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Abstract

To support public health policymakers in Connecticut, we developed a county-structured compartmental SEIR-
type model of SARS-CoV-2 transmission and COVID-19 disease progression. We calibrated this model to the
local dynamics of deaths and hospitalizations and used a novel measure of close interpersonal contact frequency
to approximate changes in infection transmission over time. In addition, we incorporated information on multiple
time-varying parameters including the case fatality ratio, severity risk of incident cases, and length of hospital stay.
In this paper, we describe the design, implementation, and calibration of a transmission model developed to meet
the changing requirements of public health policymakers and officials in Connecticut. We describe methodology
for producing short- and long-term projections of the epidemic evolution under uncertain future scenarios, as
well as analytical tools for estimating epidemic features that are difficult to measure directly, such as cumulative
incidence and effects of non-pharmaceutical interventions. The approach takes advantage of our unique access
to Connecticut public health surveillance and hospital data to deliver COVID-19 projections tailored to the local
context and responsive to the needs of local decision-makers.
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1 Introduction

Epidemiologic models of disease transmission play an important role in supporting public health decision-making.
Trajectories from these models can provide insights into historical trends in epidemic dynamics or future outcomes
under hypothetical intervention scenarios. Transmissionmodels are especially useful in situations of high uncertainty,
offering a structured way to assess the potential effects of interventions given plausible assumptions about disease
transmission. Models cannot predict the future with certainty, but they can be helpful for scenario analysis by
bounding the range of plausible future trajectories [1].

In the absence of effective pharmaceutical interventions, many countries, including the US, implemented social
distancing measures and stay-at-home orders to slow transmission of SARS-CoV-2. As transmission subsided,
many states, including Connecticut, began considering phased lifting of social distancing restrictions. Due to
unprecedented nature of these events, public health policymakers were faced with many questions: 1) How soon
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can interventions like school closures and stay-at-home orders be lifted? 2) How should public health interventions
be implemented in the future to minimize the risk of a resurgence? 3) What will be the effect of phased reopening
plans? Surveillance data on testing, case counts, hospitalizations, and deaths was useful to assess the past dynamics,
however policymakers needed additional analytic tools to help them evaluate the current state of an epidemic, as well
as potential future risks to design strategies to address possible resurgence.

Multiple transmission models have been developed recently to help answer these and other policy questions [2–
24]. When models are developed with a primary goal to support decision-making, they must balance parsimony and
realism. Projection models should be simple enough to fit to data, and should provide clear outputs in a timely manner
with assumptions that can be understood by policymakers. At the same time, for such models to be useful, they
need to be flexible enough to accommodate realistic epidemiological features and likely policy scenarios identified
by stakeholders.

Many of the nation-wide COVID-19 forecasting models that have been developed in the United States either do
not use local data, or make simplifying assumptions not appropriate for localities [2]. These models may capture
national-level dynamics, but are less useful for supporting decision-making in individual states or counties. Several
nation-wide models have been developed with a goal to provide projections at the state level [25–35]. These models
employ varying methods, make different structural and parameter value assumptions, and project potential effects of
different future policy interventions. They also vary in terms of model outputs and the ways of handling uncertainty.
Most of these models use the same set of assumptions and estimates of key model parameters across all US states,
and may not be able to capture important local variation.

In this paper, we introduce a county-structured transmission model of SARS-CoV-2 transmission and COVID-19
disease progression in Connecticut. The model was developed with a goal to support intervention planning and
decision-making in Connecticut, but could be adapted to other states or regions. This paper provides an in-depth
technical description of the model and data calibration approach. Additional COVID-19 reports for Connecticut
in this series are available from https://crawford-lab.github.io/covid19_ct/. An earlier version of this
model was used in late May of 2020 to produce projections for Connecticut through the end of summer of 2020 [36].

2 Methods

We developed a deterministic compartmental model of SARS-CoV-2 transmission and COVID-19 disease progres-
sion. The model is based on the SEIR (Susceptible, Exposed, Infectious, Removed) framework [37], which we extend
to accommodate geographical variation in Connecticut and distinct features of COVID-19 disease. We calibrate the
model to observed dynamics of deaths and hospitalizations in Connecticut. Similar models have been published
recently, offering intervention effect estimates and projections in various locations [2, 3, 6, 7, 9, 13, 14, 24, 38, 39].

