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Abstract

The COVID-19 pandemic has kept the world in suspense for the past
months. In most federal countries such as Germany, locally varying condi-
tions demand for state- or county-level decisions. However, this requires a
deep understanding of the meso-scale outbreak dynamics between micro-scale
agent models and macro-scale global models. Here, we introduce a reparam-
eterized SIQRD network model that accounts for local political decisions to
predict the spatio-temporal evolution of the pandemic in Germany at county
and city resolution. Our optimized model reproduces state-wise cumulative
infections and deaths as reported by the Robert-Koch Institute, and predicts
development for individual counties at convincing accuracy. We demonstrate
the dominating effect of local infection seeds, and identify effective measures
to attenuate the rapid spread. Our model has great potential to support deci-
sion makers on a state and community politics level to individually strategize
their best way forward.

Introduction

Over the last months, we have observed the historic, global outbreak of the COrona
VIrus Disease, COVID-19 (SARS-CoV-2). With the first official cases being reported
in December 2019 in Wuhan, China [1], cases have since spread over the entire world,
culminating in the world health organization (WHO) declaring it a global pandemic
on March 11, 2020 [2].
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Since then, each individual country had to find their own way to get the rapid
spreading under control, to ‘flatten the curve’, and to avoid a breakdown of the
healthcare system. Different strategies of shut down as well as travel and contact
restrictions have been implemented in different countries and states, with more or
less evidence for their success [3–5]. Now the great challenge is to slowly loosen
restrictions but to avoid the feared second wave.
Germany has been given special attention during this pandemic. Firstly, its reported
death counts were, especially initially, significantly lower than in neighboring coun-
tries such as Italy, Spain or France [6]. This gives rise to the question whether
Germany could serve as an important example for successful strategies to mitigate
the impact now and during future pandemics. Secondly, its federal structure has
lead to different responses across its states to reduce human contact, to prevent
further spreading, and now to slowly reopen the country and steadily go back to nor-
mal. And thirdly, the Robert-Koch Institute (RKI) provides locally highly resolved
data on current cases that enables us to fit and test distributive models [7].
Besides the medicinal effort to understand the disease, numerous mathematical
studies have focused on modeling the outbreak dynamics of COVID-19, predict
its future course and provide scientific reasoning for political decisions. Typically,
those epidemiology models follow the basic idea of compartmentalizing the entire
population into different subgroups and modeling their coupled evolution with a
set of ordinary differential equations (ODEs). The most basic of such models is
the SIR model, with groups of susceptible, infectious, and recovered or removed
people, dating back to the 1920s [8]. Overall, the course of a COVID-19 infection
within such compartment models is quite well established by now. A susceptible is
first exposed to the virus to become infected, before becoming infectious himself
after some latency period. From here on, the infection may take various courses
[9], ranging from no or mild symptoms for arguably the largest group of patients,
to strong symptoms and patients who require hospitalization or even intensive care,
before they recover or die from the disease. Severity mostly seems to depend on
existing pre-conditions and general health, but also other reasons that have not yet
been fully understood [10, 11]. The well-known SIR model has been extensively
analyzed [12] and extended to finer compartments (see [13] for an earlier overview)
that mimic the described course. Examples include the SEIR model with an exposed
group, the SEIRD model to separate truly recovered and dead, an S(E)IQR model
[14–16] that puts known infections into a quarantined group that does not infect
others, or the MSEIR model [12] to include children with mother immunity, thus
covering non-constant population sizes. Overall, these models have been abundantly
applied to locally analyze COVID-19 outbreak dynamics in various countries, largely
focusing on China [4, 17], Italy [14] and the United States (US) [18].
However, models to predict the temporal and spatial spreading of the virus have so
far been rather limited. While agent-based models [19] successfully cover the high
resolution end at the level of individual people and their movement, especially the
intermediate to high resolution on a state or county level is understudied territory –
even though this is exactly where many of the political decisions are being made. A
variant of the SIRS model has previously been coupled to a reaction-diffusion model
[20] to mathematically study cholera dynamics with partial differential equations
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(PDE). Colizza et al. have focused on the importance of the air travel network as a
basis for global diffusion at a pandemic outbreak [21]. Following this strategy, Ellen
Kuhl’s group at Stanford have coupled an air travel network to the SEIR model to
understand spatial spreading in China, the US [18] and across Europe [22]. However,
with air travel being almost entirely cancelled, we are in need of short- to mid-range
network models, such as [23]. While the global epidemic and mobility (GLEAM)
model [24] includes air travel as the major source of wide-range disease spreading,
it also models more localized commuting patterns that correspond well to traffic
data in Germany, among other countries. The model has explained a great deal of
COVID-19 spreading in mainland China [3].
As suggested by multiple previous studies [25, 26], mildly or asymptomatic carriers
account for the major share of new infections, and the large number of hidden
infections facilitated global spreading [27]. Thus, here we model the spatio-temporal
outbreak dynamics of COVID-19 in Germany with an SIQRD model that specifically
distinguishes between the hidden infectious I group and a Q group that holds people
with known, quarantined infections that, consequently, do not infect others anymore.
Since Germany was several weeks behind China and Italy with several global travel
restrictions already being in place, we couple the SIQRD model to the GLEAM
mobility network to model short-range and intra-country interactions essential to
locally resolve the evolution of the COVID-19 pandemic.

