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 148 
Summary  149 
 150 
Growth faltering (low length-for-age or weight-for length) in the first 1000 days — from conception to 151 
two years of age — influences both short and long-term health and survival.  Evidence for 152 
interventions to prevent growth faltering such as nutritional supplementation during pregnancy and 153 
the postnatal period has increasingly accumulated, but programmatic action has been insufficient to 154 
eliminate the high burden of stunting and wasting in low- and middle-income countries. In addition, 155 
there is need to better understand age-windows and population subgroups in which to focus future 156 
preventive efforts. Here, we show using a population intervention effects analysis of 33 longitudinal 157 
cohorts (83,671 children) and 30 separate exposures that improving maternal anthropometry and 158 
child condition at birth, in particular child length-at-birth, accounted for population increases by age 159 
24 months in length-for-age Z of 0.04 to 0.40 and weight-for-length Z by 0.02 to 0.15. Boys had 160 
consistently higher risk of all forms of growth faltering than girls, and early growth faltering 161 
predisposed children to subsequent and persistent growth faltering. Children with multiple growth 162 
deficits had higher mortality rates from birth to two years than those without deficits (hazard ratios 163 
1.9 to 8.7). The importance of prenatal causes, and severe consequences for children who experienced 164 
early growth faltering, support a focus on pre-conception and pregnancy as key opportunities for new 165 
preventive interventions. 166 
 167 
Introduction  168 

Child growth faltering in the form of stunting, a marker of chronic malnutrition, and wasting, a 169 
marker of acute malnutrition, is common among young children in low-resource settings, and may 170 
contribute to child mortality and adult morbidity.1,2 Worldwide, 22% of children under age 5 years are 171 
stunted and 7% are wasted, with most of the burden occurring in low- and middle-income counties 172 
(LMIC).3 Current estimates attribute >250,000 deaths annually to stunting and >1 million deaths 173 
annually to wasting.2 Stunted or wasted children also experience worse cognitive development4–6  and 174 
adult economic outcomes.7  175 

Despite widespread recognition of the importance of growth faltering to global public health, 176 
preventive interventions in LMICs have had limited success.8 A range of nutritional interventions 177 
targeting various life stages of the fetal and childhood periods, including nutrition education, food and 178 
micronutrient supplementation during pregnancy, promotion of exclusive breastfeeding for 6 months 179 
and continued breastfeeding for 2 years, and food and micronutrient supplementation during 180 
complementary feeding, have all had a beneficial effect on child growth.9–11 However, postnatal 181 
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breastfeeding interventions and nutritional interventions delivered to children who have begun 182 
complementary feeding have only had small effects on population-level stunting and wasting burdens, 183 
and implementation remains a substantial challenge.9,11,12 Additionally, water, sanitation, and hygiene 184 
(WASH) interventions, which aim to reduce childhood infections that may heighten the risk of wasting 185 
and stunting, have had no effect on child growth in several recent large randomized control trials.13–15  186 

Modest effects of interventions to prevent stunting and wasting may reflect an incomplete 187 
understanding of the optimal way and time to intervene.16 This knowledge gap has spurred renewed 188 
interest in recent decades to combine rich data sources with advances in statistical methodology17 to 189 
more deeply understand the key causes of growth faltering.8  Understanding the relationship between 190 
the causes and timing of growth faltering is also crucial because children who falter early could be at 191 
higher risk for more severe growth faltering later. In companion articles, we report that the highest rates 192 
of incident stunting and wasting occur by age 3 months.18,19  193 

 194 
Pooled longitudinal analyses  195 

Here, we report a pooled analysis of 33 longitudinal cohorts in 15 low- and middle-income countries 196 
in South Asia, Sub-Saharan Africa, Latin America, and Eastern Europe, initiated between 1969 and 2014. 197 
Our objective was to estimate relationships between child, parental, and household characteristics and 198 
measures of child anthropometry, including length-for-age Z-scores (LAZ), weight-for-length Z-scores 199 
(WLZ), weight-for-age Z-scores (WAZ), stunting, wasting, underweight, and length and weight velocities 200 
from birth to age 24 months. Details on the estimation of growth faltering outcomes are included in 201 
companion articles.18,19  We also estimated associations between early growth faltering and more severe 202 
growth faltering or mortality by age 24 months. 203 

Cohorts were assembled as part of the Bill & Melinda Gates Foundation's Knowledge Integration (ki) 204 
initiative, which included studies of growth and development in the first 1000 days, beginning at 205 
conception.20 We selected longitudinal cohorts from the database that met five inclusion criteria: 1) 206 
conducted in low- or middle-income countries; 2) enrolled children between birth and age 24 months 207 
and measured their length and weight repeatedly over time; 3) did not restrict enrollment to acutely ill 208 
children; 4) enrolled children with a median year of birth after 1990; and 5) collected anthropometric 209 
status measurements at least every 3 months (Extended Data Fig 1). Inclusion criteria ensured we could 210 
rigorously evaluate the timing and onset of growth faltering among children who were broadly 211 
representative of populations in low- and middle-income countries. Thirty-three cohorts from 15 212 
countries met inclusion criteria, and 83,671 children and 592,030 total measurements were included in 213 
this analysis (Fig 1). Child mortality was rare and not reported in many of the ki datasets, so we relaxed 214 
inclusion criteria for studies used in the mortality analysis to include studies that measured children at 215 
least twice a year. Four additional cohorts met this inclusion criterion, and 14,317 children and 70,733 216 
additional measurements were included in mortality analyses (97,988 total children, 662,763 total 217 
observations, Extended Data Table 1). Cohorts were distributed throughout South Asia, Africa, and Latin 218 
America, with a single European cohort from Belarus.  219 
 220 
Population intervention effects on growth faltering  221 
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In a series of analyses, we estimated population intervention effects, the estimated change in 222 
population mean Z-score if all individuals in the population had their exposure shifted from observed 223 
levels to the lowest-risk reference level.21 The PIE is a policy-relevant parameter; it estimates the 224 
improvement in outcome that could be achievable through intervention for modifiable exposures, as it 225 
is a function of the degree of difference between the unexposed and the exposed in a children’s 226 
anthropometry Z-scores, as well as the observed distribution of exposure in the population. We selected 227 
exposures that were measured in multiple cohorts, could be harmonized across cohorts for pooled 228 
analyses, and had been identified as important predictors of stunting or wasting in prior literature (Fig 1, 229 
Extended Data Table 2).  Different cohorts measured different sets of exposures, but all estimates were 230 
adjusted for all other measured exposures that we assumed were not on the causal pathway between 231 
the exposure of interest and the outcome (Fig 1).  Different cohorts measured different sets of 232 
exposures, but all estimates were adjusted for all other measured exposures that we assumed were not 233 
on the causal pathway between the exposure of interest and the outcome (Fig 1). For example, the 234 
association between maternal height and stunting was not adjusted for a child’s birthweight because 235 
low maternal height could increase stunting risk through lower child birthweight, an assumption we 236 
tested in a mediation analysis.22 Parameters were estimated using targeted maximum likelihood 237 
estimation, a doubly-robust, semiparametric method that allows for valid inference while adjusting for 238 
potential confounders using ensemble machine learning (details in Methods).17,23 We estimated cohort-239 
specific parameters, adjusting for measured covariates within each cohort, and then pooled estimates 240 
across cohorts using random effects models (Extended data Fig 1).24 We chose the reference as the level 241 
of lowest risk across cohorts. We also estimated the effects of optimal dynamic interventions, where 242 
each child’s individual low-risk level of exposure was estimated from potential confounders (details in 243 
Methods). Timing of exposures varied, from parental and household characteristics present before birth, 244 
to fetal or at-birth exposures, and postnatal exposures including breastfeeding and diarrheal disease. 245 
We estimated only associations for growth faltering occurring after exposure measurements to ensure 246 
time-ordering of exposures and outcomes.  247 

Population level improvements in maternal height and birth length and weight would be 248 
expected to improve child LAZ and WLZ at age 24 months substantially, owing to both the high 249 
prevalence of suboptimal anthropometry in the populations and their strong association with attained 250 
growth at 24 months (Fig 2a, 2b). Beyond anthropometry, key predictors of higher Z-scores included 251 
markers of better household socioeconomic status (e.g., number of rooms in the home, parental 252 
education, clean cooking fuel use, household wealth index) and Cesarean-section, which may reflect 253 
healthcare access or larger fetal size. Unique to WLZ, the population level impact of season was large, 254 
with higher WLZ in drier periods, consistent with seasonal differences shown in the companion article.19 255 
The pooled, cross-validated R2 for models that included the top 10 determinants for each Z-score, plus 256 
child sex, was 0.26 for LAZ (N= 19 cohorts, 23,922 children) and 0.06 for WLZ (N=29 cohorts, 22,588 257 
children).  Exclusive or predominant breastfeeding before 6 months of age was associated with higher 258 
WLZ but not LAZ at 6 months of age and was not a major predictor of Z-scores at 24 months, as 259 
expected (Extended Data Figs 2,3,4).25  260 