Figure 1 shows a schematic representation of the model structure. We categorize infections as asymptomatic,
mild symptomatic, and severe. Only severe infections may lead to death. Severe infections are defined as those
requiring hospitalization. If hospitalization capacity is overwhelmed, some severe cases in the community are denied
hospitalization, and experience a higher probability of death compared to hospitalized cases. Mild symptomatic cases
are assumed to self-isolate shortly after they develop symptoms and remain isolated until they recover. During the
infectiousness period of symptomatic cases, we assume a period of presymptomatic viral shedding, i.e. the latency
period is shorter than incubation period [40–44]. In line with other similar models, we assume that individuals with
asymptomatic infection exert a lower force of infection, but remain infectious for a longer period of time, since they
are less likely to self-isolate in the absence of widespread comprehensive screening programs [4, 9, 39]. The average
time that severe cases spend in the infectious state is approximated by the time between onset of infectiousness
and hospitalization (or attempted hospitalization in case of hospital overflow). This model is intended to represent
community spread of SARS-CoV-2, and excludes transmission occurring in congregate settings like skilled nursing
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Figure 1: Schematic illustration of the SARS-CoV-2 transmissionmodel andCOVID-19 disease progression structure.
Individuals begin in the susceptible (() compartment. Exposed individuals (�) may develop either asymptomatic
(�), mild (�" ), or severe (�() infection. Asymptomatic and mild infections resolve without hospitalization and do
not lead to death. Mild symptomatic cases self-isolate ('" ) shortly after development of symptoms, and transition to
recovery (') when infectiousness ceases. All severe cases require hospitalization (�) unless hospitalization capacity
is exhausted, in which case they transition to �̄ representing hospital overflow, then to recovery (') or death (�).
The models captures infection transmission in non-congregate settings, and excludes cases and deaths occurring
in settings like nursing homes and prisons. It assumes a closed population without births and does not capture
non-COVID-19 deaths.

and assisted living facilities, or prisons. Similar to [14], we excluded congregate settings, since transmission in small
closed communities violates key mass action-type modeling assumptions. The force of infection from hospitalized
patients to unhospitalized susceptible individuals is assumed to be negligible. We further assume that recovered
individuals remain immune to reinfection for the duration of the study period. The model is implemented at the level
of individual counties in Connecticut assuming that most contacts are happening within a given county. A small
proportion of contacts is allowed to happen between adjacent counties. The analysis was performed using the R
statistical computing environment [45]. We used package deSolve to perform numerical integration of the system of
ordinary differential equations (ODE) [46].

2.1 Compartmental model and parameters

The model divides the population of a given county into 10 compartments: susceptible ((), exposed, latent infections
(�), infectious and asymptomatic (�), infectious andmild symptomatic (�" ), infectious and severe (�(), isolated mild
infections removed from the pool of infectious individuals ('" ), hospitalized (�), severe in need of hospitalization,
but denied it due to hospital capacity overflow (�̄), recovered ('), and died (�). Let #8 be the population size of
county 8 and �8 be the set of counties adjacent to county 8. Let � (8) represent hospitalization capacity in county 8,
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Figure 2: County map of Connecticut and county adjacency matrix. The dark gray cells correspond to counties that
are adjacent. Contacts between adjacent counties are included in the model in addition to contacts within counties.

which may vary over time. Transmission dynamics for county 8 are given by the following ODE system:
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where @�" = 1 − @� − @�( . The function [ (8) =
[
1 + exp(0.5(� (8) − � (8) ))

]−1 is a “soft” hospitalization capacity
overflow function.

Table 1 lists model parameters and their definitions. Recognizing that many of the model parameters are unlikely to
be constant over time, we allow the most critical parameters to vary over time. In particular, transmission parameter
V is expected to change substantially in response to social distancing measures. The description and assumptions
regarding time-varying model parameters follows below.
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Table 1: Transmission model parameters.

Notation Definition

V Transmission parameter per susceptible - infectious pair
X 1 / Latency period (days−1)
@�, @�" , @�( Proportions of infections that are asymptomatic, mild symptomatic, and severe, @� + @�" + @�( = 1
U� 1 / Duration of infectiousness among asymptomatic cases (days−1)
:� Relative infectiousness of asymptomatic cases compared to symptomatic
U�" 1 / Duration of infectiousness among mild symptomatic cases, time until isolation (days−1)
W'" 1 / Duration of isolation among mild symptomatic cases, remaining time to recovery (days−1)
U�( 1 / Duration of infectiousness among severe cases, time to hospitalization (days−1)
W� 1 / Length of hospital stay (time until recovery or death) (days−1)
W�̄ 1 / Remaining time until recovery or death among hospital overflow patients−1 (days−1)
<� Case fatality ratio among hospitalized cases
<�̄ Case fatality ratio among hospital overflow patients
:= Proportion of all contacts that happen with individuals from adjacent counties (as opposed to within

the county)
� Hospitalization capacity, may be constant or vary over time representing capacity increase

intervention
�0 Number of exposed individuals statewide at the time of epidemic onset

Figure 2 shows the county map of Connecticut along with the county adjacency matrix. The geographic boundary
files were obtained from the Connecticut Department of Environmental Protection [47]. We assume that a fraction
(1 − :=) of all contacts happen within a given county, and the remaining := contacts happen between individuals
residing in adjacent counties.