Results

The basic SIQRD model

Fig. 1. The basic SIQRD model. Unrestrained evolution of the pandemic in
Germany based on the basic SIQRD model (schematic lower right) with parameters
fit to the initial exponential growth (left).

Fig. 1 demonstrates how the overall COVID-19 cases in Germany would have evolved
at initially observed exponential growth without any political interventions – based
on the optimized SIQRD model with the model structure and dynamics displayed in
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the schematic in Fig. 1 (parameters in suppl. table S1). The model estimates that
Germany could have suffered nearly half a million dead. Note that the total number
of currently infected corresponds to I+Q. Our model yields an initial reproduction
number of R0 ≈ 4.61 in early March, consistent with previous studies [11, 28].
As Germany claimed high testing rates from the beginning on, we refrain from
including a time-dependent α, denoting the rate at which people transition from
the infectious group I to the tested, confirmed, and quarantined group Q. Instead,
for a more natural interpretation of the transition rates, we replace α and δ – the
rate at which diseased individuals in Q die and enter the group D – by introducing
the dark figure ω and the true mortality µ, also referred to as infection fatality rate
(IFR), and obtain

ω = 1 +
γ1
α
, (1)

µ =
δ

γ2 + δ

α

α+ γ1
, (2)

where γ1 and γ2 quantify the recovery rates from hidden (I) and quarantined (Q)
infections, respectively. The reparameterization allows us to explicitly identify the
role of the dark figure in COVID-19 spreading. The measurable ratio D / Q, usually
referred to as case fatality rate (CFR), will eventually approach the (constant)
product ωµ, demonstrating the inherent coupling of the two parameters. However,
during the course of the pandemic, CFR is not constant due to the time delay
between D and Q, a potentially varying dark figure ω, fluctuating testing capacities,
and a disparate mortality across the age structure of infected people [29].
The pivotal group for the disease dynamics are the infectious people I, while infec-
tion numbers reported by institutions such as the RKI correspond to the daily or
cumulative influx to Q. It is obvious from the model that reducing the number of
infectious people in I is achievable by reducing the infection rate β, the size of S
[4] and/or the size of I itself. The latter is, on the one hand, indicated by a faster
transition rate α from I to Q, e.g., by increased testing: Once people have been
positively tested, they will quarantine and likely not infect others any more. On
the other hand, a faster transition rate γ1 will reduce people in I, e.g., by general
protective and hygienic measures: If an individual is exposed to a lower viral load,
symptoms and the general course of the disease may be milder [30].

Accounting for state-wise political measures and testing

To capture the influence of political decisions and restrictions on the disease dy-
namics, we have included three reduction factors for the infection rate βred,1−3

representing the major restrictions of 1) cancelling large events, 2) school closings,
and 3) contact restrictions. We model each of them as a single constant factor for
all of Germany, but consider their federal-state-dependent starting date. Taken to-
gether, these political decisions, implemented at the right time, successfully slowed
down the spread by reducing the number of daily new infections – the influx to Q –
compared to the unrestrained evolution displayed in Fig. 1, and have thus prevented
an overburdened health care system, as seen in Bergamo or New York City.
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Fig. 2. Federal-state-wise dark figure and cross-county interactions. (a)
State-wise estimated dark figures following from a Germany-wide constant mortality.
(b) Major connectors (lines) between counties of the network mobility model to
predict cross-county infections in the spatial SIQRD model. County color varies
from yellow to dark purple with population density.

A much less tangible group than the detected infections in Q are the hidden infec-
tions in I. By assuming a Germany-wide identical mortality of µ = 0.006 [9], we
obtain estimates on state-wise dark figures ωi (Fig. 2a) by fitting to the individually
reported death tolls, with 〈ωi〉 ≈ 8.64 (see Methods, suppl. table S1). Interestingly,
we observe a fair, negative correlation (Pearson coefficient rP = −0.62, R2 = 0.38
p < 0.0085) between state-wise ωi and performed per-capita tests, which varied
significantly from about 0.02% of the population in Saarland to about 1.44% in
Berlin (test numbers from April 24, suppl. table S1 [31]).

