Seroprevalence of IgG antibodies against SARS coronavirus 2 in Belgium – a serial prospective cross-sectional nationwide study of residual samples

Herzog Sereina, PhD¹ *, De Bie Jessie, PhD²,³ *, Abrams Steven, Prof³,⁴, Wouters Ine, PhD², Ekinci Esra, MSc², Patteet Lisbeth, PhD⁵, Coppens Astrid, MSc⁵, De Spiegeleer Sandy, MSc⁶, Beutels Philippe, Prof¹, Van Damme Pierre, Prof², Hens Niel, Prof¹,⁴, Theeten Heidi, Prof²

¹ Centre for Health Economics Research and Modelling of Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk, Belgium.
² Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, B-2610 Wilrijk, Belgium
³ Global Health Institute, Family Medicine and Population Health (FAMPOP), University of Antwerp, B-2610 Wilrijk, Belgium.
⁴ Data Science Institute, I-BioStat, UHasselt, B-3500 Hasselt, Belgium.
⁵ Algemeen Medisch Laboratorium (AML), Sonic Healthcare, B-2020 Antwerp, Belgium.
⁶ Laboratoire Luc OLIVIER, B-5380 Fernelmont, Belgium.

* Herzog Sereina and De Bie Jessie contributed equally to this paper

Corresponding author:

Sereina Herzog, Centre for Health Economics Research and Modelling of Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein, I B-2610 Wilrijk, Belgium; sereina.herzog@uantwerpen.be

Word count main text: 3000

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Key points

Question What is the seroprevalence, i.e. prevalence of IgG antibodies against SARS-CoV-2 in blood serum, and seroincidence in Belgium during the first epidemic wave?

Findings This prospective serial cross-sectional nationwide seroprevalence study using residual samples indicated that SARS-CoV-2 seroprevalence doubled within 3 weeks’ time from 3% to 6% during the initial phase of the lockdown period. Estimated seroprevalence plateaued and seroincidence decreased thereafter.

Meaning During lockdown, an initial small but increasing fraction of the Belgian population showed serologically detectable signs of exposure to SARS-CoV-2, which did not further increase when confinement measures eased and full lockdown was lifted.
Abstract

Importance In light of the COVID-19 epidemic in Belgium, knowledge on the susceptibility to SARS-CoV-2 and its evolution over time, related to control measures that have been taken, is tremendously important to guide policy makers aiming to control the epidemic wave.

Objective To assess the evolving seroprevalence and seroincidence with regards to a national lockdown in Belgium.

Design, setting and participants In this prospective serial cross-sectional nationwide seroprevalence study, stratified by age, sex and region, 3000-4000 residual samples were collected in each of five collection periods during and after national lockdown between 30 March and 5 July 2020. Residual sera from outside hospitals were randomly selected by diagnostic laboratories and analyzed for IgG antibodies against S1 proteins of SARS-CoV-2 with a semi-quantitative commercial ELISA. Seropositivity (overall, by age category and sex) and seroincidence over 3 to 4 week periods were estimated for the Belgian population.

Exposure Recent exposure to SARS-CoV-2 was estimated in the Belgian population.

Main outcomes and measures The primary study outcomes were the weighted seroprevalence and seroincidence against SARS-CoV-2 in the Belgian population during five consecutive periods in Belgium.

Results The weighted overall seroprevalence initially increased from 2.9% (95% CI 2.3 to 3.6) to 6.0% (95% CI 5.1 to 7.1), implying a seroincidence of 3.1% (95% CI 1.9 to 4.3) between the 1st and 2nd collection period. Thereafter, seroprevalence stabilized and decreased from the 3rd to 5th period from 6.9% (95% CI 5.9 to 8.0) to 4.5% (95% CI 3.7 to 5.4).