2.2 Time-varying model parameters

2.2.1 Transmission parameter V

Social distancing measures and practices reduce the value of transmission parameter V. We use data from [48] to
approximate changes in close interpersonal contact among Connecticut residents between February 1, 2020 and the
end of the modeling period, and assume the following functional form of transmission parameter V:

V(C) = V0"contact(C) exp[�(C)],

where "contact(C) is a normalized measure of close interpersonal contact at time C relative to the pre-epidemic level,
and exp[�(C)] is a function that approximates residual changes in transmission parameter V that are not explained
by changes in close contact and other time-varying parameters. �(C) is a smooth function obtained by applying
spline smoothing on a piecewise linear function �∗(C), where �∗(C) is modeled with �∗(F) = n [ (F−C0)/14] defined on
bi-weekly knots F = {C0, C0 + 14, C0 + 28, . . .} over the observation period and linearly imputed between the knots.
We model the vector of random effects & using a random walk of order one:

n0 = 0, n8 |n8−1 ∼ N(n8−1, f
2
n ).

For the hyperparameter f2
n , we use Inverse-Gamma(0 n , 1n ) prior with a shape parameter 0 n = 2.5 and a rate

parameter 1 n = 0.1.
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The function �(C) can also be used to impose arbitrary changes in V(C) in the future to test different scenarios and
potential intervention effects.

2.2.2 Rates of isolation and recovery: U�" and U�

Wide-spread testing and contact tracing efforts can potentially reduce duration of infectiousness. Effectiveness of
testing and contact tracing strategies depends on many factors. While there is no information about reduction in
duration of infectiousness in response to specific testing efforts implemented inConnecticut, ourmodel accommodates
the possibility of such reduction as a function of daily testing volume.

U(C) = U0(1 + " testing(C)g),

where g is the size of testing effect per unit increase in testing volume measure " testing(C) modeled as:

" testing(C) =
{

log
(
Etesting(C)

)
− log

(
Etesting(C∗)

)
, C > C∗ and Etesting(C) ≥ Etesting(C∗)

0, otherwise.

Etesting(C) is a spline-smoothed measure of testing volume at time C. Testing efforts early in the epidemic were
primarily used to confirm severe and highly symptomatic infections, and were unlikely to have any appreciable
impact on overall duration of infectiousness. Early response daily testing volume is denoted by Etesting(C∗).

This approach is used to model time-varying rates U�" (C) and U�(C) with g�" = g and g� = 0.5g. Rate U�( is
assumed to remain constant over time.

2.2.3 Severe fraction @�(

Probability of severe infection increases with age. Compliance with social distancing recommendations and other
behavioral changes aimed to reduce the chances of infection are more likely among older people. Indeed, age
distribution of confirmed cases in the U.S. has shifted toward younger people in the summer compared to spring [49].
At the same time, as community transmission increases, it becomes more difficult to protect the most vulnerable
people from infection, even if this group continues to comply with social distancing measures. We model the
proportion of infections that are severe as:

@�( (C) = @�( ,0"severity(C),

where measure of severity "severity(C) is a normalized spline-smoothed proportion of cases 60+ years old among all
cases detected at time C relative to a baseline level. Since testing availability affects this proportion, we assume that
"severity(C) = 1 for all C < C∗, where C∗ denotes the time when testing became widely available.

2.2.4 Rate of hospital discharge W�

We compute the rate of hospital discharge W� (C) (including deaths and alive discharges) as a reciprocal of the average
length of hospital stay at time C, which has been inversely correlated with the incidence of COVID-19. The average
length of hospital stay at time C is approximated using a spline-smoothed monthly averages of this quantity.
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2.2.5 Hospital case fatality ratio <�

Due to potentially time-varying criteria for hospitalization, risk profile of incident cases, and changing clinical
management practices, hospital case fatality ratio (hCFR) has been changing over time. We model hCFR as:

<� (C) = <�,0"hCFR(C),

where "hCFR(C) is a normalized spline-smoothed hCFR at time C relative to the baseline hCFR = <�,0. hCFR is
calculated as a ratio of hospital deaths at time C to hospital admissions at time (C − hlos(C)), where hlos(C) is an
average hospital length of stay at time C.