The spatially resolved SIQRD model

To obtain spatially resolved outbreak predictions, we combined the refined SIQRD
model with an adapted short- and mid-range mobility network from GLEAM [32].
The latter has been shown to well capture commuting patterns in Germany, as
described in [24]. It accounts for the interaction between different cities and counties
throughout Germany, as illustrated in Fig. 2b. To adequately represent cross-county
infections considering severely altered mobility patterns in times of the pandemic,
we introduce state-wise cross-county multipliers βcc,i, i = 1, . . . , 16 to modulate
the exponential cross-county term.
With state-wise identified dark figures ωi (Fig. 2a) and otherwise estimated pa-
rameters µ = 0.006, γ1 = 0.067, γ2 = 0.04 (see Methods), we obtain optimized
state-wise infection rates βi and cross-county weights βcc,i, as well as Germany-wide
contact reduction factors βred,1−3. Importantly, our preliminary investigations had
shown that it is not sufficient to provide a single β valid in entire Germany, even
with state-wise dark figures ωi. It is, therefore, key to calibrate infection rates βi
differing between federal states. We further note that current data do not allow
us to clearly distinguish three independent reduction factors. Especially, effective
dates of βred,2 (school closings) and βred,3 (contact restrictions) are close by in time,
leading to similarly good fits with various pairs of the two. To prevent over-fitting,
we thus set βred,2 = 1 and use one combined reduction factor for school closings and
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Fig. 3. State-wise predictions of the spatially resolved SIQRD model. The
evolution of cumulative quarantined infections Q (left axis, green; current Q in teal)
and dead count on last day (right axis, purple) were state-wise fitted to RKI data
(dashed) from March 2 to April 25 (x in days since March 2). Vertical lines denote
changes in β. R2 indicates goodness of fit.

contact restrictions for our spatial simulations instead, optimized to βred,1 = 0.378
and βred,3 = 0.189 (see Methods).
Another important component of spatially resolved predictions is the choice of ap-
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propriate initial conditions. Besides the mere size of I0, the initial infectious pop-
ulation, we also needed to specify its spatial distribution at the start date of the
county-wise simulation, March 2. Due to several days delay between the outbreak in
different federal states and, naturally, their different population size, we selected the
RKI reported distribution on March 16 and scaled its magnitude down to obtain the
overall number as determined on March 2, state-wise amounting to 〈I0,i〉 = 2679
(see Methods, suppl. table S1).
Fig. 3 demonstrates that the optimized spatially resolved SIQRD model with 401
network nodes representing each county of Germany well predicts the cumulative
confirmed cases in each of its federal states from March 2 until April 25. For
cumulative infection data reported by the RKI [7], we find astonishing agreement
on the temporal evolution (all R2 > 0.96). Some states, most noticeably Bremen,
show rather irregular numbers of daily new infections and slight deviations from
the model, which we attribute to its low testing rate (second lowest in Germany),
a corresponding high dark figure (Fig. 2a), and the overall very low case counts.
The model slightly overestimates the number of deaths in the initial period but well
matches the overall number, the only dead count included in the fitting procedure
(Methods). This can be attributed to a strong age-dependence in mortality [10,
11] and the fact that the spread of COVID-19 in Germany started off not least due
to – mainly younger – infected returnees from skiing vacations in Italy and Austria
[29]. Later on, more and more elderly people caught the disease, which then lead to
an overall stronger death toll around the early midst of April, including devastating
death rates in several nursing homes.
Fig. 4a and b display federal-state-wise βi and βcc,i. On average, the intra-county
infection rates βi are about half as large as for the basic SIQRD models [14], leading
us to believe that about half of infections occur through cross-county interactions.
We observe an opposite trend between βi and βcc,i, suggesting a trade-off between
intra- and inter-state contact. Remarkably, northern (touristy) regions obtain higher
inter-state contact rates, suggesting they observed relevant inflow from other states.
Furthermore, highly populated states, most notably the city-states Berlin, Hamburg
and Bremen (isolated black dots in Fig. 4b), but also Northrhine-Westphalia (NW),
Baden-Württemberg (BW), and Bavaria (BY), seem slightly over-represented in the
network and thus receive smaller βcc,i. This is to be expected, as densely populated
areas typically observe more mobility and commuter traffic, which was more severely
reduced when the pandemic hit.