Conclusions and relevance During lockdown, an initial small but increasing fraction of the Belgian population showed serologically detectable signs of exposure to SARS-CoV-2, which did not further increase when confinement measures eased and full lockdown was lifted. In combination with the reported COVID-19 cases in Belgium, the estimated seroprevalences reported in this study may have
helped to calibrate the Belgian response to the epidemic’s first wave and to guide policy makers to control for potential future waves. Seroprevalence estimates indicate that we are far from herd-immunity. Moreover, more research is needed to confirm if seropositivity correlates to protective immunity against the virus.
Introduction

The World Health Organization (WHO) announced on 11 March 2020, that the SARS-CoV2 outbreak that started in December 2019 became a pandemic.¹ Clinical symptoms caused by the virus include loss of taste and smell, fever, malaise, dry cough, shortness of breath, and respiratory distress. Reported illnesses have ranged from very mild to severe (from progressive respiratory failure to death).² In addition, increasing age, male sex, smoking, and comorbidities such as cardiovascular diseases and diabetes have been identified as risk factors for developing severe illness.³ By mid July 2020, over 12 million confirmed cases in 216 countries were reported to be infected by SARS-CoV-2 causing coronavirus disease 2019 (COVID-19).⁴

Currently, there is no vaccine or effective cure available to protect against or treat COVID-19. Therefore, unprecedented measures such as physical distancing, large-scale isolation and closure of borders, schools and workplaces were considered in many countries to mitigate the spread of the disease and to reduce the corresponding pressure on the respective healthcare systems.

In Belgium, the first confirmed case was reported on 4 February 2020, an asymptomatic person repatriated from Wuhan, China.⁵ The first locally transmitted cases were confirmed on 2 March 2020. Thereafter, the number of confirmed COVID-19 cases rapidly increased. The Belgian Scientific Institute for Public Health, Sciensano, reported that as of 9 July 2020, 62210 cases were confirmed (0.5% of the Belgian population; 6.6% of the tested individuals) and 9778 died. The majority of the reported Belgian cases are in the age category of 80-89 years (19.0%; 11805/62210).⁶ Importantly, the PCR testing capacity to diagnose SARS-CoV-2 infected subjects in Belgium was very limited during the first weeks of lockdown (2000 – 3000 tests/day) and only increased up to 10000 – 20000 tests/day thereafter.⁶ Therefore, more knowledge on and estimation of the age-specific susceptibility to SARS-CoV-2, and its evolution over time, related to control measures that have been taken, is tremendously important to guide policy makers aiming to control the epidemic wave and potential future waves. These needs were translated into the following research objectives: (1) to constitute a national serum bank with residual samples on a periodic basis (cross-sectional study design) in order to estimate the
seroprevalence and seroincidence in Belgium and to follow-up trends herein over time and (2) to estimate the age-specific prevalence of SARS-CoV-2 antibodies.
Methods

Study design

This prospective cross-sectional nationwide seroprevalence study using residual samples is conducted in individuals aged 0-101 years. In each collection period, sera were collected over one week’s time. The five collection periods represent different exposure periods: (1) 30 March – 5 April 2020, mainly reflects exposure prior to the lockdown; (2) 20 – 26 April 2020 and (3) 18 – 25 May 2020, additionally reflects exposure during full lockdown; (4) 8 – 13 June 2020, additionally reflects exposure during the period of first relaxation of confinement measures (partial re-opening of schools); and (5) 29 June – 4 July 2020, additionally reflects changes during further relaxations (re-opening of shops, restaurants and bars) – see also Figure 1.

A serum bank covering all Belgian regions was constituted by collecting residual sera from ten private diagnostic laboratories. The majority of residual samples originate from two large routine laboratories in Flanders (AML) and Wallonia (laboratoire Luc OLIVIER), each with a large geographical network. Each of these laboratories have a high daily throughput of blood samples, easily receiving up to 23000 samples weekly during the study period for a variety of diagnostics. Of the weekly incoming samples only a fraction, which was randomly selected, was used in this study (1/11th to 1/3rd). Each laboratory was allocated a fixed number of samples per age group (10-year age bands, oldest age group ≥90 years), per region (Wallonia, Flanders, Brussels), and per collection period. The number of samples was stratified by sex within each age group.

Residual samples in this study originated from ambulatory patients (including people living in nursing homes) visiting their doctor (mainly general practitioners) for any reason including primary care, routine check-up or follow-up of pathology. To avoid disproportionate selection of subjects with acute and/or severe illness including COVID-19, samples originating from hospitals and triage centers were excluded from the study. Further background information on the residual samples was not available, except for requested COVID-19 diagnostics. COVID-19 diagnostics, performed within the two weeks
prior to blood sampling, were requested in only 1-2% of the residual samples collected in period 1 and
2 (PCR test) and in 6-8% of the residual samples in period 3-5 (PCR and/or serology test).