2.3 Calibration data and estimation of hospitalizations coming from congregate and non-congregate
settings

We calibrate the model to the observed dynamics of confirmed COVID-19 hospitalizations census, cumulative
COVID-19 hospitalizations, and cumulative number of deaths among hospitalized cases. These data were obtained
from the Connecticut Hospital Association (CHA) [50]. Data used to approximate time-varying model parameters
were obtained from the following sources: mobile devices data used to estimate the frequency of close interpersonal
contact were obtained from X-Mode (estimation details are given in [48]); daily testing volume and age distribution
of confirmed cases were obtained from Connecticut Department of Public Health (CT DPH) daily reports [51];
monthly average hospital length of stay among COVID-19 patients was obtained from the CHA. We calculated
non-institutionalized county-level population and age structure in Connecticut based on the American Community
Survey [52]. Daily total available hospital beds (including occupied) in each county were obtained from the
CHA/CHIMEData [50, 53] and used as hospitalization capacity values on a given date.

Available hospitalizations data does not disaggregate by the patient’s place of residence at the time of diagnosis
or hospitalization. According to CT DPH, as of October 30, 2020, about 73% of all deaths have occurred among
residents of congregate settings, primarily nursing homes. Given that infection spread in congregate settings does
not follow the mass action assumptions underlying our transmission model, we estimate the time series of the number
of hospitalizations (census and cumulative) and hospital deaths coming from non-congregate settings and use these
estimated counts in the model calibration.

We received the data on daily COVID-19 death counts in hospitals disaggregated by the type of residence at the
time of diagnosis or hospitalization (congregate vs. non-congregate) from the CT DPH. Based on these data, the
time-varying proportion of hospitalizations census and cumulative hospitalizations coming from congregate settings
was estimated as follows:

1. estimate the number of cumulative hospitalizations coming from congregate settings as of the most recent death
data date as the total number of hospital deaths among residents of congregate settings divided by the hospital
CFR among this population, adjusting for an average hospital length of stay. The estimate of hospital CFR
among residents of congregate settings in Connecticut is 0.38 and was obtained from the CT DPH based on a
survey of a sample of 50 nursing homes, representing approximately half of all nursing homes in Connecticut;

2. estimate the cumulative proportion of hospitalizations coming from congregate settings as an estimate of
the number of cumulative hospitalizations coming from congregate settings divided by the total cumulative
number of hospitalizations as of the same date;

3. to estimate the instantaneous value of this proportion at each time point, approximate its temporal dynamics
using the lagged temporal dynamics of the proportion of all hospital deaths coming from congregate settings,
which can be estimated directly from the available death counts data.
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This time-varying proportion is then applied to the CHA-reported daily hospital census and daily hospital admissions
to estimate the number of current hospitalizations, daily hospital admissions, and cumulative hospitalizations coming
from congregate settings, and respective time series coming from non-congregate settings follow directly.

2.4 Model calibration and Bayesian posterior inference

We calibrate the posterior distribution of model parameters to the estimated hospitalizations and hospital deaths
coming from non-congregate settings using a Bayesian approach with a Gaussian likelihood. Model-based estimates
of observed quantities are adjusted for reporting lags. The distributions of hospitalizations census, cumulative
hospitalizations, and hospital deaths are given by:

ℎ(C) ∼ N
(
� (C, !� , )), f2

ℎ

)
, (2)

D(C) ∼ N
(
* (C, !� , )), f2

D

)
, (3)

3 (C) ∼ N
(
� (C, !� , )), f2

3

)
, (4)

where � (C, !� , )), * (C, !� , )), and � (C, !� , )) are model-projected hospitalizations census (lagged by !� ),
cumulative hospitalizations (lagged by !� ), and cumulative deaths (lagged by !�) at time C under parameter values
) . Prior distributions imposed on calibrated model parameters ensure that all compartments remain non-negative
during the modeling period. We put uniform priors on !� and !� over a range of plausible integer values.
Reporting lags are correlated with other unknown parameters, including latency period, time between infection
and hospitalization, time between infection and death, and length of hospital stay, therefore !� and !� should
not be strictly interpreted as reporting lags. We put the same independent Inv-Gamma(0, 1) prior on all three
hyperparameters f2

ℎ
, f2

D , and f2
3
. The prior was gradually relaxed as number of observations increased.