County-wise predictions

We then analyzed how well the federal-state-wise fitted model represented the in-
fections on a county level. Fig. 4c shows the difference of cumulative entries in Q
between our model predictions and RKI reported numbers on two dates in April,
without further county-wise fitting or optimization. On both dates, we find a strong,
significant correlation of the spatial distribution (March 28: R2 = 0.84, p < 1e−16;
April 25: R2 = 0.81, p < 1e − 16), demonstrating an overall high level of accu-
racy of our meso-scale model. On the earlier date in March, larger differences are
almost exclusive to Hannover and Berlin, two densely populated cities rather dis-
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Fig. 4. Optimized model parameters and validation. Illustration of state-
wise optimized values for βi (a) and βcc,i (b) for i = 1, . . . , 16. (c) County-level
evaluation of cumulative quarantined infections Q on two randomly selected dates,
showing the difference of infections SIQRD − RKI, increasing from blue to red,
with indicated counties Tirschenreuth (T) and Rosenheim (R). Color scale fixed
to [-1000,1000] from [-305,3206] on March 28 and [-1197,4896] on April 25 for
comparability and better contrast.

tant from major initial hubs. One month later, we observe slightly more deviations
overall. Not surprisingly, they mostly occur in BY, BW and NW, the three most
populous states with highest infection numbers overall, putting the differences into
perspective.
Comparing per-capita cumulative infections on March 28 (April 25), we find that,
despite a lowered correlation, 79% (57%) of counties differ less than 50 per 100000
inhabitants, which is the politically imposed threshold for daily new infections to re-
implement restrictive measures in most German states. We also observe some rural
areas that suffered from more infections than predicted by our model. The most
prominent examples are the indicated counties Rosenheim (R) and Tirschenreuth
(T). Per-capita infections in the hot-spot city Mitterteich in Tirschenreuth tempo-
rally surpassed the numbers in New York City [6] and one of the most stringent
curfews was put in place to contain the virus spread [33].
Following this validation, we used our model to obtain a complete spatio-temporal
timeline of the COVID-19 spreading. Fig. 5a and supplementary movie S1 show
the predicted spatial distribution of all infections, i.e., combined entries of I and Q,
evolving from early March until early June at the resolution of individual counties,
assuming the contact reduction factors stay in place. The snapshots nicely capture
the more severe course of the pandemic in the Southern and Western states, while
Eastern Germany was less affected.
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Fig. 5. Model predictions. (a) Temporal snapshots of the epidemic spread across
Germany, continuing with the identified reduced infection rates βi. (b) Scenario
comparison on March 28 close to the epidemic peak, with seeds spreading from
Heinsberg (H, left), Ischgl (I, center) and both cities (H+I, right). (c) Difference
plot of cumulative infections Q between our simulation with seeds from Ischgl and
Heinsberg (panel B, right) vs RKI data on March 28. Color scale cropped from [-
2230,6550] to [-1000,1000] for better contrast. (d) Refined predictions on April 11
in Bavaria at county vs. city (circles) resolution. Scale shows cumulative infections
per 100,000 inhabitants.

The effect of seeds

The spreading of COVID-19 in Germany has allegedly evolved from two major hubs:
(1) a carnival event in the county Heinsberg (H) in the Ruhr area in Western
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Germany, and (2) returnees from skiing holidays in Northern Italy and Austria, with
a large share tracing back to Ischgl (I). With the aid of our spatially resolved model,
we investigated how these sources may have affected the spreading throughout
Germany.
Fig. 5b shows the distributions of confirmed, quarantined infections Q resulting from
initial outbreaks in Heinsberg (left) and Ischgl (center) only, as well as the distribu-
tion resulting from the combination of both (right), demonstrating the balance of
local and far-reached infections with our model. Red hot-spots appear in nearly all
major urban areas across Germany, but rural spreading occurs much more in areas
closer to the seeds. When evaluating differences of infections from their combined
spreading to RKI data (Fig. 5c) near the German peak on March 28, we find that,
despite increased differences very close to the Southern border, overall state-wise
distribution in BY is near identical in quality (R2 = 0.89 in both cases). This
demonstrates the dominating influence of returnees from skiing holidays in Italy
and Austria represented by the Ischgl seed for the Germany-wide initiation of the
spread. Tirschenreuth (T), however, seems to have suffered from their very own,
less documented super-spreading event. On the other hand, the distribution in NW
differs more to the data (R2 from 0.79 to 0.64). We observe several underrep-
resented counties, suggesting that cases from Heinsberg alone spread less, similar
to the localized situation in Tirschenreuth. The overall similarity between Fig. 5c
and Fig. 4c, as well as Fig. 5a and Fig. 5b does confirm, however, that the virus
indeed spread from the Southern and Western states of Germany, with Ischgl and
Heinsberg as two major representative seeds.

Meso- to micro-scale

It is possible to further refine the resolution of the spatial SIQRD network model to
account for individual cities. Fig. 5d compares the county-wise (left) with the even
more refined city-wise model (right) in Bavaria on April 11. While the numbers of
the whole county are controlled by larger cities, the more refined model also captures
lower (per-capita) infections in small communities. The increased resolution may
provide valuable information for local decision makers, especially in more rural areas
where the epidemic course is not as much controlled by the closest major city.