The findings underscore the importance of prenatal exposures for child growth outcomes, and 261 
at the population-level growth faltering may be difficult to shift without broad improvements in 262 
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standard of living.7,26   Maternal anthropometric status can influence child Z-scores by affecting fetal 263 
growth and birth size.27,28 Maternal height and BMI could directly affect postnatal growth through 264 
breastmilk quality, or could reflect family poverty, genetics, undernutrition, or food insecurity, or family 265 
lifestyle and diet.29,30 In a secondary analysis, we estimated the associations between parental 266 
anthropometry and child Z-scores controlling for birth characteristics, and found the associations were 267 
only partially mediated by birth size, order, C-section, hospital delivery, and  gestational age at birth. 268 
(Extended data Fig 5), with adjusted Z-score differences attenuating by a median of 31.5% 269 

  The strongest predictors of stunting and wasting estimated through population attributable 270 
fractions closely matched those identified for child LAZ and WLZ at 24 months (Extended Data Fig 6), 271 
suggesting that information embedded in continuous and binary measures of child growth provide 272 
similar inference with respect to identifying public-health relevant causes. Potential improvements 273 
through population interventions were relatively modest. For example, if all children were born to 274 
higher BMI mothers (≥ 20) compared to the observed distribution of maternal BMI, one of the largest 275 
predictors of wasting, we estimate it would reduce the incidence of wasting by age 24 months by 8.2% 276 
(95% CI: 4.4, 12.0; Extended Data Fig 6a). Patterns in associations across growth outcomes were broadly 277 
consistent, except for preterm birth, which had a stronger association with stunting outcomes than 278 
wasting outcomes, and rainy season, which was strongly associated with wasting but not stunting 279 
(Extended Data Fig 2). Direction of associations did not vary across regions, but magnitude did, notably 280 
with male sex less strongly associated with low LAZ in South Asia (Extended Data Figs 7,8). 281 
 282 
Age-varying effects on growth faltering 283 

We estimated trajectories of mean LAZ and WLZ stratified by maternal height and BMI. We 284 
found that maternal height strongly influenced at-birth LAZ, but that LAZ progressed along similar 285 
trajectories through age 24 months regardless of maternal height (Fig 3a), with similar though slightly 286 
less pronounced differences when stratified by maternal BMI (Fig 3b).By contrast, children born to taller 287 
mothers had similar WLZ at birth and WLZ trajectories until age 3-4 months, when they diverged 288 
substantially (Fig 3a); WLZ trajectory differences were even more pronounced when stratified by 289 
maternal BMI (Fig 3b). The findings illustrate how maternal status strongly influences where child 290 
growth trajectories start, but that growth trajectories evolve in parallel, seeming to respond similarly to 291 
postnatal insults independent of their starting point.  292 

Children who were stunted by age 3 months exhibited a different longitudinal growth trajectory 293 
from those who were stunted later.18 We hypothesized that causes of growth faltering could differ by 294 
age of growth faltering onset. For key exposures identified in the population attributable effect analyses, 295 
we conducted analyses stratified by age of onset and in many cases found age-varying effects (Fig 3c). 296 
For example, most measures of socioeconomic status were associated with incident wasting or stunting 297 
only after age 6 months, and higher birth order lowered growth faltering risk under age 6 months, but 298 
increased risk thereafter. The specific mechanism for effect modification of birth order on growth 299 
faltering by age is unknown, but primiparous mothers may be younger, have lower pre-pregnancy 300 
weight, have lower weight gain during pregnancy, or have less experience breastfeeding — a key source 301 
of nutrition during the first 6 months — while children with older siblings could have lower quality and 302 
quantity of complementary foods compared with firstborn children in food insecure households. 303 
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Stronger relationships between key socio-demographic characteristics and wasting and stunting as 304 
children age likely reflects the accumulation of insults that result from household conditions, particularly 305 
as complementary feeding is initiated, and children begin exploring their environment and potentially 306 
face higher levels of food insecurity especially in homes with multiple children.31 When viewed across 307 
multiple definitions of growth faltering, most factors had stronger associations with severe stunting, 308 
severe wasting, or persistent wasting (> 50% of measurements < –2 WLZ), rarer but more serious 309 
outcomes, than with incidence of any wasting or stunting (Fig 3d). Additionally, the characteristics 310 
strongly associated with lower probability of recovering from a wasting episode in 90 days (birth size, 311 
small maternal stature, lower maternal education, later birth order, and male sex) were also 312 
characteristics associated with higher risk of wasting prevalence and cumulative incidence (Extended 313 
data fig 2). 314 
 315 
Consequences of early growth faltering  316 

We documented high incidence rates of wasting and stunting from birth to age 6 months in 317 
companion papers.18,19 Based on previous studies, we hypothesized that early wasting could contribute 318 
to subsequent linear growth restriction, and early growth faltering could be consequential for persistent 319 
growth faltering and mortality during the first 24 months of life.32–34  Among cohorts with monthly 320 
measurements, we examined age-stratified linear growth velocity by quartiles of WLZ at previous ages. 321 
We found a consistent exposure-response relationship between higher mean WLZ and faster linear 322 
growth velocity in the following 3 months (Fig 4a), with a corresponding inverse relationship between 323 
WLZ and incident stunting at older ages (Extended data Fig 9). Persistent wasting from birth to 6 months 324 
(defined as > 50% of measurements wasted) was the wasting measure most strongly associated with 325 
incident stunting at older ages (Fig 4b).  326 

We next examined the relationship between measures of growth faltering in the first 6 months 327 
and serious growth-related outcomes: persistent wasting from 6-24 months and concurrent wasting and 328 
stunting at 18 months of age, both of which put children at high risk of mortality.1,32  Concurrent wasting 329 
and stunting was measured at 18 months because stunting prevalence peaked at 18 months and the 330 
largest number of children were measured at 18 months across cohorts.18 All measures of early growth 331 
faltering were significantly associated with later, more serious growth faltering, with measures of 332 
ponderal growth faltering amongst the strongest predictors (Fig 4c). 333 

Finally, we estimated hazard ratios (HR) of all-cause mortality by 2 years of age associated with 334 
measures of growth faltering within eight cohorts that reported ages of death, which included 1,689 335 
child deaths by age 24 months (2.4% of children in the eight cohorts). Included cohorts were highly 336 
monitored, and mortality rates were lower than in the general population in most cohorts (Extended 337 
Data Table 3). Additionally, data included only deaths that occurred after anthropometry 338 
measurements, so many neonatal deaths may have been excluded, and without data on cause-specific 339 
mortality, some deaths may have occurred from causes unrelated to growth faltering. Despite these 340 
caveats, growth faltering increased the hazard of death before 24 months for all measures except 341 
stunting alone, with strongest associations observed for severe wasting, stunting, and underweight 342 
(HR=8.7, 95% CI: 4.7, 16.4) and severe underweight alone (HR=4.2, 95% CI: 2.0, 8.6) (Fig 4d). 343 
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 344 
Discussion 345 

This synthesis of LMIC cohorts during the first 1000 days of life has provided new insights into the 346 
principal drivers and near-term consequences of growth faltering. Our use of a novel, semi-parametric 347 
method to adjust for potential confounding provided a harmonized approach to estimate population 348 
intervention effects that spanned child-, parent-, and household-level exposures with unprecedented 349 
breadth (30 exposures) and scale (662,763 anthropometric measurements from 33 cohorts). Our focus 350 
on effects of shifting population-level exposures on continuous measures of growth faltering reflect a 351 
growing appreciation that growth faltering is a continuous process.35 Our results show children in LMICs 352 
stand to benefit from interventions to support optimal growth in the first 1000 days. Combining 353 
information from high-resolution, longitudinal cohorts enabled us to study critically important outcomes 354 
not possible in smaller studies or in cross-sectional data, such as persistent wasting and mortality, as 355 
well as examine risk-factors by age.   356 

