Abstract
Computerized Tomography (CT) has a prognostic role in the early diagnosis of COVID-19 due to it gives both fast and accurate results. This is very important to help decision making of clinicians for quick isolation and appropriate patient treatment. In this study, we combine methods such as segmentation, data augmentation and the generative adversarial network (GAN) to improve the effectiveness of learning models. We obtain the best performance with 99% accuracy for lung segmentation. Using the above improvements we get the highest rates in terms of accuracy (99.8%), precision (99.8%), recall (99.8%), f1-score (99.8%) and roc acu (99.9979%) with deep learning methods in this paper. Also we compare popular deep learning-based frameworks such as VGG16, VGG19, Xception, ResNet50, ResNet50V2, DenseNet121, DenseNet169, InceptionV3 and InceptionResNetV2 for automatic COVID-19 classification. The DenseNet169 amongst deep convolutional neural networks achieves the best performance with 99.8% accuracy. The second-best learner is InceptionResNetV2 with accuracy of 99.65%. The third-best learner is Xception and InceptionV3 with accuracy of 99.60%.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
None
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
We regard the availability of all data referred to in the manuscript.