Discussion

We have shown that a spatially resolved SIQRD model can well explain and predict
the temporal and spatial outbreak dynamics of COVID-19 in Germany. The repa-
rameterized model specifically includes undetected, hidden infections as a separate
compartment, revealing a direct coupling between mortality, testing efforts and the
dark figure. Our systematic refinement from Germany-wide to spatially resolved
county-level predictions has revealed that we require different values for dark figures
ωi, infection rates βi and cross-county weights βcc,i in each federal state of Germany
to accurately capture the spreading of COVID-19 from March until May 2020. At
first, this is quite surprising considering that various other studies with single-node,
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country-wide models have predicted single infection rates β that are quite similar for
different countries, such as Germany, France or Spain [11, 14]. However, this can be
attributed to their low spatial resolution and high infection numbers, which average
out any spatio-temporal fluctuations. Higher-resolution information as presented
here thus comes at the cost of more complex model requirements.
Differences in ωi can in part be attributed to variable testing activities. It is impor-
tant to note, however, that the varying dark figure alone is not enough to account
for the different outbreak dynamics in the federal states of Germany. Rather, there
seems to be a non-negligible influence of habits and mentality that drive different
infection rates βi, together with random factors and local super-spreader events
such as the carnival celebrations in Heinsberg [30]. We observe an opposite trend
between βi and βcc,i (Fig. 4a and b), suggesting that some states (mostly Northern
and distant from initial seeds) received more infections from neighboring states,
while states close to epidemic seeds suffered more from localized infections. Gen-
erally, the adapted mobility network tended to overestimate cross-county terms in
densely populated areas, where the pandemic seemed to have a larger reduction
effect on typically observed traffic patterns, manifested by smaller weights βcc,i.
It has become clear from our analysis that the data we currently have at our dis-
posal makes it impossible to provide ’true’ parameter sets that uniquely describe
the evolution of the pandemic. However, despite the deduced interdependence of
mortality µ and dark figure ω, the relationship to testing activities holds regardless,
underlining the importance of broad, fast testing. In addition, increased (antibody)
testing can help strengthen our confidence bounds on ω and µ in the future. Similar
relationships exist for the politically induced reduction factors βred, where data only
allowed us to distinguish two independently.
Our spatially resolved model can predict the temporal evolution of infections on a
county level at convincing accuracy, and even extends to individual cities (Fig. 5d).
It nicely captures the fact that the probability for new incoming infections and higher
spreading is generally larger in densely populated urban environments. However, we
have also seen a few rather rural counties with high infection numbers that were
much less hit in our predictions, e.g., the county Tirschenreuth in Eastern Bavaria
(Fig. 4c). We postulate that such locally over-proportionate case counts can be
attributed to rather random super-spreading events, which may pop up anytime
and can easily be included in our model, but are hard to predict in advance.
Exploiting our county-level resolution, we were able to infer the effect of infections
stemming from selected seeds, such as two major hubs for Germany, Heinsberg
and returning travellers from Ischgl in Austria. Our model demonstrates how the
outbreak dynamics in Germany were initially driven by these two major seeds and
spread from there throughout the rest of the country (Fig. 5b). Nevertheless, from
our difference analysis we found that Heinsberg itself was far more contained than
Ischgl (Fig. 5b).Taken together, these observations corroborate that refraining from
traveling and large events are two key interventions that can effectively attenuate
the spreading of infectious diseases such as COVID-19.
The presented model has certain limitations that we aim to address in the future.
One drawback of all SIR-type modeling approaches is that they hardly account for
the various courses of disease: in such rate-dependent models, some appear as
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infinitely long infectious. To prevent this issue from significantly affecting our opti-
mized parameters, we only considered the latest dead count in our fitting procedure
(see Methods). Still, we plan to adapt our model to integrate detailed information
on specific courses of disease within a memory-based or delayed ODE, as introduced
e.g. in [34].
Most noticeable deviations of our model predictions on a state level occurred in
Bremen, a city-state with overall very low infection numbers. Despite a high dark
figure and concomitant uncertainty, on the city level our quasi-continuum modeling
approach and the underlying exponential growth seem to approach their validity
limit, while stochastic effects start to become more important. Whereas SIR-type
compartment models may capture the spread on a macro- and meso-scale level,
at very low infection numbers or high spatial resolution, individual agent-based
models [19, 35] are required to accurately predict the course of the epidemic. It
is noteworthy, though, that current agent-based models may scale up to ≈ 50.000
agents, leaving quite a gap to meso-scale models like ours. We will investigate
how coupling both types of methods in a multi-scale model can close this gap in
the future. Similarly, explicitly integrating uncertainty via stochastic models [36]
may help to further improve model predictions at high spatial resolution and low to
medium infection numbers, potentially providing insights into optimal strategies for
political action.
Overall, our refined predictions could provide a trustworthy rationale to elaborate
community-wise reopening and closing strategies, safely plan the occupation and
need of hospital beds, and inform on optimal distribution strategies of vaccination
and/or antibody tests once available. The optimized model can be directly adopted
to estimate the effects of loosened restrictions, potential new seeds, or other influ-
encing factors on the resolution of individual cities. It can thus be a valuable tool
to support (political) decision makers to appropriately react to future developments
of the COVID-19 situation and expediently avoid a second wave.