We found that maternal, prenatal, and at-birth characteristics were the strongest predictors of 357 
growth faltering across regions in LMICs. Many predictors, like child sex or season, are not modifiable 358 
but could guide interventions that mitigate their effects, such as seasonally targeted supplementation or 359 
enhanced monitoring among boys. Strong associations between maternal anthropometry and early 360 
growth faltering highlights the role of intergenerational transfer of growth faltering between mothers 361 
and their children.29 Shifting several key population exposures (maternal height or BMI, education, birth 362 
length) to their observed low-risk level would improve LAZ and WLZ in target populations and could be 363 
expected to improve Z-scores by 0.06 to 0.4 Z in the study populations and prevent 8% to 32% of 364 
incident stunting and wasting (Fig 2, Extended Data Fig 6). Maternal anthropometric status strongly 365 
influenced birth size, but the parallel drop in postnatal Z-scores among children born to different 366 
maternal phenotypes was much larger than differences at birth, indicating that growth trajectories were 367 
not fully “programmed” at birth (Fig 3a-b).  368 

Previous studies have implicated prenatal exposures as key determinants of child growth faltering,36 369 
and our finding of a limited impact of exclusive or predominant breastfeeding through 6 month (+0.01 370 
LAZ) is congruent with a meta-analysis of breastfeeding promotion,25 but our findings of limited impact 371 
of reducing diarrhea through 24 months (+0.05 LAZ) contrast with some observational studies.37,38 We 372 
found that growth faltering before age 6 months puts children at far higher risk of persistent wasting 373 
and concurrent wasting and stunting at older ages (Fig 4c), which predispose children to longer-term 374 
morbidity and mortality. Our results agree with the limited success of numerous postnatal preventive 375 
interventions in recent decades,10,11,39–41 as well as evidence that improvements in maternal education, 376 
nutrition, parity, and maternal and newborn health care are primary contributors in countries that have 377 
had the most success in reducing stunting,42 reinforcing the importance of interventions during the 378 
window from conception to one year, when fetal and infant growth velocity is high.43 A recent study 379 
examining metabolism across the life span identified infancy as one of the highest periods of energy 380 
needs related to growth or development with energy expenditure (adjusted for fat-free mass) by 1 year 381 
being about 50% above adult values.43 382 

The analyses had caveats. In some cases, detailed exposure measurements like longitudinal 383 
breastfeeding or diarrhea history were coarsened to simpler measures to harmonize definitions across 384 
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cohorts, potentially attenuating their association with growth faltering. Other key exposures such as 385 
dietary diversity, nutrient consumption, micronutrient status, maternal and child morbidity indicators, 386 
pathogen-specific infections, and sub-clinical inflammation and intestinal dysfunction were measured in 387 
only a few cohorts, so were not included.44,45 The absence of these exposures in the analysis, some of 388 
which have been found to be important within individual contributed cohorts,45,46 means that our 389 
results emphasize exposures that were more commonly collected, but likely exclude some additional 390 
causes of growth faltering.  391 

Our results suggest that targeting the next generation of interventions toward reproductive age and 392 
pregnant women could be a promising path forward to prevent growth faltering amongst their 393 
children.47,48  The recent Women’s First trial found prenatal nutrition supplements improved children’s 394 
birth size, though there was no impact of giving supplements starting pre-conception compared to 395 
starting late in the first trimester.49 Emerging evidence suggests that interventions beyond nutrition, 396 
such as those that address maternal infection and inflammation, may further contribute to decreasing in 397 
utero growth faltering.49–52 Nevertheless, a stronger focus on prenatal interventions should not distract 398 
from renewed efforts for postnatal prevention. Wasting and stunting incidence was highest before age 6 399 
months, but mean LAZ decreased until age 18 months,18 the concurrence of wasting and stunting 400 
peaked at age 18 months,19 and large, seasonally driven declines in WLZ were observed across all ages.19 401 
Targeting postnatal interventions such as small-quantity lipid-based nutrient supplements shown to 402 
reduce stunting, wasting and anemia11 and perhaps by season or by population subgroups defined by 403 
socioeconomic or household or individual characteristics identified herein should help focus preventive 404 
interventions to reduce the substantial, persistent burden of postnatal growth faltering.   405 
 406 
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Figure 1 | Cohort sample sizes and exposures measured. (a) Total number of 531 
children with a measured exposure, sorted from left to right by number of cohorts 532 
measuring the exposure. (b) Presence of 30 exposure variables in the ki data by within 533 
each included cohort. Cohorts are sorted by geographic region and sample size. (c) 534 
Number child anthropometry observations contributed by each cohort.    535 
 536 
 537 
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 539 
  540 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2021. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


14 
 

Figure 2 | Population intervention effects of child, parental, and household 542 
exposures on length-for-age z-scores and weight-for-length z-scores at age 24 543 
months. 544 
(a) Population intervention effects on child length-for-age z-scores (LAZ) at age 24 545 
months.  546 
(b) Population intervention effects on child weight-for-length z-scores (WLZ) at age 24 547 
months.  548 
Exposures were rank ordered in both panels by effects on LAZ. Each exposure label 549 
includes the reference level used to estimate population intervention effects, shifting 550 
exposures for all children from their observed exposure to the reference level. Cohort-551 
specific estimates were adjusted for all measured confounders using ensemble machine 552 
learning and TMLE, and then pooled using random effects (Methods). Columns for each 553 
exposure summarize the number of children that contributed to each analysis and the 554 
percentage of children for whom exposure was shifted to the reference level, and the 555 
estimated population intervention effect (PIE) and 95% confidence interval. 556 

 557 
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 560 
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Figure 3 | Effect of key exposures on the trajectories, timing, and severity of child 563 
growth faltering  564 
(a) Child length-for-age Z-score (LAZ) and weight-for-length Z-score (WLZ) trajectories, 565 
stratified by categories of maternal height (N=413,921 measurements, 65,061 children, 566 
20 studies).  567 
(b) Child LAZ and WLZ, stratified by categories of maternal BMI (N=373,382 568 
measurements, 61,933 children, 17 studies). 569 
(c) Associations between key exposures and wasting cumulative incidence, stratified by 570 
the age of the child during wasting incidence.  Gray points indicate cohort-specific 571 
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estimates. 572 
(d) Associations between key exposures and growth faltering of different severities. 573 
Contrasts are between the highest and lowest risk exposure category of each exposure, 574 
which are printed in each panel title. Gray points indicate cohort-specific estimates. 575 
 576 
 577 

   579 
Figure 4 | Early life growth faltering increases risk of more severe growth faltering 580 
and mortality.  581 
(a) Adjusted differences in linear growth velocity (in centimeters) across 3-month age 582 
bands, by quartile of weight-for-length z-score (WLZ) in the preceding three months. The 583 
reference group is children in the first quartile of WLZ in the previous age period. The panel 584 
with black points on the far right shows the pooled estimates, unstratified by child age. 585 
Velocity was calculated from the closest measurements within 14 days of the start and 586 
end of the age period. 587 
(b) Relative risk of stunting onset after age 6 months between children who experienced 588 
measures of early wasting compared to children who did not experience the measure of 589 
early wasting. Gray points indicate cohort-specific estimates. 590 
(c) Association between cumulative incidences before age 6 months of combinations of 591 
growth faltering and persistent wasting from ages 6-24 months (33 cohorts, 6,046 cases, 592 
and 68,645 children) and concurrent wasting and stunting at 18 months. (31 cohorts, 1,447 593 
cases, and 22,565 children). Combined measures of growth faltering occurred in the same 594 
measurement, though children may not have experienced the combined measurement 595 
during other measurements before 6 months. 596 
(d) Hazard ratios between non-overlapping measures of growth faltering and mortality 597 
before 24 months (8 cohorts, 1,689 deaths with ages of death, and 63,812 children). 598 
Gray points indicate cohort-specific estimates in figures a-d. 599 
 600 
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Extended Data Figure 1 | Example forest plot of cohort-specific and pooled 604 
parameter estimates 605 
Cohort-specific estimates of the cumulative incidence ratio of stunting are plotted on 606 
each row, comparing the risk of any stunting from birth to 24 months among boys 607 
compared to a reference level of girls. Below the solid horizontal line are region-specific 608 
pooled measures of association, pooled using random-effects models. Below the 609 
dashed line are overall pooled measures of association, comparing pooling using 610 
random or fixed effects models. The primary results reported throughout the manuscript 611 
are overall (not region stratified) estimates pooled using random effects models.  612 