We construct the posterior distribution over unknown parameters () ,2) as:

?() ,2 |ℎ(C), D(C), 3 (C)) ∝ ?())?(2)
∏
C ∈C�

[
?
(
ℎ(C) |� (C, !� , )), fℎ

) ]FℎI (C)
∏
C ∈C*

[
?
(
D(C) |* (C, !� , )), fD

) ]FDI (C)
∏
C ∈C�

[
?
(
3 (C) |� (C, !� , )), f3

) ]F3I (C)
,

(5)

where ) = (V0, @�, U�( , <�,0, �0, !� , !� , g, &) and 2 = (fℎ, fD , f3 , fn ).

We assume the date of epidemic onset to be February 16th, 2020 - 21 days before the first case was officially confirmed
in Connecticut on March 8th, 2020, and initialize the model with �0 exposed individuals at the time of epidemic
onset, setting the size of all downstream compartments to be zero. County-level distribution of �0 is fixed and was
estimated based on the county population size and dates of first registered case and death in each county.

Each likelihood term is weighted by the time-dependent weight I(C) times the weight assigned to a respective time
series. We let the weight function I(C) take the following form,

I(C) = 1
1 + exp(−:IC)

, (6)

where I(C) is the weight assigned to an observation at time C, C ∈ {C0, ..., Cmax}, and the correspondence between
{C0, ..., Cmax} and calendar time is set such that C = 0 corresponds to 90 days prior to the most recent observation.
Parameter :I controls the smoothness of logistic function. We set :I = 0.01, resulting in a range of weights between
0.06 − 0.7 for observations between March 1, 2020 - February 24, 2021.
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We set Fℎ = 0.89, FD = 0.01, and F3 = 0.1. We place a large weight on the hospitalizations census, since this time
series is most sensitive to changes in epidemic dynamics, and a small weight on cumulative hospitalizations, since
it measures a feature that is related to hospitalizations census. The range of observation times differ for different
time series. For hospitalizations census and deaths, observation times start with the first non-zero observation. For
cumulative hospitalizations, observation times start on May 29, 2020 when this indicator started being reported
routinely. The last observation in all three time series is from February 24, 2021.

Sampling from the joint posterior distribution of () ,2) given in (5) is performed using Markov Chain Monte Carlo
(MCMC). We employ a hybrid algorithm that combines elliptical slice sampling (ESS) [54], Gibbs sampling, and
Metropolis-Hastings sampling with random walk proposals. We first provide an overview of the steps in drawing
samples from the full posterior distribution and then describe each steps in more details. Let ) = ()MH , )ESS), where
)MH = (V0, @�, U�( , <�,0, �0, !� , !�) and )ESS = (g, &). The sampler proceeds with the following steps:

1. Update )ESS |)MH ,2 using ESS.

2. Update )MH |)ESS ,2 with a Metropolis-Hastings step.

3. Update hyperparameters 2 |) with a Gibbs sampler step.

Update )ESS |)MH ,2: We use a rejection-free sampler (ESS) to sample a vector of random effects & and a testing
effect g. The ESS operates by drawing samples from the ellipse defined by a Gaussian prior, and then accept or reject
the samples by evaluating the likelihood component. Within the slice sampling step, the sampler moves along the
generated ellipse and always accepts a new set of parameters.

Update )MH |)ESS ,2: We implement a Metropolis-Hastings algorithm with random walk proposals for )MH .
Proposals for !� and !� are made on a subset of integers bounded by a prior distribution on lags. All other elements
of )MH are continuous.

Update hyperparameters 2 |): The hyperparameters f2
ℎ
, f2

D , f2
3
, f2

n are updated with Gibbs sampler steps:

1
f2
ℎ

|ℎ(C), � (C) ∼ Gamma(0 +
Fℎ

∑
C ∈C� I(C)
2

, 1 +
Fℎ

∑
C ∈C� I(C) (ℎ(C) − � (C))2

2
)

1
f2
D

|D(C),* (C) ∼ Gamma(0 +
FD

∑
C ∈C* I(C)
2

, 1 +
FD

∑
C ∈C* I(C) (D(C) −* (C))2

2
)

1
f2
3

|3 (C), � (C) ∼ Gamma(0 +
F3

∑
C ∈C� I(C)
2

, 1 +
F3

∑
C ∈C� I(C) (3 (C) − � (C))2

2
)

1
f2
n

|n1, ..., n ∼ Gamma(0 n +
 

2
, 1n +

∑ 
8=1(n8 − n8−1)2

2
)

We run 6 chains of the MCMC sampler for 20,000 iterations each, discard the first 2,000 draws from each chain,
thin each chain by a factor of 20, and combine the resulting chains in a single posterior sample. Based on the visual
inspection of individual parameter trace plots, we found that 10,000 iterations is sufficient for the chain to converge
in practice. To generate uncertainty intervals of model projections, we sample from the joint posterior over estimated
parameters, and find pointwise 80%, 90% or 95% posterior predictive intervals for each time point.
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2.5 Parameter values and prior distributions

