅
𝑑𝑡 = 𝑔𝐼,						

𝑑𝑍
𝑑𝑡 = 𝑎𝐼. 

Reproduction or immigration of the host population is not included. Susceptible individuals are 

infected with a rate b upon contact with an infected person. Infected individuals die with a rate 

a, or recover with a rate g.  The model assumes that recovered individuals cannot be infected 

anymore. There are no data yet indicating whether humans recovered from COVID19 are 

immune to secondary infections or not, although non-human primates have been shown to be 

protected approximately 30 days after onset of symptoms [14].  

 

Because the model is given by ordinary differential equations, it assumes that all individuals in a 

population mix perfectly with each other. While this might not be realistic, social distancing can 

still be described by this model through a reduction in the infection transmission parameter b. 

Such a model has been investigated in detail in [8], but an analysis of this model is described in 

the Supplement, Section 1, to put our network models into context. In particular, according to 

the ODE model, delaying the start of social distancing leads to a lower infection level while 

distancing is taking place, but it may correspond to a lower final epidemic size after the 

relaxation of social distancing. Further, a longer duration of social distancing leads to a lower 

final epidemic size. Finally, stricter social distancing  (lower infectivity, b) is predicted to result 

in a higher second wave infection peak and a higher final epidemic size. Similar results are also 

reported in [8]. 
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Network models 

The same assumptions can be expressed in terms of network models [15-28]. These do not 

assume perfect mixing of individuals, but instead assume the existence of a certain number of 

social contacts per person, through which transmission can occur.  

  

While the true structure of the human contact networks in the absence and presence of 

the pandemic are not fully understood, we analyzed two basic types of networks at different 

ends of the spectrum. In what we call a “spatial random network”, individuals are connected to 

their local neighbors. This might approximate a society under various social distancing 

measures, when people do not travel much. The degree of social distancing can be expressed 

by the average number of connections per individual. A network where individuals have a 

relatively large number of connections would correspond to a society that stopped traveling 

but is still interacting to a strong degree on a local level. Stricter social distancing measures 

would correspond to a reduced number of local connections in this network, e.g. due to people 

staying at home more. This network structure is shown schematically in Figure 2A.  At the other 

end of the spectrum, we consider the scale-free Barabasi-Albert network [29], which is 

characterized by individuals having non-local connections, and a few individuals having a 

disproportionately large number of connections (Figure 2B). During social distancing, the 

connections in such a network can be reduced. Between these two scenarios, we consider a 

third network that we call “hybrid network” (Figure 2C), or a spatial scale-free network. The 

backbone consists of spatial network connections, with a set of long-range connections 
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superimposed. Details of how these networks were constructed are given in the Supplementary 

Materials.  

 

For each network type, we start with a given “null network”, which represents the state 

of society before strict local distancing measures. Stricter social distancing is implemented by 

randomly cutting network connections by a given percentage, which we can vary. Through this 
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Figure 2:  Different network types considered in this paper and their properties (See section 2.1 
of the Supplement for details of construction). In (A-C), a typical degree histogram and a 
graphical representation of a typical network are presented.  (A) A random spatial network, 
where nodes are connected largely to their neighbors, i.e. connections are short-range. (B) 
Scale-free Barabasi-Albert network, where no spatial correlations are found and there is a 
power law like tail in the degree distribution. (C) A hybrid network, in which a scale-free 
component is superimposed onto a spatial component. (D) Growth curves showing the 
infection spread in the three different networks. Standard errors are shown as dashed lines, 
which in some cases are too small to see.  Parameters were chosen as follows. Pinf=0.0001min-1 
per edge; Prec=0.0001min-1; Pdeath=0.00005min-1.  
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variation, we can consider a range of different intensities with which non-pharmaceutical 

interventions are implemented.   