 613 
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Extended Data Figure 2 | Heatmap of significance and direction across exposure-617 
outcome combinations.  618 

The heatmap shows the significance and direction of estimates through the cell 619 
colors, separated across primary outcomes by child age. Red and orange cells are 620 
exposures where the outcome is estimated have an increased probability of 621 
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occurring compared to the reference level (harmful exposures except for recovery 622 
outcomes), while blue and green cells are exposures associated with a decreased 623 
probability of the outcome (protective exposures except for recovery outcomes). The 624 
outcomes are labeled at the top of the columns, with each set of three columns the 625 
set of three ages analyzed for that outcome.  Each row is a level of an exposure 626 
variable, with reference levels excluded.  Rows are sorted top to bottom by 627 
increasing average p-value. Grey cells denote comparisons that were not estimated 628 
or could not be estimated because of data sparsity in the exposure-outcome 629 
combination. All point estimates and confidence intervals for exposure-outcome 630 
pairs with P-values plotted in this figure are viewable online at (https://child-631 
growth.github.io/causes).  632 
 633 

    634 
 635 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2021. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://child-growth.github.io/causes
https://child-growth.github.io/causes
https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


21 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2021. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


22 
 

 637 
Extended Data Figure 3 | Age-stratified population intervention effects in length-638 
for-age Z-scores. 639 
Exposures, rank ordered by population intervention effect on child LAZ, stratified by the 640 
age of the child at the time of anthropometry measurement. The population intervention 641 
effect is the expected difference in mean Z-score if all children had the reference level 642 
of the exposure rather than the observed exposure distribution. For all plots, reference 643 
levels are printed in the exposure label. Estimates were adjusted for all other measured 644 
exposures not on the causal pathway. 645 
 646 
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Extended Data Figure 4 | Age-stratified population intervention effects in weight-655 
for-length Z-scores. 656 
Exposures, rank ordered by population intervention effects on child WLZ,, stratified by 657 
the age of the child at the time of anthropometry measurement. The population 658 
intervention effect is the expected difference in population mean Z-score if all children 659 
had the reference level of the exposure rather than the observed distribution. For all 660 
plots, reference levels are printed next to the name of the exposure. Estimates are 661 
adjusted for all other measured exposures not on the causal pathway. 662 
 663 
 664 
 665 

Extended Data Figure 5 | Mediation of parental anthropometry effects by birth size 667 
on child Z-scores at 24 months. 668 
Mediating effect of adjusting for birth anthropometry and at-birth characteristics on the 669 
estimated Z-score differences between levels of parental anthropometry. Primary 670 
estimates were adjusted for all other measured exposures not on the causal pathway, 671 
while the mediation analysis estimates were additionally adjusted for birth weight, birth 672 
length, gestational age at birth, birth order, vaginal birth vs. C-section, and home vs. 673 
hospital delivery. Only estimates from cohorts measuring at least 4 of the 6 at-birth 674 
characteristics were used to estimate the pooled Z-score differences (n = 7 cohorts, 675 
17,130 observations). Mediation estimates were slightly attenuated toward the null, and 676 
only in the case of maternal height and child LAZ were they statistically different from 677 
the primary analysis. These results imply that the causal pathway between parental 678 
anthropometry and growth faltering operates through its effect on birth size, but most of 679 
the effect is through other pathways. 680 
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Extended Data Figure 6 | Rank-ordered associations between child, parental, and 682 
household characteristics and population attributable fractions of stunting and 683 
wasting. 684 

 685 
(a) Exposures, rank ordered by population intervention effect on the cumulative 686 

incidence of child stunting between birth and 24 months.  687 
(b) Exposures, rank ordered by population intervention effect on the cumulative 688 

incidence of child wasting between birth and 24 months.  689 
The population attributable fraction is the estimated proportion of the observed 690 
outcome in the whole population attributable to the exposure. For at-birth exposures, 691 
at-birth stunting and wasting is excluded, and for postnatal exposures including 692 
breastfeeding practice and diarrheal disease, the cumulative incidence of stunting 693 
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and wasting from 6-24 months is used. For all plots, reference levels are printed next 694 
to the name of the exposure. Estimates are adjusted for all other measured 695 
exposures not on the causal pathway. 696 
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Extended Data Figure 7 | Regionally-stratified population attributable differences 698 
in length-for-age Z-scores. 699 
Exposures, rank ordered by population intervention effect on child LAZ at 24 months, 700 
stratified by region. The population intervention effect is the expected difference in 701 
population mean Z-score if all children had the reference level of the exposure rather 702 
than the observed distribution. For all plots, reference levels are printed next to the 703 
name of the exposure. Estimates were adjusted for all other measured exposures not 704 
on the causal pathway.  705 
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Extended Data Figure 8 | Regionally-stratified population attributable differences 707 
in weight-for-length Z-scores. 708 
Exposures, rank ordered by population attributable difference on child WLZ at 24 709 
months, stratified by region. The population attributable difference is the expected 710 
difference in population mean Z-score if all children had the reference level of the 711 
exposure rather than the observed distribution. For all plots, reference levels are printed 712 
next to the name of the exposure. Estimates were adjusted for all other measured 713 
exposures not on the causal pathway  714 
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Extended Data Figure 9 | Comparing fixed-reference and optimal intervention 716 
estimates of the population intervention effect.  717 
Pooled population intervention effects on child LAZ and WHZ at 24 months, with the X-718 
axis showing attributable differences using a fixed, and the Y-axis showing the optimal 719 
intervention attributable difference, where the level the exposure is shifted to can vary 720 
by child. Points are labeled with the specific risk factor. Estimates farther from the 721 
diagonal line have larger differences between the static and optimal intervention 722 
estimates. The optimal intervention attributable differences, which are not estimated 723 
with an a-priori specified low-risk reference level, were generally close to the static 724 
attributable differences, indicating that the chosen reference levels were the lowest risk 725 
strata in most or all children. 726 
 727 
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Extended Data Figure 10 | Difference between adjusted and unadjusted Z-score 729 
effects by number of selected adjustment variables.  730 
Points mark the difference in estimates unadjusted and adjusted estimates of the 731 
difference in average Z-scores between exposed and unexposed children across 33 732 
cohorts, 30 exposures and length-for-age and weight-for-length Z-score outcomes 733 
included in the analysis. Different cohorts measured different sets of exposures, and a 734 
different number of adjustment covariates were chosen for each cohort-specific 735 
estimate based on outcome sparsity, so cohort-specific estimates adjust for different 736 
covariates and numbers of covariates. The plot shows no systematic bias between 737 
unadjusted and adjusted estimates based on number of covariates chosen. The blue 738 
line shows the average difference between adjusted estimates from unadjusted 739 
estimates, fitted using a cubic spline. 740 
 741 
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Extended Data Figure 12 | Assessing sensitivity of estimates to unmeasured 743 
confounding using E-values  744 
An E-value is the minimum strength of association in terms of relative risk that an 745 
unmeasured confounder would need to have with both the exposure and the outcome to 746 
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explain away an estimated exposure–outcome association.1 Orange points mark the E-747 
values for the pooled estimates of relative risk for each exposure. Grey points are 748 
cohort-specific E-values for each exposure-outcome relationship. Non-significant pooled 749 
estimates have points plotted at 1.0. Orange points are median E-values among 750 
statistically significant estimates for each exposure. As an example, an unmeasured 751 
confounder would on average need to almost double the risk of both the exposure and 752 
the outcome to explain away observed significant associations for the birth length 753 
exposure. 754 
 755 
 756 
Extended data table 1 757 

Region, Study ID Country 
Study 
Years Design 

Childre
n 
Enrolle
d* 

Anthropometry 
measurement ages 
(months) 