The study protocol was approved by the Ethics Committee of the University Hospital Antwerp-
University of Antwerp on March 30, 2020 (ref 20/13/158; Belgian Number B3002020000047) and
agreed with inclusion without informed consent, on the condition of the samples being collected
unlinked and anonymously (see Supplement for study protocol).

Sample size

The sample size per periodical collection has been calculated according to: (1) previous experience
with various age-specific analyses of seroprevalence data in Belgium,\(^7\) (2) estimates of the number of
COVID-19 infected people in Belgium and (3) the estimated evolution of the epidemic curve. Based
on case numbers (hospitalized cases confirmed with COVID-19), the overall prevalence of COVID-19
infection at the start of the study was estimated to be about 0.4% (42797/11460000). A total sample
size of 4000 in the first collection period ensures the estimation of the overall prevalence with a
margin of error of 0.2%; the precision regarding the age-specific prevalence estimates is lower due to
the division of samples across the age groups. An increase in prevalence was expected during the
study period, as such 3000 samples from the 2\(^{nd}\) collection period onwards were planned. From
collection period 2 onwards, target numbers per age group were adapted according to feasibility,
sample availability and aiming at maximizing precision and assessing the impact of a change in
epidemic control policy.

Sample preparation and analysis

After centrifugation of blood samples, selected residual sera (minimum 0.5 mL) were kept in the
fridge (4-8°C) for a maximum of 14 days and finally stored at -20°C according to manufacturer’s
instructions. Serology results were obtained through a semi-quantitative test kit (EuroImmun,
Luebeck, Germany), measuring IgG antibodies against S1 proteins of SARS-CoV-2 in serum
(ELISA). The test was performed as previously described by Lassaunière \textit{et al.}\(^8\) The Dutch Taskforce
Serology has compared all available data using the EuroImmun ELISA and determined a specificity of
99.2% and sensitivity ranging from 64.5% to 87.8% in pauci-symptomatic patients and patients with severe disease, respectively, using samples from patients >14 days after onset of disease symptoms.\(^9\)

Presence of detectable IgG antibodies indicates prior exposure to SARS-CoV-2, an infection which may be resolved or is still resolving, and possibly protection against reinfection.\(^8\,10\)

Data management

Data collected for each sample include: unique sample code, sample date, age, sex, and postal code of the place of residence. Samples were delivered anonymously to the investigators. Triage and check for duplicates was done in the collecting laboratories before anonymization.

Serological results were linked to the database based on the sample code. No further data entry was required. All files were kept on a secured server at the University of Antwerp. Data will be stored for 20 years.

Statistical analysis

The serostatus of an individual was considered to be positive if the measured IgG OD values were \(\geq 1.1\), equivocal IgG values were considered negative following the manufacturer’s recommendations which were developed for clinical use. Descriptive analysis included mapping of sample origin as well as serostatus (crude figures) up to municipality level per collection period.

For all analyses, the overall seroprevalence estimate and estimates by 10-year age bands, and sex for each collection period were derived by fitting generalized linear models (binomial outcome, logit link function) to the serostatus of the weighted samples for each collection period. Weighted seroprevalence estimates were presented together with 95% CIs. These CIs are Wald-based and relying on design-based standard error estimates. The overall seroincidence estimate and estimates by 10-year age bands, and sex between collection periods were derived by calculating the difference between the corresponding estimated seroprevalence from generalized linear models (binomial outcome, logit link function) fitted to the serostatus of the weighted samples including an interaction term for the collection period. Weighted seroincidence estimates are displayed with corresponding 95% CIs constructed using the multivariate delta method to quantify the variability thereabout.\(^{11}\)
sensitivity analysis was done by calculating Rogan–Gladen adjusted estimators with specificity of 99.2% and sensitivity of 64.5% and 87.8%, respectively. We assigned for each collection period weights to the samples such that they replicate the Belgian population structure according to age, sex and provinces for 2020. Weights are computed by comparing the sample and population frequencies, i.e. we used a complete cross frequency table for sex and 10-year age bands and a marginal distribution for the provinces. Weights were trimmed to a maximum value of 3 to reduce the influence of samples in under-represented strata (eFigure 1, Supplement). All analyses were done with the statistical software R (version 4.0.2) using the package survey (version 4.0).
Results

A total of 16532 serum samples were collected over five 1 week periods between 30 March and 5 July 2020 to measure the anti-SARS-Cov2 IgG sero-status. The regional, age, and sex distribution of these samples is shown in Table 1 and in eFigure2 (Supplement); deviations from the population distribution were taken into account in the estimation of the weighted seroprevalences. Figure 2 shows exemplary for the collection periods 1, 2, and 5 that the origin of the samples was nicely distributed throughout Belgium (panel A-C) and that positive samples were spread over municipalities across Belgium (panel D-F); eFigure 3 (Supplement) shows all collection periods.