 

 The infection dynamics on these networks were simulated stochastically with the 

following algorithm. Every time step, the network was sampled randomly until infected agents 

were selected M times, where M is the total number of currently infected individuals. For each 

infected individual that was selected, a death event occurred with probability Pdeath, and a 

recovery event occurred with a probability Prec (we refer to the probability of death or recovery 

as the probability of removal, Premoval= Pdeath + Prec ). With a probability Pinf x (number of social 

connections), an infection event was attempted. In this case, one of the connected individuals 

was chosen randomly for an infection event. If this individual was susceptible, an infection 

event proceeded. If this individual was either recovered or dead, no infection occurred.  We 

note that in the context of the model, recovered and dead individuals have the same effect: 

they represent network nodes that are not available for transmission anymore.  We will refer to 

these individuals as “removed” from the infection process. 

 

 

Basic growth laws 

Here, we summarize the infection spread laws observed in the different network models 

assuming that the networks are in their “null state”, i.e. before connections are cut. The spatial 

model displays clear power law growth of the infection over time, which is due to the local 

connections that characterize this network (Figure 2D). The scale free Barabasi-Albert network 
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displays an initial phase of exponential growth, followed by a transition to a power law, before 

the final epidemic size has been reached (Figure 2D). This behavior has been analyzed in detail 

before [20]. The hybrid network displays a similar behavior, although the growth is more 

skewed towards power law behavior (Figure 2D).  Power law growth is not predicted by SIR 

models that are based on ordinary differential equations, and the observation of power law like 

spread of COVID19 across different locations [10, 11]  thus indicates that network models might 

be more appropriate descriptions in many settings.     

 

 

Infection dynamics during social distancing 

 The network models considered here might shed light onto the mechanism underlying 

the observed prolonged plateau phenomenon discussed above (Figure 1). We first consider the 

spatial model. The simulation is started with the “uncut” version of the model that contains 

10,000 agents that are characterized by a relatively large number of connections. When the 

number of infected individuals has reached 100 (1% of the total population), the simulation 

switches to a strongly cut version of the network, characterized by significantly fewer 

connections per agent. Figure 3A shows the dynamics averaged over many realizations of the 

simulation. Implementation of social distancing is followed by a peak of infections, after which 

the infection levels decline slightly and converge to a long-term plateau, during which average 

infection levels remain relatively constant. This is also reflected in a linear growth of the 

cumulative case counts in the simulation (Figure 3B). After a certain period of time at this 

plateau, the dynamics start to visibly decline. We note that this transition to the decline phase 
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occurs without any further cutting of network connections, i.e. without any further 

implementation of non-pharmaceutical intervention measures.  
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Figure 3. Social distancing dynamics in the spatial network. (A) Growth in the uncut spatial 

network occurs until 100 infected individuals are present, at which point half of the network 

connections are randomly removed. The average trajectory over 900 runs is plotted, and 

standard errors are indicated by dashed lines. A plateau is observed, eventually followed by a 

decline phase. (B) Same simulation, but cumulative infection numbers are plotted. (C) 

Schematic illustration of a typical (uncut) spatial network. (D) Schematic illustration of the cut 

network, which results in the existence of one-dimensional infection corridors. (E) The cut 

network (red) superimposed onto the uncut network. (F) Same type of simulation as in part (A), 

but social distancing is initiated when different numbers of infected individuals are reached: 

100 (as in part A), 200, 300, 400, 500, 500, 700. These are again averages over 900 simulations, 

and standard errors are indicated by dashed lines. (G) Same, but cumulative number of 

infections are plotted. Parameters were as follows. Pinf=0.0001min-1 per edge; Prec=0.0001min-1; 

Pdeath=0.00005min-1.  
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 These plateau dynamics are explained as follows. When the network is relatively well-

connected (pre-social distancing), the infection can spread in two dimensions (Figure 3C), 

resulting in power law growth, where the number of infections grows quadratically in time, see 

e.g. the classical results of [30, 31]. When the network connections are significantly cut, 

however, the remaining social pathways along which the infection can spread turn out to be 

significantly longer, resembling one-dimensional corridors (Figure 3D,E). Infection spread across 

a one-dimensional graph results in a constant number of new cases per day. Although the 

number of new cases remains roughly constant over time, however, the infection is still 

spreading through the community. Over time the infection spread reaches the end of these 

one-dimensional paths, at which point further spread cannot occur anymore and the infection 

levels start to decline. Therefore, the plateau phase can be explained by a transition from 2-

dimensional to 1-dimensional infection spread, and indicate that the infection is now spreading 

towards a dead end.  