Total 
measure
ments* 

Primary 
References 

South Asia 

Biomarkers for EE Pakistan 
2013-
2015 

Prospec
tive 
cohort 380 Birth, 1, 2, ..., 18 8918 

Iqbal et al 2018 
Nature Scientific 
Reports2 

Resp. Pathogens Pakistan 
2011 - 
2014 

Prospec
tive 
cohort 284 Birth, 1, 2, ..., 17 3177 

Ali et al 2016 
Journal of Medical 
Virology3 

Growth Monitoring 
Study Nepal 

2012 - 
Ongoi
ng 

Prospec
tive 
cohort 698 Birth, 1, 2, …, 24 13487 Not yet published 

MAL-ED Nepal 
2010 - 
2014 

Prospec
tive 
cohort 240 Birth, 1, 2, …, 24 5936 

Shrestha et al 
2014 Clin Infect 
Dis4 

CMC Birth Cohort, 
Vellore India 

2002 - 
2006 

Prospec
tive 
cohort 373 Birth, 0.5, 1, 1.5, ..., 24 9131 

Gladstone et al. 
2011 NEJM5 

MAL-ED India 
2010 - 
2012 

Prospec
tive 
cohort 251 Birth, 1, 2, ..., 24 5947 

John et al 2014 
Clin Infect Dis6  

Vellore Crypto Study India 
2008 - 
2011 

Prospec
tive 
cohort 410 Birth, 1, 2, ..., 24 9825 

Kattula et al. 2014 
BMJ Open7  

CMIN 
Banglad
esh 

1993 - 
1996 

Prospec
tive 
Cohort 280 Birth, 3, 6, ..., 24  5399 

Pathela et al 2007 
Acta Paediatrica8  

TDC India 2008-
2011 

Quasi-
experim
ental 

160 Birth, 1, 2, ..., 24 3723 Sarkar et al. 2013 
BMC Public Health  

MAL-ED 
Banglad
esh 

2010 -
2014 

Prospec
tive 
cohort 265 Birth, 1, 2, ..., 24 5816 

Ahmed et al 2014 
Clin Infect Dis9  

PROVIDE RCT 
Banglad
esh 

2011 -
2014 

Individu
al RCT 700 

Birth, 6, 10, 12, 14. 17, 
18, 24, 39, 40, 52, 53 
(weeks) 12165 

Kirkpatrick et al 
2015 Am J Trop 
Med Hyg10  

Food Suppl RCT India 
1995 - 
1996 

Individu
al RCT 418 Baseline, 6, 9, 12  2242 

Bhandari et al 
2001 J Nutri11  

Optimal Infant 
Feeding India 

1999 - 
2001 

Cluster 
RCT 1535 Birth, 3, 6, ..., 18 9539 

Bhandari et al 
2004 J Nutri12  

        

NIH Birth Cohort 
Banglad
esh 

2008 - 
2009 

Prospec
tive 
Cohort 629 Birth, 3, 6, ..., 12 6216 

Korpe et al. 2016 
PLOS NTD13  

JiVitA-4 Trial 
Banglad
esh 

2012 - 
2014 

Cluster 
RCT 5444 6, 9, 12, 14, 18 36167 

Christian et al 2015 
IJE14  

JiVitA-3 Trial 
Banglad
esh 

2008 - 
2012 

Cluster 
RCT 27342 Birth, 1, 3, 6, 12, 24 109535 

West et al JAMA 
201415  
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NIH Cryptosporidium 
Study 

Banglad
esh 

2014 - 
2017 

Prospec
tive 
cohort 758 Birth, 3, 6, ..., 24 9774 

Steiner et al 2018 
Clin Infect Dis16  

        

Africa 

MAL-ED 
Tanzani
a 

2009 - 
2014 

Prospec
tive 
cohort 262 Birth, 1, 2, ..., 24 5857 

Mduma et al 2014 
Clin Infect Dis17   

Tanzania Child 2 
Tanzani
a 

2007 - 
2011 

Individu
al RCT 2400 1, 2, ..., 20  32198 

Locks et al Am J 
Clin Nutr 201618  

MAL-ED 
South 
Africa 

2009 - 
2014 

Prospec
tive 
cohort 314 Birth, 1, 2, ..., 24 6478 

Bessong et al 2014 
Clin Infect Dis19  

MRC Keneba Gambia 
1987 - 
1997 Cohort 2931 Birth, 1, 2, ..., 24 40952 

Schoenbuchner et 
al. 2019, AJCN20  

ZVITAMBO Trial 
Zimbab
we 

1997 - 
2001 

Individu
al RCT 14104 Birth, 6 wks, 3, 6, 9, 12 73651 

Malaba et al 2005 
Am J Clin Nutr21  

Lungwena Child 
Nutrition RCT Malawi 

2011 - 
2014 

Individu
al RCT 840 Birth, 1-6 wk, 6, 12 18 4346 

Mangani et al. 
2015, Mat Child 
Nutr22   

iLiNS-Zinc Study 
Burkina 
Faso 

2010 - 
2012 

Cluster 
RCT 3266 9, 12, 15, 18 10552 

Hess et al 2015 
Plos One23  

CMIN GB94 Guinea 
Bissau 

1994 - 
1997 

Prospec
tive 
Cohort 

870 Enrollment and every 3 
months after 

6459 Valentiner-Branth 
2001 Am J Clin 
Nutr 

Latin America 

MAL-ED Peru 
2009 - 
2014 

Prospec
tive 
cohort 303 Birth, 1, 2, ..., 24 6442 

Yori et al 2014 Clin 
Infect Dis24  

CONTENT Peru 
2007 - 
2011 

Prospec
tive 
cohort 215 Birth, 1, 2, ..., 24 8339 

Jaganath et al 
2014 
Helicobacter25  

Bovine Serum RCT 
Guatem
ala 

1997 - 
1998 

Individu
al RCT 315 Baseline, 1, 2, ...,8 2551 

Begin et al. 2008, 
EJCN26   

MAL-ED Brazil 
2010 - 
2014 

Prospec
tive 
cohort 233 Birth, 1, 2, ..., 24 5092 

Lima et al 2014 
Clin Infect Dis27  

CMIN Brazil89 Brazil 1989-
2000 

Prospec
tive 
Cohort 

119 Birth, 1, 2, ..., 24 889 Moore et al. 2001 
Int J Epidemiol. 

CMIN Peru95 Peru 1995 - 
1998 

Prospec
tive 
Cohort 

224 Birth, 1, 2, ..., 24 3979 Checkley et al. 
2003 Am J 
Epidemiol.  

CMIN Peru89 Peru 1989 - 
1991 

Prospec
tive 
Cohort 

210 Birth, 1, 2, ..., 24 2742 Checkley et al. 
1998 Am J 
Epidemiol.  

        

Europe 

PROBIT Study Belarus 
1996 - 
1997 

Cluster 
RCT 16898 1, 2, 3, 6, 9, 12  124509 

Kramer et al 2001 
JAMA28  

Mortality analysis only 
Burkina Faso Zinc 
trial 

Burkina 
Faso 

2010-
2011 

Cluster 
RCT 7167 6, 10, 14, 17, 22 15155 

Becquey et al 2016 
J Nutr29  

Vitamin A Trial India 
1995-
1996 

Cluster 
RCT 3983 1, 3, 6, 9, 12  32570 

WHO CHD Vitamin 
A Group 1998 
Lancet30  

iLiNS-DOSE Malawi 
2009-
2011 

Individu
al RCT 1932 6, 9, 12, 18 13801 

Maleta et al. 2015 
J Nutr22  

iLiNS-DYAD-M Malawi 
2011-
2015 

Individu
al RCT 1235 1, 6, 12, 18 9207 

Ashorn et al 2015 
J. Nutr22  

*Children enrolled is for children with measurements under 2 years of age. Total measurements are number of measurements of 
anthropometry on children under 2 years of age. 

 758 
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Extended data table 2 759 
All exposures included in the analysis, as well as the categories the exposures were classified into 760 

across all cohorts, categorization rules, and the total number of children and percent of children in each 761 
category. We selected the exposures of interest based on variables present in multiple cohorts that met 762 
our inclusion criteria, were found to be important determinants of stunting and wasting in prior 763 
literature, and could be harmonized across cohorts for pooled analyses.  764 
 765 
Exposure variable N children under 24 

months with both 
measured exposure 
and length 

Exposure levels [N (%)] 

First listed level is reference 

Categorization rules 

Sex 78751 Female: 38444 (48.8%) 
Male: 40307 (51.2%) 

 

Gestational age at birth 45269 Full or late term: 23313 (51.5%) 
Preterm: 6328 (14%) 
Early term: 15628 (34.5%) 

<260 days is preterm, [260-274) 
days is early term, >= 274 is full 
term 

Birthweight (kg) 46099 1: 17294 (37.5%) 
2: 14107 (30.6%) 
3+: 14698 (31.9%) 

 

Birth length (cm) 46099 1: 17294 (37.5%) 
2: 14107 (30.6%) 
3+: 14698 (31.9%) 

 

Birth order 46099 1: 17294 (37.5%) 
2: 14107 (30.6%) 
3+: 14698 (31.9%) 

 

Delivery location 8487 0: 2793 (32.9%) 
1: 5694 (67.1%) 

 

Delivery method 63259 0: 5108 (8.1%) 
1: 58151 (91.9%) 

 

Maternal weight 59256 >=45 kg: 40338 (68.1%) 

<45 kg: 18918 (31.9%) 
 

Cutoff chosen because a 45kg 
heavy, 19 year old woman has a 
WAZ of -2 

Maternal height 60742 >=150 cm: 44831 (73.8%) 

<150 cm: 15911 (26.2%) 

Cutoff chosen because a 150cm 
tall, 19 year old woman has a 
HAZ of -2 

Maternal body mass index (BMI) 57627 >=20 BMI: 34952 (60.7%) 
< 20 BMI: 22675 (39.3%) 

 

Calculated from maternal height 
and weight. Excludes mothers 
whose only weight 
measurement was taken during 
pregnancy. A 45 kg, 150 cm 
woman (the cutoffs for height 
and weight) has a BMI of 20.  