Methods

We model the spatio-temporal outbreak dynamics of COVID-19 in Germany with
an SIQRD model, coupled to a network model that allows for spatially distributed
cross-county infections. We start out with the description of our basic compartment
model that mainly governs the spread of the disease over time, and then continue
with its spatial resolution. All simulations were implemented and performed in
Octave 5.2.0 using packages optim 1.6.0, statistics 1.4.1, io 2.4.13, parallel 3.1.3,
and splines 1.3.3.

Basic SIQRD model

In contrast to many existing studies that use a standard SEIR(D) model including a
latency period between being infected and becoming infectious [18, 22], we focus on
the difference between asymptomatic or mildly symptomatic, unknown cases that
account for the major share of new infections [25, 26], and people with noticeable
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symptoms. We integrate this knowledge and use an SIQRD model [12, 16] that
specifically distinguishes between the infectious group I, representing a measure for
the estimated total number of infections, and a group Q representing known, and
therefore quarantined, infections, who do not infect others anymore [14]. In our
case, the transition rate α from I to Q describes how long it takes for an infected
person to be tested/detected and put in quarantine. The remaining three groups
are considered as usual, where S represents the initial state of being susceptible, R
represents truly recovered, and D dead. Some fraction of I can directly recover at
rate γ1 without ever being tested, overall representing the hidden infections that
are never detected, while the remainder transitions to Q at rate α. The rate γ2
describes the rate to recover from a tested infection, while δ represents the rate to
die from a confirmed infection (see schematic in Fig. 1). Overall, we obtain the set
of equations

Ṡ = −βSI (3)

İ = +βSI − αI − γ1I (4)

Q̇ = + αI − γ2Q− δQ (5)

Ṙ = + γ1I +γ2Q (6)

Ḋ = + δQ. (7)

Since we are neglecting disease unrelated births and deaths, the total number of
people N is constant, in Germany N ≈ 8e7, such that in normalized terms S+ I +
Q+R+D = 1, and therefore Ṡ + İ + Q̇+ Ṙ+ Ḋ = 0.
For easier interpretation of the parameters, we introduce the dark figure ω = 1 +
γ1/α and the true mortality µ = δ/(γ2 + δ) · α/(α + γ1) as given in the Results
Section. Thus, we can replace the previous parameters α and δ by

α =
γ1

ω − 1
, (8)

δ = γ2
µω

1− µω
. (9)

If we consider the stationary point when the pandemic has passed, we can directly
relate the number of confirmed or tested infections with the estimated overall num-
ber of infections by Î = ωQ̂, while µ represents the fraction of all infected people
that died. The true mortality µ is also often referred to as infection fatality rate
(IFR). Further, the mortality can also be represented by the ratio of cumulative
total infections over deaths, µ = D̂/Î. Since ω = Î/Q̂, we identify the stationary
relationship

D̂

Q̂
= µω. (10)

In other words, the measurable ratio D/Q, usually referred to as the case fatality
rate (CFR), will eventually approach the number µω, demonstrating the inherent
dependence of the two parameters. During the course of the pandemic, however,
CFR will not be constant [29].
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Modeling political measures and contact restrictions

We model the effect of contact restriction and other political measures through a
time-dependent infection rate β = β(t) by introducing three reduction factors βred,i

via step functions β̂i(t), such that the effective contact rate yields

β(t) = β0

3∏
i=1

β̂i(t), where β̂i(t) =

{
1, if t < Ti,

βred,i otherwise.
(11)

The three reduction factors βred,i represent the major restrictions of 1) cancelling
large events, 2) school closings, and 3) contact restrictions. We assume that each of
them are constant over all of Germany, but consider their state-dependent starting
date Ti following the respective political timeline. From preliminary investigations
we observed that current data do not allow to robustly distinguish three reduction
factors, manifested by parameter dependencies between βred,i in our optimization
scheme. Thus, we set βred,2 = 1 and used only βred,3 as a jointly fitted value to
avoid over-fitting the data.