 

 Figure 3F shows a number of repeats of such simulations, but social distancing is 

implemented at different percentages of infected individuals, ranging from low to high. 

Interestingly, we observe that the plateau phase becomes less pronounced the more the 

infection has spread when social distancing is implemented. For the simulation where social 

distancing is implemented at the largest percentage of infected individuals, we observe a brief 

shoulder phase, followed by a relatively rapid decline of infection cases. This might explain why 

the plateau tends to be observed only in those locations that started social distancing early 

enough to prevent extensive infection spread.  
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 While we have demonstrated the dynamics for a particular parameter combination and 

spatial network configuration, Figure S9 shows similar dynamics for different parameters, and 

also if a less severely cut network during social distancing is assumed. 

 

        Next, we investigated these dynamics in the other networks. The scale-free Barbasi-

Albert network is much more interconnected without any spatial components. Hence, upon 

cutting connections, a transition to a roughly 1-dimensioal spread does not happen, and 

plateau dynamics are not observed (Figure S8). As expected, the hybrid network reproduces the 

plateau behavior, but to a lesser extent than the spatial network (Figure S8).  

 

 Last but not least, the network simulations indicate that immunity of recovered 

individuals is an essential component of the plateau behavior. This is illustrated in Figure S13, 

which compares the effect of social distancing on infection spread dynamics in simulations that 

do and do not assume that recovered individuals are immune, assuming the spatial network. 

Without the assumption of immunity, the plateau behavior is not observed, and the number of 

infected individuals during the phase of social distancing reaches a significantly higher peak 

(Figure S13). Based on these findings, we hypothesize that the beneficial effect of social 

distancing is noticeably enhanced by immunity. The reason for this model behavior is that 

recovered, immune individuals, even if not very prevalent in the population, can provide local 

roadblocks for infection spread, which contributes to the infection paths being more one-

dimensional rather than two-dimensional.      

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.13.20130625doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.13.20130625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 

Infection spread upon relaxation of social distancing 

Economic considerations require an eventual relaxation of social distancing measures, which 

has by now commenced in Europe, the United States and elsewhere. It is thought that this will 

enable a resurgence of infection levels, which is also referred to as a second wave. We 

investigated what our network models predict in this regard. This is a topic that has previously 

been analyzed with ordinary differential equation SIR models [8]. This study sought optimal 

social distancing schedules, where the starting time as well as the extent and duration of social 

distancing was varied with the aim to find the schedule that minimized over the first and the 

second peak of infection levels. One finding was that a longer duration of social distancing 

lowered the peak of the second wave of infection spread following the relaxation of social 

distancing measures [8]. Similar behavior is also observed in our network models, but added 

insights can be obtained arising from the existence of the plateau phase when social distancing 

is implemented. In agreement with the previous work [8], the network models also indicate 

that a longer duration of social distancing leads to a lower second wave. It does so, however, in 

a stage-wise manner (Figure 4A,B). While the dynamics are in the plateau phase, a later return 

to the fully connected network does not significantly decrease the subsequent infection peak 