Mother's age 70548 [20-30): 41707 (59.1%) 
<20: 17826 (25.3%) 
>=30: 11015 (15.6%) 

 

Maternal education 69971 High: 23013 (32.9%) 
Low: 23702 (33.9%) 
Medium: 23256 (33.2%) 

Classified by splitting 
distribution of numbers of years 
of educations into thirds within 
each cohort, or grouping 
ordered categories of 
educational attainment into 
three levels. 

Paternal height 15772 >=162 cm: 15079 (95.6%) 
<162 cm: 693 (4.4%)  
 

Cutoff chosen because a 162cm 
tall, 19 year old man has a HAZ 
of -2 

Paternal age 18976 >=35: 2289 (12.1%) 
<30: 13002 (68.5%) 
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[30-35): 3685 (19.4%) 

Paternal education 65728 High: 12684 (19.3%) 
Low: 23089 (35.1%) 
Medium: 29955 (45.6%) 

Classified by splitting 
distribution of numbers of years 
of educations into thirds within 
each cohort, or grouping 
ordered categories of 
educational attainment into 
three levels. 

Caregiver marital status 38222 0: 36393 (95.2%) 
1: 1829 (4.8%) 

 

Asset based household wealth 
index 

36754 WealthQ4: 9618 (26.2%) 
WealthQ3: 9165 (24.9%) 
WealthQ2: 9012 (24.5%) 
WealthQ1: 8959 (24.4%) 

First principal component of a 
principal components analysis 
of all recorded assets owned by 
the household (examples: cell 
phone, bicycle, car). 

Household food security 24461 Food Secure: 12534 (51.2%) 
Mildly Food Insecure: 7921 (32.4%) 
Food Insecure: 4006 (16.4%) 

Combination of three food 
security scales: 

1. The Household 
Hunger Scale (HHS)31 

2. Food Access Survey 
Tool (FAST)32 

3. USAID Household 
Food Insecurity 
Access Scale (HFIAS), 
with middle 2 
categories classified 
as mildly food 
insecure.33 

And one survey question from 
the NIH Bangladesh birth cohort 
and NIH Bangladesh 
Cryptosporidium cohort: 

“In terms of household food 
availability, how do you classify 
your household?“                                                                                             

1. Deficit in whole year  
2. Sometimes deficit 
3. Neither deficit nor 

surplus 
4. Surplus 

Where the middle two 
categories were classified as 
mildly food insecure. 

Improved floor  35354 1: 4693 (13.3%) 
0: 30661 (86.7%) 

 

Improved sanitation 35086 1: 24119 (68.7%) 
0: 10967 (31.3%) 

WHO Joint Monitoring program 
definition 

Improved water source 35284 1: 33777 (95.7%) 
0: 1507 (4.3%) 

WHO Joint Monitoring program 
definition 

Clean cooking fuel usage 1401 1: 407 (29.1%) 
0: 994 (70.9%) 

 

Number of children <5 in the 
household 

31610 1: 18963 (60%) 
2+: 12647 (40%) 

 

Number of individuals in the 
household 

1805 3 or less: 363 (20.1%) 
4-5: 745 (41.3%) 
6-7: 452 (25%) 
8+: 245 (13.6%) 

 

Number of rooms in household 35929 4+: 2492 (6.9%) 
1: 20210 (56.2%) 
2: 9484 (26.4%) 
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3: 3743 (10.4%) 

Rain season 9769 Opposite max rain: 2469 (25.3%) 

Pre max rain: 2248 (23.0%) 

Max rain: 2718 (27.8%) 

Post max rain: 2334  

(23.9%)  

 

 

Rainfall data was extracted from 
Terraclimate, a dataset that 
combines readings from 
WorldClim data, CRU Ts4.0, and 
the Japanese 55-year Reanalysis 
Project.34 For each study region, 
we averaged all readings within 
a 50 km radius from the study 
coordinates. If GPS locations 
were not in the data for a 
cohort, we used the 
approximate location of the 
cohort based on the published 
descriptions of the cohort. The 
three-month period opposite 
the three months of maximum 
rainfall was used as the 
reference level (e.g., if June-
August was the period of 
maximum rainfall, the reference 
level is child mean WLZ during 
January-March). Due to the 
time-varying nature of this 
exposure, N’s are reported for 
children with length measures 
at 24 months and measures of 
rain season. 

Breastfed hour after birth 49168 1: 11609 (23.6%) 
0: 37559 (76.4%) 

 

Exclusive or predominant 
breastfeeding in the first 6 
months of life 

26173 1: 18285 (69.9%) 
0: 7888 (30.1%) 

Exclusive breastfeeding: mother 
reported only feeding child 
breastmilk on all dietary surveys 

Predominant breastfeeding: 
mother reported only feeding 
child breastmilk, other liquids, 
or medicines on all dietary 
surveys 

Cumulative percent of days with 
diarrhea under 6 months 

3735 [0%, 2%]: 2245 (60.1%) 
>2%: 1490 (39.9%) 

Percent days defined as 
proportion of disease 
surveillance days a child had 
diarrhea during. Diarrhea 
defined by 3 or more loose 
stools, or bloody stool, in a 24 
hour period. Only included 
studies with at least 100 disease 
surveillance measurements 
during age range. 

Cumulative percent of days with 
diarrhea under 24 months 

12639 [0%, 2%]: 6133 (48.5%) 
>2%: 6506 (51.5%) 

Percent days defined as 
proportion of disease 
surveillance days a child had 
diarrhea during. Diarrhea 
defined by 3 or more loose 
stools, or bloody stool, in a 24 
hour period. Only included 
studies with at least 100 disease 
surveillance measurements 
during age range. 

 766 
 767 
 768 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2021. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


40 
 

Extended data table 3 769 
Under 1-year country-specific mortality rate is from UNICEF (https://data.unicef.org/country), and is 770 
higher than the cohort-specific under 2-year mortality rate for all cohorts used in the mortality analysis. 771 
 772 

Study Country 
Number of 

deaths 
under 2 

Under 2 
mortality rate 

in cohort (%) 

Infant (Under 1)  
mortality rate in 

cohort (%) 

Infant (Under 1) 
mortality country 
rate (UNICEF 

Burkina Faso 
Zn 

Burkina 
Faso 39 0.54 0.42 5.4 

iLiNS-DOSE Malawi 53 2.74 1.92 3.1 

iLiNS-
DYAD-M Malawi 54 4.37 3.48 3.1 

JiVitA-3 Bangladesh 934 3.41 2.85 2.6 

JiVitA-4 Bangladesh 49 0.9 0.39 2.6 

Keneba The 
Gambia 65 2.22 1.52 3.6 

VITAMIN-A India 108 2.70 2.7 2.8 

ZVITAMBO Zimbabwe 1113 7.89 6.57 3.8 

 773 
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Materials and Methods 870 
1. Study designs and inclusion criteria 871 

We included all longitudinal observational studies and randomized trials available through the ki project 872 
on April 1, 2018 that met five inclusion criteria: 1) conducted in low- or middle-income countries; 2) 873 
enrolled children between birth and age 24 months and measured their length and weight repeatedly 874 
over time; 3) did not restrict enrollment to acutely ill children; 4) enrolled children with a median year of 875 
birth after 1990; 5) collected anthropometry measurements at least quarterly. We included all children 876 
under 24 months of age, assuming months were 30.4167 days, and we considered a child’s first measure 877 
recorded by age 7 days as their anthropometry at birth. Four additional studies with high-quality 878 
mortality information that measured children at least every 6 months were included in the mortality 879 
analyses (The Burkina Faso Zinc trial, The Vitamin-A trial in India, and the iLiNS-DOSE and iLiNS-DYAD-M 880 
trials in Malawi). 881 
 882 