Let )MH,CONT denote the subset of continuous transmission model parameters whose joint distribution is calibrated to
observed data and updated with Metropolis-Hastings step: )MH, CONT = (V0, @�, U�( , <�,0, �0). For each individual
parameter \ ∈ )MH,CONT, we specify a fixed support [\min, \max], and put independent beta priors on the transformed
parameter, i.e.,

\ − \min
\max − \min

∼ Beta(0\ , 1\ ), (7)

where the shape parameters 0\ and 1\ are set to let \ have mean `\ and standard deviation f\ . Table 2 provides
the summary of (`\ , f\ , \min, \max) for all parameters in )MH,CONT along with data sources. For parameters whose
values were fixed, only the mean is given.

Table 2: Values and prior distributions of model parameters

Parameter Mean SD Lower Upper Source
@� 0.4 0.02 0.3 0.5 [55–60]
@�( ,0/(1 − @�) 0.065 - - - 6.5% of symptomatic infections are severe

[3, 14, 61]
V0 1 0.5 0.01 2.00 A diffuse prior assumed
X 1/4 - - - [8, 14, 38, 42, 43, 57, 62–68]
U�,0 1/7 - - - [42, 69–74]
:� 0.5 - - - [8, 56, 71, 75, 76]
U�" ,0 1/4 - - - [3, 14, 38]; of 4 days, 2 are assumed to be

presymptomatic [8, 42, 43]
W'" 1/7 - - - [69, 73, 74, 77]
U�( 1/9 0.03 0.02 0.2 [8, 42, 43, 78, 79]
<�,0 0.13 0.05 0.01 0.25 Estimated fromConnecticut COVID-19 hos-

pitalization data [50]
<�̄/<� 1.5 0.25 1 2 Assumed
g 0.08 0.015 0.01 0.15 Assumed
:= 0.015 - - - Assumed
�0 150 5 100 200 Assumed
!� - - 5 14 Assumed, uniform prior between lower and

upper values
!� - - 5 14 Assumed, uniform prior between lower and

upper values

Asymptomatic infections play an important role in transmission of SARS-CoV-2 [40, 41, 44, 80], but estimates of
the proportion of infections that do not exhibit symptoms vary substantially [55, 56, 81]. The true proportion of
asymptomatic infections is important for projections and policy planning due to its relationship to evolving herd
immunity. Reported estimates of asymptomatic proportion range between 6 – 96%, and the authors of a recent review
recommend a range between 40 – 45% [55]. Another review reported an overall asymptomatic proportion estimate
of 20%, and 31% among the studies that included follow-up [56]. Large population-based studies conducted in Spain
and in the U.K. provide estimates of asymptomatic proportion between 22-36% [82, 83]. We calculated age-adjusted
weighted average of several estimates available from the literature: Nishiura et al. [58] estimated 30.8% among
Japanese citizens evacuated from Wuhan, China. We applied this estimate to age group 20-64 years old. Mizumoto
et al. [59] estimated 17.9% among infections on the Diamond Princess cruise ship. We applied this estimate to age
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group 65 plus years old, which is the age group, in which most infections occurred. We assumed 65% for age group
0-19 years old, consistent with findings reported by Russell et al. [60], where 4 out of 6 infections in this age group
were asymptomatic among passengers of the Diamond Princess. The average was weighted by the age distribution
of Connecticut population, resulting in the estimate of @� = 0.37, which is consistent with systematic reviews and
population-based studies. At the time of this writing, the best estimate of asymptomatic proportion recommended
by the CDC was 40% [57]. We center the prior distribution of @� at 0.4 and allow it to vary between 0.3 and 0.5.
The proportion of severe cases early in the epidemic (@�( ,0) is assumed to be 6.5% of symptomatic infections in line
with [3, 14, 61]. Combined with the estimates of asymptomatic proportion, this translates into an estimate of severe
proportion of 3.9% (3.3-4.6%) of all infections.

Duration of latency (1/X) was fixed, since consistent estimates of this parameter are available from the literature,
and because it is highly correlated with several calibrated parameters, including reporting lags and parameters that
determine duration of infectiousness and time between infection and recovery or death. We assume an average of 4
days of latency [8, 14, 38] and 2 days of presymptomatic infectiousness [8, 42, 43] resulting in an average incubation
period of 6 days consistent with [57, 62–68].