Reproduction number

The model allows for a straight-forward estimate on the initial and effective repro-
duction number R0 and Reff, respectively, which are well-known in public and the
general media as the number of infections originating from one infected person.
Since this number is represented by the ratio between the influx and outflux of the
hidden infectious group I in our model, we obtain the time-dependent upper-bound
expression

Reff(t) =
β(t)S(t) (ω − 1)

ωγ1
≤ β(t) (ω − 1)

ωγ1
= R0(t), (12)

where, in relative numbers, S = 1 during early stages of the pandemic. Note that
model parameters such as α and ω may also vary over time, and a continuous or
even randomized representation of the evolution of R0(t) [28] may potentially better
explain the imperfect data. For better readability, we drop the time-dependence of
β and R0 in the following. As can be inferred from the expression, the uncertainty
associated with the dark figure and the infection rates translate somewhat into the
reproduction number, making reliable bounds on R0 difficult to obtain.

Spatially resolved SIQRD model

In order to study the spatial dynamics of the spreading disease, we consider a network
model on the resolution level of individual counties that allows for cross-county
infections. Data analysis and preliminary simulations had shown that we require a
federal-state-dependent dark figure ωi and infection rate βi, i = 1, . . . , 16. On a
discrete county level, for an overall number of nc counties, the set of reparameterized
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coupled SIQRD network differential equations for each county k = 1, . . . , nc yield

Ṡk = −βSkIk −
nc∑
l

β̃klSkIl (13)

İk = +βSkIk +

nc∑
l

β̃klSkIl −
γ1

ω − 1
Ik − γ1Ik (14)

Q̇k = +
γ1

ω − 1
Ik − γ2Qk − γ2

µω

1− µω
Qk (15)

Ṙk = + γ1Ik + γ2Qk (16)

Ḋk = + γ2
µω

1− µω
Qk, (17)

with the cross county infections

β̃kl = β̃kl (βk,l, Nk,l, rkl) = βcc

√
βkβl

Nκ
kN

λ
l

Nκ+λ
max

exp
(
−rkl
r

)
, (18)

where βcc,i, i = 1, . . . , 16 are the state-dependent cross-county infection weights,
Nk is the number of inhabitants in county k, Nmax = 3e6 corresponds to the
number of inhabitants in Germany’s largest city Berlin, and rkl is the distance
between counties k and l. Note that β, ω and βcc are state-dependent, but not
county-dependent, while all other parameters are identical for all of Germany.
The exponential cross-county infection term is adopted from the Global Epidemic
And Mobility (GLEAM) model, where the expression represents commuter flows
between communities k, l. It can be tuned by three parameters κ, λ, and r that
were fit to large amounts of commuting data to globally emulate their patterns, as
described in [24] (suppl. table S2). We reuse their expression in a simplified fashion
and argue that cross-county infections are proportional to the commuting flow, up
to the size of the infectious group at the distant county Il, local susceptibles Sk
and βcc,i, i = 1, . . . , 16.

Initial conditions and parameter fitting

We use data from the Robert-Koch Institute (RKI) that is available for each county
in Germany over time [7]. Since RKI infection data has limited information content,
we had to fix several parameters from other data describing the course of infection.
Following the works of An der Heiden [9], we set the mortality to µ = 0.006. As
described by various other works [9, 10, 37], the time to recover from a confirmed
infection varies between 18 and 25 days, while milder, often undetected infections
last for about 5 to 10 days. In agreement, we chose γ2 = 0.04 and γ1 = 0.067,
assuming that about 50% of cases are asymptomatic [38] and undetected over a
time-span of 7.5 days. Following the assumed mortality and an average time-to-
death for a confirmed infection of 15 days [9], state-wise dark figures can be directly
read-out from the RKI reported death toll [7] on April 25, the last day of our fit.
We decided against fitting the D group over time, due to the disparate mortality
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across the age structure of infected people [29] which is not very well represented
in SIR-type rate-based models. The age-dependent mortality was clearly visible
in Germany, especially during the early stages when younger people were over-
proportionally affected, with correspondingly low death rates.
For our parameter optimization, we solve the nonlinear set of ordinary differential
equations (ODEs) from the start date onward in time using an ODE45 integration
scheme with variable time-stepping and evaluate the daily new and cumulative
infection numbers via spline interpolation.
To approach our spatially resolved county-model, we followed a cascade optimization
strategy. Using state-wise identified dark figures ωi and constant µ, γ1, and γ2,
we first used a 16-node network model connecting each federal state to obtain
a Germany-wide average β and reduction factors βred,1 and βred,3 by fitting the
cumulative data for Germany. We then considered state-wise data to fit βi, i =
1, . . . , 16, while keeping βcc = 1. As initial values, we set the number of confirmed
infections on our start date March 2 as the size of Q0. To obtain an appropriate
size of I0, we estimate the change rate of Q on our start date via an exponential
function and then exploit I0 = Q̇0(ω − 1)/γ1.
We fit the cumulative number of confirmed infections from the RKI for the time
period from March 2 until April 25 with the cumulative entries in our Q group,
normalized by the maximum number of RKI infections. This is the time period
during which the various shutdown measures were in place without any noticeable
relaxation. On top of that, we include the change-rate of infections on our last
day April 25 into the residual vector. Note that cumulative infections at time T
reported by the RKI correspond to the integrated influx Q̃RKI(T ) into the Q group
of our SIQRD model, such that the fitted expression is obtained via