2. Statistical analysis 883 
Analyses were conducted in R version 4.0.5. All pooled, regional, and cohort-specific results, results for 884 
secondary outcomes, and sensitivity analyses are available online at (https://child-885 
growth.github.io/causes). 886 

 887 
 888 

3. Outcome definitions 889 
 890 

We calculated length-for-age Z-scores (LAZ), weight-for-age Z-scores (WAZ), and weight-for-length Z-891 
scores (WLZ) using WHO 2006 growth standards.1 We used the medians of triplicate measurements of 892 
heights and weights of children from pre-2006 cohorts to re-calculate Z-scores to the 2006 standard. We 893 
dropped 1,190  (0.2%) unrealistic measurements of LAZ (>+6 or <–6 Z), 1,330  (0.2%) measurements of 894 
WAZ (> 5 or < –6 Z),  and 1,670  (0.3%) measurements of WLZ (>+5 or –5 Z), consistent with WHO 895 
recommendations.2 See Benjamin-Chung (2020) for more details on cohort inclusion and assessment of 896 
anthropometry measurement quality.3 We also calculated the difference in linear and ponderal growth 897 
velocities over three-month periods. We also calculated the difference in linear and ponderal growth 898 
velocities over three-month periods. We calculated the change in LAZ, WAZ, length in centimeters, and 899 
weight in kilograms within 3-month age intervals, including measurements within a two-week window 900 
around each age in months to account for variation in the age at each length measurement. 901 

 We defined stunting as LAZ < –2, severe stunting as LAZ < –3, underweight as WAZ < –2, severe 902 
underweight as WAZ < –3, wasting as WLZ < –2, severe wasting as WLZ < –3, concurrent stunting and 903 
wasting as LAZ < –2 and WLZ < –2. Children with ≥ 50% of WLZ measurements < –2 and at least 4 904 
measurements over a defined age range were classified as persistently wasted (e.g., birth to 24 months, 905 
median interval between measurements: 80 days, IQR: 62-93). Children were assumed to never recover 906 
from stunting episodes, but children were classified as recovered from wasting episodes (and at risk for 907 
a new episode of wasting) if their measured WLZ was ≥ –2 for at least 60 days (details in Mertens et. al 908 
(2020)).4  Stunting reversal was defined as children stunted under 3 months whose final two 909 
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measurements before 24 months were non-stunted. Child mortality was all-cause and was restricted to 910 
children who died after birth and before age 24 months. For child morbidity outcomes (Figure 4c), 911 
concurrent wasting and stunting prevalences at age 18 months were estimated using the 912 
anthropometry measurement taken closest to age 18 months, and within 17-19 months of age, while 913 
persistent wasting was estimated from child measurements between 6 and 24 months of age. We chose 914 
18 months to calculate concurrent wasting and stunting because it maximized the number of child 915 
observations at later ages when concurrent wasting and stunting was most prevalent, and used ages 6-916 
24 months to define persistent wasting to maximize the number of anthropometry measurements taken 917 
after the early growth faltering exposure measurements.4 918 
 919 

4. Estimating relationships between child, parental, and household exposures and measures of 920 
growth faltering 921 
 922 
4.1 Exposure definitions  923 

We selected the exposures of interest based on variables present in multiple cohorts that 924 
met our inclusion criteria, were found to be important predictors of stunting and wasting in 925 
prior literature and could be harmonized across cohorts for pooled analyses. Extended Data 926 
Table 2 lists all exposures included in the analysis, as well as exposure categories used across 927 
cohorts, and the total number of children in each category. For parental education and asset-928 
based household wealth, we categorized to levels relative to the distribution of educational 929 
attainment within each cohort. Continuous biological characteristics (gestational age, birth 930 
weight, birth height, parental weight, parental height, parental age) were classified based on a 931 
common distribution, pooling data across cohorts. Our rationale was that the meaning of socio-932 
economic variables is culturally context-dependent, whereas biological variables should have a 933 
more universal meaning. 934 

 935 
4.2 Risk set definition 936 
      For exposures that occur or exist before birth, we considered the child at risk of incident 937 
outcomes at birth. Therefore, we classified children who were born stunted (or wasted) as 938 
incident episodes of stunting (or wasting) when estimating the relationship between household 939 
characteristics, paternal characteristics, and child characteristics like gestational age, sex, birth 940 
order, and birth location.  941 

For postnatal exposures (e.g., breastfeeding practices, WASH characteristics, birth weight), 942 
we excluded episodes of stunting or wasting that occurred at birth. Children who were born 943 
wasted could enter the risk set for postnatal exposures if they recovered from wasting during 944 
the study period (see Mertens et al. 2020 for details).4 This restriction ensured that for postnatal 945 
exposures, the analysis only included postnatal, incident episodes. Children born or enrolled 946 
wasted were included in the risk set for the outcome of recovery from wasting within 90 days 947 
for all exposures (prenatal and postnatal).  948 

 949 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2021. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


46 
 

 950 
4.3 Estimating differences in outcomes across categories of exposures 951 
We estimated measures of association between exposures and growth faltering outcomes by 952 
comparing outcomes across categories of exposures in four ways:  953 
Mean difference of the comparison levels of the exposure on LAZ, WLZ at birth, 6 months, and 954 
24 months. The Z-scores used were the measures taken closest to the age of interest and within 955 
one month of the age of interest, except for Z-scores at birth which only included a child’s first 956 
measure recorded by age 7 days. We also calculated mean differences in LAZ, WAZ, weight, and 957 
length velocities. 958 
Prevalence ratios (PR) between comparison levels of the exposure, compared to the reference 959 
level at birth, 6 months, and 24 months. Prevalence was estimated using anthropometry 960 
measurements closest to the age of interest and within one month of the age of interest, except 961 
for prevalence at birth which only included measures taken on the day of birth.  962 
Cumulative incidence ratios (CIR) between comparison levels of the exposure, compared to the 963 
reference level, for the incident onset of outcomes between birth and 24 months, 6-24 months, 964 
and birth-6 months.   965 
Mean Z-scores by continuous age, stratified by levels of exposures, from birth to 24 months 966 
were fit within individual cohorts using cubic splines with the bandwidth chosen to minimize the 967 
median Akaike information criterion across cohorts.5 We estimated splines separately for each 968 
exposure category. We pooled spline curves across cohorts into a single prediction, offset by 969 
mean Z-scores at one year, using random effects models.6 970 

 971 
4.4 Estimating population attributable parameters 972 

We estimated three measures of the population-level effect of exposures on growth faltering 973 
outcomes:  974 
Population intervention impact (PIE), a generalization of population attributable risk, was 975 
defined as the change in population mean Z-score if the entire population’s exposure was set to 976 
an ideal reference level. For each exposure, we chose reference levels based on prior literature  977 
or as the category with the highest mean LAZ or WLZ across cohorts. 978 
Population attributable fraction (PAF) was defined as the proportional reduction in cumulative 979 
incidence if the entire population’s exposure was set to an ideal low risk reference level. We 980 
estimated the PAF for the prevalence of stunting and wasting at birth, 6, and 24 months and 981 
cumulative incidence of stunting and wasting from birth to 24 months, 6-24 months, and from 982 
birth to 6 months. For each exposure, we chose the reference level as the category with the 983 
lowest risk of stunting or wasting. 984 
Optimal individualized intervention impact We employed a variable importance measure (VIM) 985 
methodology to estimate the impact of an optimal individualized intervention on an exposure.7 986 
The optimal intervention on an exposure was determined through estimating individualized 987 
treatment regimes, which give an individual-specific rule for the lowest-risk level of exposure 988 
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based on individuals’ measured covariates. The covariates used to estimate the low-risk level 989 
are the same as those used for the adjustment documented in section 6 below. The impact of 990 
the optimal individualized intervention is derived from the VIM, which is the predicted change in 991 
the population-mean outcome from the observed outcome if every child’s exposure was shifted 992 
to the optimal level. This differs from the PIE and PAF parameters in that we did not specify the 993 
reference level; moreover, the reference level could vary across participants. 994 
PIE and PAF parameters assume a causal relationship between exposure and outcome. For some 995 
exposures, we considered attributable effects to have a pragmatic interpretation — they 996 
represent a summary estimate of relative importance that combines the exposure’s strength of 997 
association and its prevalence in the population.8  Comparisons between optimal intervention 998 
estimates and PIE estimates are shown in Extended Data Fig 9. 999 