Parameters (U�, :�, U�" , U�( ) collectively determine the force of infection at any given time. Force of infection,
transmission parameter V and initial number of exposed individuals �0 together determine the early growth of the
epidemic. Without additional data, all of these parameters cannot be simultaneously identified. We therefore fixed
the values for a subset of these parameters based on available estimates and assumed a diffuse prior on V, which
absorbs additional variation of parameters that determine the force of infection.

Duration of infectiousness of asymptomatic individuals is unknown, but is likely shorter than that of symptomatic
individuals [69–72]. While several studies estimated that viral RNA could be detected in upper respiratory tract
for 2-3 weeks [84, 85], findings from [69, 73, 74] show that in mild-to-moderate symptomatic patients live virus
could be isolated for a substantially shorter time period: up to 7-10 days from the day of symptom onset, suggesting
the duration of infectiousness of up to 12 days. Based on these estimates and [42], we assume the duration of
infectiousness of 7 days among asymptomatic individuals. Although multiple studies have shown similar viral loads
among symptomatic, presymptomatic and asymptomatic cases [70, 86, 87], evidence suggests that asymptomatic
individuals are less infectious that symptomatic, likely due to higher viral shedding while coughing and longer
duration of infectiousness among symptomatic individuals [56, 69, 71, 88, 89]. Multiple estimates of relative
infectiousness of asymptomatic individuals compared to symptomatic are available and range from close to zero to
above one [8, 56, 71, 75, 76]. Generally, estimates that are based on attack rates are lower than those based on viral
shedding or time until the first negative PCR test. In our analysis, we set relative infectiousness of asymptomatic
cases to be 0.5 [8, 56, 75].

Although the duration of infectiousness of mild-to-moderately symptomatic cases may be up to 12 days [69, 73, 74],
we assume that the majority of symptomatic individuals self-isolate shortly after developing symptoms. We set
the duration of infectiousness of symptomatic cases to be 4 days [3, 14, 38], 2 of which are assumed to represent
presymptomatic infectiousness [8, 42, 43]. We further assume that the duration of self-isolation until recovery is 7
days [69, 73, 74].

We calibrate the rate of hospitalization among severe cases (U�( ), assuming a mean of 9 days between the onset
of infectiousness and hospitalization: 2 days of presymptomatic infectiousness plus 7 days between the onset of
symptoms and hospitalization [78, 79].
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COVID−19 hospitalizations census in Connecticut 
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Figure 3: Model calibration results for observed COVID-19 positive hospitalizations census, cumulative hospital-
izations and cumulative deaths in Connecticut. Solid lines represent model-projected means and shaded regions
represent 95% posterior predictive intervals. Observed time series are shown as points and correspond to total
hospitalizations and deaths among all Connecticut residents. The model is calibrated to estimated data series coming
from non-congregate settings, and model projections are adjusted by the estimated difference to reflect the totals for
congregate and non-congregate settings.

Table 3: Means and 95% credible interval of marginal posterior distributions of model parameters and estimated
epidemiologic parameters.

parameter mean CI-low CI-high
V0 1.15 0.98 1.28
@� 0.4 0.36 0.44
U�( 0.1 0.05 0.16

<�,0 0.12 0.07 0.17
�0 150 140 160

crude '0 4.86 4.06 5.60
cumulative CDR 0.33 0.21 0.59
cumulative IHR 0.036 0.031 0.042
cumulative IFR 0.0096 0.0082 0.0112

CDR, case detection ratio (proportion of all infections detected); IHR, infection hospitalization ratio (proportion of
all infections hospitalized); IFR, infection fatality ratio (proportion of all infections leading to death). IHR and IFR
include residents of congregate settings.

3 Results

Figure 3 shows the results of model calibration, including the fit to observed dynamics of hospitalizations and deaths.
Observed data points track with mean projections and fall within uncertainty intervals. Table 3 shows marginal
means and 95% posterior credible intervals of calibrated model parameters and estimated epidemiologic parameters.