Q̃RKI(T ) =

∫ T

t=0

γ1
ω − 1

I(t)dt. (19)

Finally, we increased the resolution to full county level, amounting to a network
of 401 nodes. We used a gradient-descent algorithm to iteratively fit state-wise
cross-county weights βcc,i, i = 1, . . . , 16 to re-balance the changed influence of the
larger network, while keeping the previously determined state-wise βi fixed.
The high-resolution network model brings with it the challenge for spatially con-
sistent initial conditions. Thus, we selected the distribution of initial infections
according to the RKI database on March 16, scaling down the overall number of
infections to the number reported on our starting date, March 2. The ratio between
Q and I was computed as before.
For the Heinsberg/Ischgl simulations, we started out with an I group of 30 times the
number of inhabitants in Ischgl, amounting to I0 = 1617 · 30 = 48510, to represent
the major tourist flow through the town and returnees from other ski resorts in
Austria and Italy. In Heinsberg, we set 10% of the population in the I group, i.e.,
I0 = 4195, corresponding to about 65% of the population found infected in [30].
In Ischgl, we further chose βcc equal to the highest found one in a German state
(Brandenburg) to initiate the spreading, and chose Bavaria’s β value due to its
spatial proximity.
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The entire fitting procedure, except for obtaining the final cross-county weights
βcc,i, was done using a particle swarm optimization (PSO) scheme. PSO is a meta-
heuristic inspired by the behavior of natural animal swarms. It uniformly initializes
a swarm of particles in a multidimensional search space, such that the objective
function is evaluated at the current position of each particle. Particles communicate
their best position amongst each other. Thereby, individual particle direction and
speed are updated depending on their own and the overall best position in search
space found up to this point. This way, the swarm broadly covers the bounded
search space [39] and likely converges to a global optimum, while exploring many
local minima along the way [40]. The scheme balances broad coverage with fast
convergence and provides valuable information on explored samples.

Statistical analysis

To validate the model, we evaluated the temporal and spatial correlation between
model predictions and RKI data by computing the Pearson correlation coefficient
rP , the coefficient of determination R2 = r2P and the corresponding p-value to
assess statistical significance via the function [rP ,p] = corrcoeff (. . . ) in Octave
5.2.0.
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Supplementary Information

Supplementary tables

State β βcc I0 ω tested [%]
Schleswig-Holstein (SH) 0.15 1.49 850 9.18 0.27
Hamburg (HH) 0.26 0.43 949 7.96 0.23
Lower Saxony (NI) 0.11 1.45 2780 9.80 0.5
Bremen (HB) 0.20 0.52 195 12.09 0.15
Northrhine-Westphalia (NW) 0.20 0.34 12447 8.78 0.83
Hesse (HE) 0.09 0.82 1534 10.22 0.41
Rhineland Palatinate (RP) 0.05 1.18 717 5.91 0.88
Baden-Württemberg (BW) 0.21 0.54 10212 9.97 0.42
Bavaria (BY) 0.28 0.51 9009 9.83 0.70
Saarland (SL) 0.33 0.47 293 10.65 0.02
Berlin (BE) 0.14 0.52 1621 4.98 1.44
Brandenburg (BB) 0.22 1.66 706 9.64 0.4
Mecklenburg W. Pomerania (MV) 0.11 1.19 213 5.56 0.27
Saxony (SN) 0.21 0.68 692 7.92 0.29
Saxony-Anhalt (ST) 0.10 0.95 122 6.17 0.98
Thuringia (TH) 0.16 1.11 527 9.57 0.63
mean 0.18 0.87 2679 8.64 0.52
standard deviation 0.08 0.43 4051 2.01 0.37

Table S1: Optimized state-wise parameters for the spatially resolved SIQRD model,
and percentage of population tested by April 24 [31].

rkl[km] κ λ r[km]
≤ 300 0.46 0.64 82
> 300 0.35 0.37 1

Table S2: Parameters for the network mobility model as derived in [24].

Supplementary movies

Movie S1. Spatio-temporal prediction of COVID-19 outbreak dynamics in Germany
at county level from March 2 until June 2.
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