At the start, the seroprevalence estimates per age category ranged between 1.4% (20-30 years) and 5.9% (0-10 years) in collection period 1. The weighted overall seroprevalence showed a significant increase between collection period 1 and 2, i.e. from 2.9% (95% CI 2.3 to 3.6) to 6.0% (95% CI 5.1 to 7.1) over a period of 3 weeks (Figure 3, panel A) which is also shown by the overall seroincidence estimate of 3.1% (95% CI 1.9 to 4.3) (Figure 3, panel D). This significant increase in seroprevalence is reflected in the age categories 20-30, 80-90, and ≥90 as indicated by the seroincidence estimates (Figure 3, panel B+E) and within each sex (Figure 3, panel C+F). Among age categories in collection period 2, the seroprevalence of the oldest category (≥90 years) significantly differed from the seroprevalences in age categories 10-20, 30-40, 60-70, and 70-80 years.

In comparison with period 2, the overall seroprevalence stabilized thereafter to 6.9% (95% CI 5.9-8.0), 5.5% (95% CI 4.7-6.5) and 4.5 (95% CI 3.7-5.4) as shown in Figure 3 (panel A), however, a significant decrease is observed when comparing the 3rd and 5th period with a seroincidence of -2.4% (95% CI -1.0 to -3.7). This decrease was also observed for two subgroups: age category 40-50, and females. No significant differences between males and females in seroincidence or in seroprevalence were identified in any of the periods. The sensitivity analysis results do not change the interpretations (eFigure 4-9, Supplement).
Discussion

This study estimates seroprevalence and seroincidence of IgG antibodies against S1 proteins of SARS-CoV-2 in Belgium based on a total of 16532 residual sera periodically collected in five rounds from 30 March – 4 July 2020. The results give an indication of the state of the COVID-19 epidemic in Belgium, showing that only an estimated 2.9% (95% CI 2.3-3.6) of the population had detectable antibodies against SARS-CoV-2 at the start of lockdown, which doubled to 6.0% (95% CI 5.1-7.1) three weeks later (seroincidence +3.1%, 95% CI 1.9-4.3). However, seroprevalence stabilized thereafter to 6.9% (95% CI 5.9-8.0), 5.5% (95% CI 4.7-6.5) and even decreased to 4.5% (95% CI 3.7-5.4) which is also reflected by the seroincidence of -2.4% (95% CI -1.0 to -3.7) between third and the last collection.