(Figure 4A) or the final epidemic size (total number of individuals infected since the beginning 

of the epidemic, Figure 4B). Once the dynamics have entered the post-plateau decline phase, 

however, both the infection peak upon return to the fully connected network, as well as the  
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final epidemic size, are noticeably reduced (Figure 4A,B). The model thus gives rise to an 

important policy suggestion: If plateau-like dynamics are observed during social distancing, it 

pays off to wait for the transition to the decline phase before relaxing the non-pharmaceutical 

interventions, such that both future public health burden and economic hardship are reduced. 
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Figure 4. Infection spread dynamics when social distancing is relaxed in the spatial network 

model. (A) The number of infected individuals is plotted against time. Simulations start with the 

uncut network. When the infected population reaches size 100, ½ of randomly chosen edges 

are removed. At different times following the cut, the simulation reverts back to the original 

network. This results in a renewed wave of spread, and we let the infection spread in the 

simulation without further network cutting. Generally, a later return to the uncut network leads 

to a lower peak of the renewed growth. This reduction, however, is very minor, unless the 

return to the uncut network occurs when the infection levels are already in the decline phase 

during social distancing. The average over 900 simulations is shown. Standard errors are shown 

by dashed lines. (B) Same, but cumulative infections over time are shown. (C) Dynamics of the 

second wave after return to the uncut network, comparing different degrees of social 

distancing. The blue curve assumes that 50% of the connections are cut during social distancing. 

The orange curve assumes that 65% of the connections are cut during social distancing, i.e. 

distancing is stricter. Panels (i) – (iv) show return to the uncut network after longer durations of 

social distancing. Generally, stricter social distancing leads to a lower peak of the second wave 

of infections. For final epidemic size, see Figure S10. Each curve represents the average over 

900 simulations. Standard errors are shown by dashed lines, which in some cases are too small 

to see. Pinf=0.0001min-1 per edge; Prec=0.0001min-1; Pdeath=0.00005min-1.  
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 The reason that the second peak and the final epidemic size are reduced if social 

distancing is relaxed during the decline phase of the dynamics is that both measures depend on 

the population sizes when non-pharmaceutical interventions are reduced, and in particular on 

the number of infected individuals at this time. Fewer infected individuals lead to a lower peak 

and a lower final epidemic size, and this is only achieved once the number of infected cases 

starts to decline during the phase of social distancing. The longer the social distancing phase is 

maintained during this decline, the lower the predicted second peak and the final epidemic 

size.   

 

 We also investigated how the magnitude of the second peak depends on the 

degree of social distancing, expressed by the degree to which the original network was cut 

(more cut connections correspond to stricter social distancing). In the spatial network, we find 

that less strict social distancing results in a higher second peak (Figure 4C) and in a higher final 

epidemic size (Figure S10), because the number of infected individuals by the end of social 

distancing is higher if the degree of distancing is less strict.  

 

It is interesting that in SIR models based on ODEs, the opposite is observed: less strict 

distancing (expressed by a higher rate of infection) results in a lower second peak [8]. The 

reason is the assumption of perfect mixing in ODE models: less strict distancing leaves fewer 

individuals uninfected (and hence susceptible), and under a perfect mixing assumption, this 

significantly slows down the rate of infection spread following the end of social distancing. In 

the spatial network model, in contrast, the total number of uninfected individuals is less 
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important due to limited connections in this model, and the number of infected individuals 

when social distancing ends is the main driving factor.  Since a higher degree of mixing occurs in 

the scale-free Barabasi-Albert network (compared to the spatial network), the magnitude of the 

second peak depends in the same way on the degree of distancing as in the ODEs  (Figure S11). 

The hybrid network displays intermediate behavior (Figure S12), where the relationship 

between the degree of distancing and the second peak depends on the timing of relaxation. If 

relaxation occurs relatively early, less distancing results in a lower second wave, similar as 

observed in ODE models. If relaxation occurs later, however, the relationship between the 

degree of distancing and the predicted second wave is non-monotonic (Figure S12).   