 1000 
5. Estimation approach 1001 

Estimation of cohort-specific effects 1002 
For each exposure, we used the directed acyclic graph (DAG) framework to identify potential 1003 

confounders from the broader set of exposures used in the analysis.9 We did not adjust for 1004 
characteristics that were assumed to be intermediate on the causal path between any exposure and the 1005 
outcome, because while controlling for mediators may help adjust for unmeasured confounders in some 1006 
conditions, it can also lead to collider bias.10,11 Detailed lists of adjustment covariates used for each 1007 
analysis are available online (https://child-growth.github.io/causes/dags.html). Confounders were not 1008 
measured in every cohort, so there could be residual confounding in cohort-specific estimates. 1009 
 For missing covariate observations, we imputed missing measurements as the median 1010 
(continuous variables) or mode (categorical variables) among all children within each cohort, and 1011 
analyses included an indicator variable for missingness in the adjustment set. When calculating the 1012 
median for imputation, we used children as independent units rather than measurements so that 1013 
children with more frequent measurements were not over-represented.  1014 

Unadjusted PRs and CIRs between the reference level of each exposure and comparison levels 1015 
were estimated using logistic regressions.12 Unadjusted mean differences for continuous outcomes were 1016 
estimated using linear regressions.   1017 
 To flexibly adjust for potential confounders and reduce the risk of model misspecification, we 1018 
estimated adjusted PRs, CIRs, and mean differences using targeted maximum likelihood estimation 1019 
(TMLE), a two-stage estimation strategy that incorporates state-of-the-art machine learning algorithms 1020 
(super learner) while still providing valid statistical inference. 13,14 The effects of covariate adjustment on 1021 
estimates compared to unadjusted estimates is show bin in Extended Data Fig 10, and E-values, 1022 
summary measures of the strength of unmeasured confounding needed to explain away observed 1023 
significant associations, are plotted in Extended Data Fig 11.15 The super learner is an ensemble machine 1024 
learning method that uses cross-validation to select a weighted combination of predictions from a 1025 
library of algorithms.16 We included in the library simple means, generalized linear models, LASSO 1026 
penalized regressions,17 generalized additive models,18 and gradient boosting machines.19 The super 1027 
learner was fit to maximize the 10-fold cross-validated area under the receiver operator curve (AUC) for 1028 
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binomial outcomes, and minimize the 10-fold cross-validated mean-squared error (MSE) for continuous 1029 
outcomes. That is, the super learner was fit using 9/10 of the data, while the AUC/MSE was calculated 1030 
on the remaining 1/10 of the data. Each fold of the data was held out in turn and the cross-validated 1031 
performance measure was calculated as the average of the performance measures across the ten folds. 1032 
This approach is practically appealing and robust in finite samples, since this cross-validation procedure 1033 
utilizes unseen sample data to measure the estimator’s performance. Also, the super learner is 1034 
asymptotically optimal in the sense that it is guaranteed to outperform the best possible algorithm 1035 
included in the library as sample size grows. The initial estimator obtained via super learner is 1036 
subsequently updated to yield an efficient double-robust semi-parametric substitution estimator of the 1037 
parameter of interest.13 To estimate the R2 of models including multiple exposures, we fit super learner 1038 
models, without the targeted learning step, and within each cohort measuring the exposures. We then 1039 
pooled cohort-specific R2 estimates using fixed effects models.   1040 

We estimated influence curve-based, clustered standard errors to account for repeated 1041 
measures in the analyses of recovery from wasting or progression to severe wasting. We assumed that 1042 
the children were the independent units of analysis unless the original study had a clustered design, in 1043 
which case the unit of independence in the original study were used as the unit of clustering. We used 1044 
clusters as the unit of independence for the iLiNS-Zinc, Jivita-3, Jivita-4, Probit, and SAS Complementary 1045 
Feeding trials. We estimated 95% confidence intervals for incidence using the normal approximation. 1046 

Mortality analyses estimated hazard ratios using Cox proportional hazards models with a child’s 1047 
age in days as the timescale, adjusting for potential confounders, with the growth faltering exposure 1048 
status updated at each follow-up that preceded death or censoring by age 24 months. Growth faltering 1049 
exposures included moderate (between –2 Z and –3 Z) wasting, stunting, and underweight, severe 1050 
(below –3 Z) wasting, stunting, and underweight, and combinations of concurrent wasting, stunting, and 1051 
underweight. Growth faltering categories were mutually exclusive within moderate or severe 1052 
classifications, so children were classified as only wasted, only stunted, or only underweight, or some 1053 
combination of these categories. We estimated the hazard ratio associated with different 1054 
anthropometric measures of CGF in separate analyses, considering each as an exposure in turn with the 1055 
reference group defined as children without the deficit. For children who did not die, we defined their 1056 
censoring date as the administrative end of follow-up in their cohort, or age 24 months (730 days), 1057 
whichever occurred first. Because mortality was a rare outcome, estimates are adjusted only for child 1058 
sex and trial treatment arm. To avoid reverse causality, we did not include child growth measures 1059 
occurring within 7 days of death. Extended Data Table 3 lists the cohorts used in the mortality analysis, 1060 
the number of deaths in each cohort, and a comparison to country-level infant mortality rates.  1061 
 1062 
Data sparsity 1063 
We did not estimate relative risks between a higher level of exposure and the reference group if there 1064 
were 5 or fewer cases in either stratum. In such cases, we still estimated relative risks between other 1065 
exposure strata and the reference strata if those strata were not sparse. For rare outcomes, we only 1066 
included one covariate for every 10 observations in the sparsest combination of the exposure and 1067 
outcome, choosing covariates based on ranked deviance ratios.  1068 
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  1069 
6. Pooling parameters 1070 

We pooled adjusted estimates from individual cohorts using random effects models, fit using restricted 1071 
maximum likelihood estimation. The pooling methods are detailed in Benjamin-Chung (2020).1  All 1072 
parameters were pooled directly using the cohort-specific estimates of the same parameter, except for 1073 
population attributable fractions. Pooled PAFs were calculated from random-effects pooled population 1074 
intervention impacts (PIEs), and pooled outcome prevalence in the population using the following 1075 
formulas:20 1076 
 1077 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑂𝑂𝑂𝑂 × 100        (1) 1078 

𝑃𝑃𝑃𝑃𝑃𝑃 95%𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑃𝑃𝑃𝑃 95% 𝐶𝐶𝐶𝐶
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑂𝑂𝑂𝑂 × 100       (2) 1079 

 1080 
For PAFs of exposures on the cumulative incidence of wasting and stunting, the pooled cumulative 1081 
incidence was substituted for the outcome prevalence in the above equations. We used this method 1082 
instead of direct pooling of PAFs because, unlike PAFs, PIEs are unbounded with symmetrical confidence 1083 
intervals.  1084 

For figures 3a-c, mean trajectories estimated using cubic splines in individual studies and then 1085 
curves were pooled using random effects.6 Curves estimated from all  anthropometry  measurements of 1086 
children taken from birth to 24 months of age within studies that measured the measure of maternal 1087 
anthropometry. 1088 
 1089 

7. Sensitivity analyses 1090 
We compared estimates pooled using random effects models, which are more conservative in the 1091 
presence of heterogeneity across studies, with estimates pooled using fixed effects, and we compared 1092 
adjusted estimates with estimates unadjusted for potential confounders. We estimated associations 1093 
between growth faltering and mortality at different ages, after dropping the trials measuring children 1094 
less frequently than quarterly, and using TMLE instead of Cox proportional hazard models, and we 1095 
plotted Kaplan Meier curves of child mortality, stratified by measures of early growth faltering. We also 1096 
conducted a sensitivity analysis on methods of pooling splines of child growth trajectories, stratified by 1097 
maternal anthropometry. We re-estimated the attributable differences of exposures on WLZ and LAZ at 1098 
24 months, dropping the PROBIT trial, the only European study. Results from secondary outcomes and 1099 
sensitivity analyses are viewable online at https://child-growth.github.io/causes. 1100 
 1101 
Data and code availability 1102 
The data that support the findings of this study are available from the Bill and Melinda Gates Foundation 1103 
Knowledge Integration project upon reasonable request. Replication scripts for this analysis are 1104 
available here: https://github.com/child-growth/ki-longitudinal-growth. 1105 
 1106 
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