Stringent containment measures were enforced in Belgium as of 13 March 2020. These included travel bans, closures of borders, schools, shops, factories and social gatherings in an effort to contain the spread of COVID-19 and decrease the pressure on health care systems. These intervention measures slowed down the number of COVID-19 patients that were hospitalized daily. In the first two weeks of the lockdown (up to 25 March 2020), over 500 cases were hospitalized daily, and this growth rate halved four weeks later.6 By 26 April 2020, 0.1% of the Belgian population had been hospitalized for COVID-19 (14639/11.46x106) and 0.4% of the Belgian population had tested positive for SARS-CoV-2 (46134/11.46x106) on a total of 345047 screened patients.6 The estimated seroprevalence (6.0%; 95% CI 5.1-7.1) in the same period (20-26 April 2020) indicates that far more people had generated antibodies against SARS-CoV-2 and thus had been in contact with the virus than what was expected from the number of COVID-19 confirmed cases reported in Belgium at that time. These seroprevalences provide insights into the dark number of SARS-CoV-2 infections, which is indeed a multiple of the confirmed cases. By end of June, the number of daily hospital admissions in Belgium dropped below 20 and the number of confirmed COVID-19 cases stabilized at a lower level than the estimated seroprevalence in Belgium (Table 2). Clearly, the reported numbers of COVID-19 confirmed cases represent an underestimation and were influenced by the testing policy as testing was initially focused on the most severe symptomatic cases, presenting to hospitals. Vice versa, also the
seroprevalences in this study are possibly underestimated because residual samples from hospitals were excluded. Moreover, patients with upper respiratory tract infections were not allowed to visit general practitioners and ambulatory care during the lockdown period, possibly contributing to further underestimation of the seroprevalences in collection periods 2, 3 and 4. The risk population, who possibly adhered better to self-confinement, as well as patients with non-urgent health problems were less likely to visit their doctor until later stages of the epidemic (collection period 5). This may result in a higher proportion of non-COVID-19 infected subjects of whom residual samples have been analyzed in the 5th collection period, hence contributing, at least partly, to a significant drop in seroprevalences and seroincidence towards the 5th collection period. Regardless of this change in care seeking behavior throughout the study, the current seroprevalence study in combination with the reported confirmed COVID-19 cases may form a useful tool to estimate the total number of recently acquired SARS-CoV-2 infections in Belgium. Moreover, this study gives an indication of the seroprevalence and seroincidence in light of the confinement measures taken in Belgium which helps understanding the spread of SARS-CoV-2 and the significance of periodical variations.

From the above it is clear that determination of the extent of spread of SARS-CoV-2 at country level is a challenge. Moreover, the sensitivity of the serological test used in this study depends on the time since the onset of symptoms, \(^8\) thereby preventing a fraction of the infected subjects to test seropositive if not infected long enough or too long prior to testing. By day 14 after symptom onset, IgG against SARS-CoV-2 are detectable in serum of the majority of patients.\(^2\) Possibly, recent SARS-CoV-2 infected subjects may have been included in the current study of whom antibodies were not yet detectable in blood. Asymptomatic and pauci-symptomatic SARS-CoV-2 infected subjects of whom it is reported that they may develop low or no antibodies against SARS-CoV-2, may have been included in this study as well.\(^15\) Moreover, recently it has been reported that IgG levels start to decrease within 2-3 months after infection with SARS-CoV-2\(^16–18\), potentially contributing to the observed decline in seroprevalence and seroincidence in the 5th collection period. As a result, both pauci-symptomatic subjects as well as subjects that suffered from a SARS-CoV-2 infection more than 2-3 months ago may have been falsely seronegative, and thus also cause underestimation of the incidence of infection.
To easily visualize global SARS-CoV-2 seroprevalence estimates, a dashboard called SeroTracker has been developed.19 The majority of the reported seroprevalence estimates so far (17 countries) are in the USA and Europe, with Belgium being ranked in the top 5 with the highest seroprevalence. These seroprevalence estimates provide a consistent picture of increasing incidences across Europe.

The plateauing of seroprevalences in this study is in accordance with findings from the UK20 and Spain21, and can be attributed to the waning of IgG antibodies against SARS-CoV-216–18 in the absence of large new exposure since the start of the epidemic in Belgium. It implies that seroprevalence studies on SARS-CoV-2 would only be able to give information on the past 2-3 months. To which extent these recovered seronegative subjects are prone to reinfection is not conclusive yet, as it depends, among others, on eventual T-cell dependent immunity induced by the virus.22 On the other hand, if presence of the antibodies would correlate to some extent with immunity, levels of seropositivity observed in this study and their rapid decline suggest that we are still far away from natural herd immunity and there will be a substantial need for mass vaccination programs to build artificial herd immunity and to save lives23.

\textbf{Conclusion}

Serial seroprevalence monitoring indicates that in Belgium, a densely populated country in the center of Western Europe, SARS-CoV-2 virus was introduced all over the country from the start and the proportion of the infected seropositive population at least doubled within 3 weeks’ time from 3% to 6% during the start of the lockdown. In line with reported confirmed cases and COVID-19 deaths, estimated seroprevalence plateaued and seroincidence decreased thereafter. The observed decay of the proportion seropositives by the end of the study corroborates recent reports of quick antibody waning after mild or asymptomatic infection.16–18 Serial seroprevalence and seroincidence monitoring in combination with COVID-19 diagnostic testing data can provide a useful tool to estimate the proportion of the population recently infected with SARS-CoV-2. These findings may have helped to calibrate the Belgian response to the epidemic’s first wave and to guide policy makers to control for potential future waves. Seroprevalence estimates indicate that we are far from herd-immunity.
Moreover, more research is needed to confirm if seropositivity correlates to protective immunity against the virus.
Data sharing

The authors are willing to share original data on request.