  

  

Discussion and Conclusion 

We have used network models to interpret the dynamics of COVID19 spread during and after 

social distancing measures. The network models can account for two observations that cannot 

be easily reproduced with ODE-based SIR models: They predict that the infection spreads 

according to a power law, and further predict the presence of a prolonged plateau phase 

following the start of non-pharmaceutical intervention measures, if those are implemented 

relatively early during the epidemic. According to the network models, the plateau occurs 

because during strict social distancing, infection spread follows nearly one-dimensional 

transmission corridors, compared to spread in two dimensions before distancing. Another 

interesting finding was that according to the model, the plateau phase naturally transitions into 

a decline phase without any further increase in non-pharmaceutical intervention measures. If 
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these are the dynamics that are happening in our communities, then a significant benefit can 

be achieved if the end of social distancing occurs once the dynamics are already in the decline 

phase. A premature end of interventions can lead to a higher second wave and a larger final 

epidemic size. 

 

 The network models further indicate that the time at which the interventions are 

initiated plays an important role, and this is supported by data. The plateau is predicted to be 

observed if social distancing measures are implemented early (such as in West Coast states), 

and it is predicted to be much less pronounced if those interventions are started later (such as 

in New York). This insight might add to our understanding of the heterogeneity in responses to 

social distancing measures that are found when comparing different locations.    

 

 Another interesting observation concerned the role of immunity for the success of social 

distancing. In our computer simulations, the plateau is only observed if we assume that 

recovered individuals are immune. In the absence of this assumption, the plateau dynamics are 

not observed and infection levels during non-pharmaceutical intervention measures are 

predicted to be significantly higher. Data about the level of protection in recovered individuals 

are currently not available.  

 

 Our results further emphasize some important differences between ODE and network-

based modeling. While the traditional SIR ODE modeling paradigm is capable of reproducing 

many features of network infection dynamics, some aspects are not captured by the simplified 
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ODE framework. For example, the shape of the infection growth is not correctly predicted by 

the ODEs, which becomes especially apparent from the absence of the plateau dynamics during 

interventions in ODEs. Further, ODE models suggest that the lower the infectivity parameter 

during the intervention, the higher the second infection wave and the resulting final epidemic 

size. This result is a consequence of the complete mixing assumption and it is weakened or 

disappears under a network modeling approach.  

  

It is important to note that model results depend on model assumptions and that 

uncertainties remain in this regard. While we think that network models are more realistic 

descriptions of infection spread during non-pharmaceutical interventions than ordinary 

differential equations that assume perfect mixing, uncertainty remains about the exact contact 

structure in our societies, which can also differ from location to location (e.g. comparing urban 

with rural areas). It appears, however, that our results depend on the notion that cutting 

network connections can transform virus spread in 2 dimensions towards spread paths that are 

more one-dimensional in nature. It might be possible to test this notion with more detailed 

data on human contacts during social distancing. 

 

 Another source of uncertainty comes from the data that we are interpreting. While a 

wealth of information exists about confirmed COVID190 case counts in the US and around the 

world, these counts depend on testing levels, making it hard to compare different locations. 

The observation that a plateau is observed could in principle also be explained by the limited 

availability of tests as true infection levels rise. This is unlikely to be the case, however, given 
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that the percent of positive tests is typically not near saturation. If we assume that the 

observed plateau dynamics reflect a real plateau of infection levels during social distancing, we 

conclude that network models can account for these details of the dynamics in a more accurate 

way than models based on ordinary differential equations.        

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.13.20130625doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.13.20130625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 
References 
 