Figure 4 shows model projections of several epidemiologic features of SARS-CoV-2 epidemic in Connecticut. We
estimate that effective reproduction number ('eff) dropped substantially in mid-March and remained below one
through mid-June - early July. For the rest of the summer, mean estimated 'eff was slightly above one consistent with
low numbers of case counts and hospitalizations in the summer. A major increase of 'eff started in late August - early
September with the reopening of schools and colleges. It reached a maximum mean value of 1.4 by mid-October,
followed by a slow decline through the rest of the year. The dynamics of 'eff follows closely the dynamics of
close contact. The top right plot of Figure 4 shows that the estimated dynamics of transmission parameter captured
by a community contact function (measure of close contact adjusted for estimated random effects) exhibits small
deviations from the measure of close contact.
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Effective reproduction number in Connecticut 
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Figure 4: Model projections for selected epidemiologic features of SARS-CoV-2 transmission in Connecticut. Top
row from left to right: effective reproduction number, normalizedmeasure of close interpersonal contact relative to the
pre-epidemic period (thick solid line shows spline smoothing of the contact measure), and contact function adjusted
for estimated random effects, which capture residual variation in transmission that is not explained by the dynamics
of close contact and other time-varying parameters. In this plot, black line shows smoothed close contact unadjusted
for random effects. Bottom row from left to right: cumulative incidence, daily new infections, and estimated infection
detection fraction in non-congregate settings in Connecticut. Solid lines represent model-projectedmeans and shaded
regions represent 95% posterior predictive intervals.
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We estimate that at the end of February of 2021, cumulative incidence in Connecticut was about 24%, which implies a
cumulative case detection ratio of 33% (95%CI: 21 - 59%). Our estimate of cumulative incidence at the beginning of
June is 5.8% (95%CI: 4.2 - 7.4%) consistent with community-based seroprevalence surveys conducted in Connecticut
between April and June [90, 91]. Our projections suggest that case detection rate varied substantially over time in a
way that cannot be explained by the testing volume alone. An increase up to 75% in mid-May is likely due to delayed
testing, including postmortem diagnosis of first epidemic wave cases. The second spike in estimated case detection
rate in early January is likely a consequence of testing and reporting disruptions related to Christmas and New Year
holidays.

4 Discussion

In this report, we have described technical details of a model of SARS-CoV-2 transmission and COVID-19 disease
progression developed to support public health decision-making in Connecticut. The model is calibrated to the
observed dynamics of hospitalizations and cumulative deaths inConnecticut; its projections reproduce these dynamics
accurately. Many COVID-19 models have been developed and analyzed by the CDC in the attempt to perform
ensemble forecasting of the epidemic development in the US [2]. Some of these models offer state-level projections
[25–35]. The CDC publishes updates of consolidated summary of cumulative death projections in the next four weeks
from these models for each state. Local projections from nation-wide models may offer useful insights, however
simplifying or uniform assumptions made in most of these models may not hold in all of the locations.

There is substantial uncertainty about epidemiologic parameters that govern aspects of COVID-19 dynamics and
have a direct impact on the quality of projections. When local context is not directly taken into account, the effects of
parametric uncertainty is exacerbated. State and county-level models are needed to support local decision-making.
Our model captures distinct important features of COVID-19 dynamics and the relationship between model features
and data reporting in Connecticut. The ability to capture temporal dynamics in key model parameters provides
a substantial improvement to the model fit, accuracy and credibility. Indeed, incorporating time trends in such
important epidemic features as close contact, risk profile of incident cases, hospital length of stay, and hospital case
fatality ratio allowed us to achieve a good model fit to observed data and improve predictive performance of the
model over time. However, the calibrated posterior distribution of model parameters is not necessarily generalizable
to other settings: model projections are tightly linked to the Connecticut context.

In addition to providing predictions for policymakers, model projections may be useful for prospectively planning
epidemiological studies that can inform the state’s response. In particular, planning of seroprevalence surveys
requires estimates of the proportion of population who have evidence of prior exposure to the virus. Due to limited
testing availability and potentially high proportion of asymptomatic individuals, official case counts offer a poor
approximation to the true cumulative incidence. Seroprevalence surveys, if properly conducted, can provide an
important piece of information that would permit more precise estimates of the fraction of asymptomatic infections.

Prior knowledge and assumptions about plausible ranges of parameter values combined with local data allows us
to substantially reduce parametric uncertainty and produce narrow projection intervals. However, several important
considerations limit our ability to make reliable long-term projections. First, it is difficult to make predictions about
the extent of changes time-varying parameters in the future, in particular changes in human behavior leading to
higher or lower rates of interpersonal contact. Second, the effectiveness of widespread testing and contact tracing on
timely isolation of infectious individuals, and its subsequent impact on the force of infection is unknown. This effect
is a complex function of viral shedding characteristics among symptomatic, presymptomatic and asymptomatic
individuals, along with the implementation features of contact tracing, testing, and isolation [92]. Third, even
individuals residing in non-congregate settings may not be mixing at random, and there may be unequal depletion
of susceptible individuals in various subgroups, leading to lower immunization thresholds necessary to achieve herd
immunity [22, 23].
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The work presented in this paper and other local models of COVID-19 transmission show that local models are more
useful to local policymakers because they are able to incorporate vast data sources and local context information that
is only available at the local level. As new data sources become available, the model may be extended to reflect more
granular geographic variation, age structure, vaccination, and other important features of the epidemic dynamics.
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