Contributors

SH, JDB and IW interpreted study results and drafted and revised the manuscript. SH also contributed to the study design and planned and performed statistical analysis. SA contributed to the study design, planned statistical analysis, interpreted study results and revised the manuscript. EE contributed to drafting the manuscript. LP and AC contributed to the study design, sample analysis and interpreted the study results and revised the manuscript. SDS contributed to sample analysis and revised the manuscript. PB, PVD, NH and HT contributed to the study design, interpreted the study results and revised the manuscript. PVD and HT also conceived the study. NH also planned the conduct of statistical analysis. All authors had access to all of the data and take full responsibility for the integrity of the data, the accuracy of the data analysis, and the finished article. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Acknowledgments

This work received funding from the European Union’s Horizon 2020 research and innovation program - project EpiPose (No 101003688), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 682540 TransMID), the Flemish Research Fund (FWO 1150017N) and from The Antwerp University Fund; which is a community of donors who contribute to research and education with their personal commitment through a donation, gift, bequest or through academic chairs. The funders had no role in study design, data collection, data analysis, data interpretation, writing or submitting of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

We acknowledge the Belgian laboratories that voluntarily collected sera and data for this study: Algemeen Medisch Laboratorium (AML, Antwerpen), Laboratoire Luc OLIVIER (Fernelmont),
Declerck Klinisch Laboratorium (Ardooie), Klinisch Labo RIGO (Genk), Labo Anacura/Nuytinck
(Evergem), Labo Somedi (Heist-op-den-Berg), Labo LBS (Brussels), Laboratoire Bauduin (Enghien),
Medisch labo Bruyland (Kortrijk), Synlab (Luik).

Prof. Dr. Beutels reported the University of Antwerp received funding from Pfizer outside the
submitted work. Prof. Dr. Hens reported the University of Antwerp and Hasselt University received
grants from GSK Biologicals, Pfizer, J&J, Flemish Government, and European Union outside the
submitted work. Prof. Dr. Van Damme reported the University of Antwerp received research grants
from GSK Biologicals, Pfizer, SANOFI, Merck, Themis, Osivax, J&J and Abbott, The Bill &
Melinda Gates Foundation, PATH, Flemish Government, and European Union outside the submitted
work. All declared support is outside the submitted work; no financial relationships with any
organizations that might have an interest in the submitted work in the previous three years; no other
relationships or activities that could appear to have influenced the submitted work.
Figure captions

Figure 1. Overview of collection periods related to confinement measures taken in Belgium.
Collection periods 1 to 5 are indicated with curly brackets whereas the weighted overall seroprevalence estimates are displayed 14 days earlier in order to reflect the minimum time needed to build up IgG antibodies against SARS-CoV-2 that can be detected by ELISA tests.

Figure 2. Map of Belgium at municipality level for collection period 1, 2, and 5. Panel A-C: number of samples tested in each municipality; panel D-F: presence of IgG-positive (red) versus exclusively IgG-negative (green) samples in each municipality.

Figure 3. Weighted seroprevalence (A, B, C) and seroincidence (D, E, F) estimates in Belgium.
Overall (panel A+D), by 10-year age bands (panel B+E), by sex (panel C+F).
Table 1. Description of the study population, collection period 1 till 5