1. Velavan TP, Meyer CG. The COVID-19 epidemic. Tropical medicine & international 
health. 2020;25(3):278. 
2. Lewnard JA, Lo NC. Scientific and ethical basis for social-distancing interventions against 
COVID-19. The Lancet Infectious diseases. 2020. 
3. Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9: 
Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare 
demand. 2020. 
4. Fowler JH, Hill SJ, Levin R, Obradovich N. The effect of stay-at-home orders on COVID-19 
infections in the United States. arXiv preprint arXiv:200406098. 2020. 
5. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of 
transmission and control of COVID-19: a mathematical modelling study. The lancet infectious 
diseases. 2020. 
6. Peng L, Yang W, Zhang D, Zhuge C, Hong L. Epidemic analysis of COVID-19 in China by 
dynamical modeling. arXiv preprint arXiv:200206563. 2020. 
7. Peak CM, Kahn R, Grad YH, Childs LM, Li R, Lipsitch M, et al. Modeling the comparative 
impact of individual quarantine vs. active monitoring of contacts for the mitigation of COVID-
19. medRxiv. 2020. 
8. Morris DH, Rossine FW, Plotkin JB, Levin SA. Optimal, near-optimal, and robust epidemic 
control. arXiv preprint arXiv:200402209. 2020. 
9. Anderson RM, May RM. Infectious diseases of humans. Oxofrd, England: Oxfors 
University Press; 1991. 
10. Wodarz D, Komarova NL. Patterns of the COVID19 epidemic spread around the world: 
exponential vs power laws. medRxiv. 2020. 
11. Li M, Chen J, Deng Y. Scaling features in the spreading of COVID-19. arXiv preprint 
arXiv:200209199. 2020. 
12. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. 
Proceedings of the royal society of london Series A, Containing papers of a mathematical and 
physical character. 1927;115(772):700-21. 
13. Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and 
effectiveness of government interventions: A data-driven analysis. Journal of medical virology. 
2020;92(6):645-59. 
14. Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, et al. SARS-CoV-
2 infection protects against rechallenge in rhesus macaques. Science. 2020. 
15. Keeling MJ, Eames KT. Networks and epidemic models. Journal of the Royal Society 
Interface. 2005;2(4):295-307. 
16. Keeling M. The implications of network structure for epidemic dynamics. Theoretical 
population biology. 2005;67(1):1-8. 
17. Ferrari MJ, Bansal S, Meyers LA, Bjørnstad ON. Network frailty and the geometry of herd 
immunity. Proceedings of the Royal Society B: Biological Sciences. 2006;273(1602):2743-8. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.13.20130625doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.13.20130625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

18. Odor G. Rare regions of the susceptible-infected-susceptible model on Barabási-Albert 
networks. Physical Review E. 2013;87(4):042132. 
19. Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A. Dynamical patterns of 
epidemic outbreaks in complex heterogeneous networks. Journal of theoretical biology. 
2005;235(2):275-88. 
20. Vazquez A. Polynomial growth in branching processes with diverging reproductive 
number. Physical review letters. 2006;96(3):038702. 
21. Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, Kashyap R, et al. Social network-based 
distancing strategies to flatten the COVID 19 curve in a post-lockdown world. arXiv preprint 
arXiv:200407052. 2020. 
22. Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters: homogeneous and 
network models in epidemiology. Journal of the Royal Society Interface. 2007;4(16):879-91. 
23. Nakamaru M, Levin SA. Spread of two linked social norms on complex interaction 
networks. Journal of theoretical biology. 2004;230(1):57-64. 
24. Diekmann O, Heesterbeek JAP. Mathematical epidemiology of infectious diseases: 
model building, analysis and interpretation: John Wiley & Sons; 2000. 
25. Lloyd AL, Valeika S, Cintrón-Arias A. Infection dynamics on small-world networks. 
Contemporary Mathematics. 2006;410:209-34. 
26. May RM, Lloyd AL. Infection dynamics on scale-free networks. Physical Review E. 
2001;64(6):066112. 
27. Lloyd AL, May RM. How viruses spread among computers and people. Science. 
2001;292(5520):1316-7. 
28. Kiss IZ, Miller JC, Simon PL. Mathematics of epidemics on networks. Cham: Springer. 
2017;598. 
29. Albert R, Barabási A-L. Statistical mechanics of complex networks. Reviews of modern 
physics. 2002;74(1):47. 
30. Cox J, Durrett R. Limit theorems for the spread of epidemics and forest fires. Stochastic 
processes and their applications. 1988;30(2):171-91. 
31. Durrett R. Epidemic models: their structure and relation to data, Vol. 5. Cambridge 
university press; 1995. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.13.20130625doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.13.20130625
http://creativecommons.org/licenses/by-nc-nd/4.0/