<table>
<thead>
<tr>
<th></th>
<th>Collection period 1</th>
<th>Collection period 2</th>
<th>Collection period 3</th>
<th>Collection period 4</th>
<th>Collection period 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Number of samples</td>
<td>3910</td>
<td>3397</td>
<td>3242</td>
<td>2960</td>
<td>3023</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wallonia</td>
<td>1511</td>
<td>38.6</td>
<td>1539</td>
<td>45.3</td>
<td>1292</td>
</tr>
<tr>
<td>Flanders</td>
<td>2195</td>
<td>56.1</td>
<td>1556</td>
<td>45.8</td>
<td>1542</td>
</tr>
<tr>
<td>Brussels</td>
<td>204</td>
<td>5.2</td>
<td>302</td>
<td>8.9</td>
<td>408</td>
</tr>
<tr>
<td>Age in years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>36</td>
<td>0.9</td>
<td>85</td>
<td>2.5</td>
<td>174</td>
</tr>
<tr>
<td>10-20</td>
<td>294</td>
<td>7.5</td>
<td>442</td>
<td>13.0</td>
<td>431</td>
</tr>
<tr>
<td>20-30</td>
<td>436</td>
<td>11.2</td>
<td>375</td>
<td>11.0</td>
<td>414</td>
</tr>
<tr>
<td>30-40</td>
<td>461</td>
<td>11.8</td>
<td>407</td>
<td>12.0</td>
<td>424</td>
</tr>
<tr>
<td>40-50</td>
<td>468</td>
<td>12.0</td>
<td>406</td>
<td>12.0</td>
<td>411</td>
</tr>
<tr>
<td>50-60</td>
<td>498</td>
<td>12.7</td>
<td>430</td>
<td>12.7</td>
<td>419</td>
</tr>
<tr>
<td>60-70</td>
<td>507</td>
<td>13.0</td>
<td>426</td>
<td>12.5</td>
<td>417</td>
</tr>
<tr>
<td>70-80</td>
<td>506</td>
<td>12.9</td>
<td>316</td>
<td>9.3</td>
<td>236</td>
</tr>
<tr>
<td>80-90</td>
<td>493</td>
<td>12.6</td>
<td>315</td>
<td>9.3</td>
<td>163</td>
</tr>
<tr>
<td>≥90</td>
<td>211</td>
<td>5.4</td>
<td>195</td>
<td>5.7</td>
<td>153</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>1799</td>
<td>46.0</td>
<td>1599</td>
<td>47.1</td>
<td>1587</td>
</tr>
<tr>
<td>female</td>
<td>2111</td>
<td>54.0</td>
<td>1798</td>
<td>52.9</td>
<td>1655</td>
</tr>
</tbody>
</table>
Table 2. Number of confirmed COVID-19 cases versus weighted seroprevalence in Belgium during the different collection periods

<table>
<thead>
<tr>
<th>Collection period</th>
<th>Average daily hospitalized cases*</th>
<th>Testing strategy for COVID-19 cases*</th>
<th>Confirmed COVID-19 cases*</th>
<th>Weighted seroprevalence (with 95% CI)</th>
<th>Weighted seroincidence# (with 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 Mar – 5 Apr 2020</td>
<td>Only asymptomatic cases and health care workers (2000-3000 tests/day)</td>
<td>19691/11.46 milj = 0.2%</td>
<td>2.9% (2.3 to 3.4)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>20 – 26 Apr 2020</td>
<td>Including National testing platform in elderly homes (± 10000 tests/day)</td>
<td>46134/11.46 milj = 0.4%</td>
<td>6.0% (5.1 to 7.1)</td>
<td>3.1% (1.9 to 4.3)</td>
</tr>
<tr>
<td>3</td>
<td>18 – 25 May 2020</td>
<td>Including testing of all suspected COVID-19 cases (10000-20000 tests/day)</td>
<td>57342/11.46 milj = 0.5%</td>
<td>6.9% (5.9 to 8.0)</td>
<td>0.9% (-0.6 to 2.3)</td>
</tr>
<tr>
<td>4</td>
<td>8 – 13 Jun 2020</td>
<td>(± 10000 tests/day)</td>
<td>59918/11.46 milj = 0.5%</td>
<td>5.5% (4.7 to 6.5)</td>
<td>-1.4% (-2.8 to 0.03)</td>
</tr>
<tr>
<td>5</td>
<td>29 Jun – 3 Jul 2020</td>
<td>(± 10000 tests/day)</td>
<td>61727/11.46 milj = 0.5%</td>
<td>4.5% (3.7 to 5.4)</td>
<td>-1.0 (-2.3 to 0.3)</td>
</tr>
</tbody>
</table>

*reported at last day of collection period by Sciensano®; #in comparison with previous collection period
References

A

B

C

D

E

F

Collection period
1 (30.03−05.04)
2 (20.04−26.04)
3 (18.05−25.05)
4 (08.06−13.06)
5 (29.06−04.07)

Collection period
1 to 2
2 to 3
3 to 4
4 to 5