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Abstract 
 
Forecasting influenza primes public health systems to respond, reducing transmission, morbidity 

and mortality. Most influenza forecasts to date have, by necessity, relied on spatially course-

grained data (e.g. state- or country-level incidence), and have operated at time horizons of 12 

weeks or less. If influenza outbreaks could be predicted farther in advance and with increased 

spatial precision, then limited public health resources could be adaptively managed to minimize 

spread and improve health outcomes. Here, we use real-time syndromic data from a distributed 

network of thermometers to construct city-specific forecasts of influenza-like illness (ILI) with a 

horizon of 30 weeks. Daily geolocated ILI data from the network allows for estimates of 

recurrent city-specific patterns in ILI transmission rates. These “transmission templates” are used 

to parameterize an ensemble of ILI forecasts that differ randomly in three parameters, 

representing city- and season- specific rates of susceptible depletion and reporting, as well as 

differences in influenza season onset timing. For nine cities across the US, the best-in-hindsight 

model matches the observed data, and the best forecast variants can be identified in the early 

season. 
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Introduction 
 
Timely, location-specific forecasts of influenza-like illness (ILI) can enable more effective 

public health responses. These have the potential to reduce the size and impact of epidemics, for 

instance by prepositioning personnel, equipment and supplies to boost surge capacity, or by 

targeting vaccination or public health messaging campaigns to predicted transmission hotspots. 

The epidemic models that power these forecasts also allow inference into transmission dynamics, 

further enhancing predictive understanding of how drivers of transmission, including climate and 

demography, interact (1). These findings can inform public policy, and aid in monitoring and 

predicting the global circulation and evolution of influenza, with applications including vaccine 

development (2). Forecasting influenza also offers a unique window into the predictability of 

complex adaptive systems across scales, from viral interactions with host immune responses, to 

global patterns in the emergence and spread of novel strains (2, 3). 

 

Influenza transmission is impacted by climatic conditions, especially specific humidity (4), and 

may be affected by population size, density and socioeconomic conditions (1). As these drivers 

vary geographically and seasonally, they combine to produce different patterns of transmission 

across space and time. Influenza transmission occurs on a spatial scale of meters (e.g. a 

significant fraction of transmission probably occurs at ranges of < 1m) (5) and a temporal scale 

of hours (e.g. a significant fraction of transmission probably occurs with 24-48 hours) (6). 

Leveraging incidence data closer to the scale of transmission may improve forecasts, providing 

more accurate and precise measurements of transmission dynamics.  

 

Here we leverage city-specific data on ILI incidence to construct local forecasts with a 30-week 

horizon. The incidence data is constructed from a high-throughput syndromic surveillance 

system for feverish illness, consisting of a distributed network of thermometers with more than 

one million users across the US. These data are first used to quantify predictable variation in a 

city’s seasonal transmission pattern (“transmission templates”) based on historical data. We then 

use these transmission templates to produce long-range ILI forecasts across a range of scenarios 

for the upcoming influenza season, encompassing variation in city-specific reporting rates, 

susceptible depletion, and onset timing of the influenza season. We show that the best-in-

ensemble forecast variants are skilled at a time horizon of 30 weeks, yet identifiable by strong 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.07.20078956doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.07.20078956


 3 

performance in the early season. Our findings demonstrate the potential for distributed 

syndromic monitoring networks to generate reliable long-range ILI forecasts at the scale of 

individual cities, by leveraging high resolution ILI incidence data, combined with predictable 

variation among cities in seasonal transmission patterns. 

 

Materials and Methods 

Data 

We use daily ILI incidence data for cities across the US, collected from a network of 

thermometers managed by Kinsa Inc. The network records temperature and approximate location 

of over one million de-identified users when they take their temperature (e.g. during an illness 

episode). The temperature readings are spatially aggregated and used to construct ILI time series 

that are highly correlated to Center for Disease Control and Prevention (CDC) ILI nationally (r > 

0.95) and across CDC regions (r range 0.70-0.94) (7, 8).  

 

Analysis 

The analyses described here were conducted for nine US cities (see Figure 1). We estimated 

transmission templates using data from the 2016-2017 and 2018-2019 influenza seasons, and 

then forecasted ILI for the 2018-2019 season, starting Nov 1, 2018, with a horizon of 30 weeks. 

Our forecasting approach consists of the following steps. 

1. Starting with daily incidence data in a particular city It,, where t represents time in days, 

use the data before the point of forecasting (Nov. 1, 2018) to estimate the daily 

reproductive number Rt from (9) by solving   

𝐼"#$ = 𝑅"∑
(
𝑤(𝐼"*(     Eq. 1 

where wk is the infectivity profile for influenza, representing the probability that an 

individual who becomes infected on day t acquired the infection from an individual who 

became infected on day t-k. We approximate wk by an estimate of the generation time 

distribution for influenza, using a gamma distribution with a mean of 2.5 and variance of 0.7 

days (6). This raw estimate of Rt via equation (1) uses a smoothed version of It using on a 30-

day moving average. This smoothing removes high frequency noise, which, all else equal, 
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prevents overfitting and thus improves forecasting performance. However, this smoothing 

can also alter the amplitude of seasonal fluctuations in Rt, which can bias forecasts. To 

compensate we tune 𝑅" to 𝑅"
+, by selecting the scalar γ>0 to minimize squared error between 

It and a “backcast” made by iterating equation 1 forward as  

 

𝐼,"#$ = 𝑅"
+∑
(
𝑤(𝐼,"*(     Eq. 2 

where 𝐼," represents incidence forecasted t-steps ahead, and the objective function for 

minimization is  

 

𝑓(𝛾) = ∑1𝐼"#$ −	𝑅"
+∑
(
𝑤(𝐼,"*(4

5
    Eq. 3 

 

which typically yields values for γ between approximately 0.8 and 1.2, where γ=1 

corresponds to no modification to the raw value for Rt. 

 

2. Estimate the fraction susceptible over time from cumulative incidence (10),  

 

𝑆" = 𝑆7𝑒*9:;<;       Eq. 4 

 

where S0 = 0.68 is the expected initial proportion susceptible (11),  Jt is equal to cumulative 

incidence since July 1 immediately prior to the current influenza season in the US (i.e. the 

season to be forecasted), and the reporting term αIt models the rate at which susceptibility 

declines with increasing cumulative incidence, adjusting for the rate false positives and under 

reporting. We thus make the simplifying assumption that reporting rates are linearly 

proportional to the current incidence It, implying that as incidence increases a greater fraction 

of the true infected population is detected, and that a greater fraction of the cases that are 

detected are true positives.  The resulting susceptible construction is conditioned on α, and 

different forecasting variants in the ensemble use different values of α.  
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3. Estimate the raw transmission rate as βt = Rt/St, and the seasonal transmission template as a 

linear model of βt as a function of week of year. Let 〈𝛽〉" represent the resulting transmission 

template – the expected transmission rate in a city in the week of year associated with day t. 

To accommodate annual differences in the onset of influenza season, we use forecast variants 

that apply a scalar shift parameter τ, such that 〈𝛽〉"*@ is evaluated to calculate transmission 

rate at time t. 

 

4. Forecast by propagating the model predictions forward using  

 

𝐼,"#$ = 〈𝛽〉"*@𝑆,"𝐼,"      Eq. 5 
 

With forecasted susceptibility 𝑆," calculated using a modified version Eq. 4,  

 

     𝑆," = 𝑆7𝑒*99
A:,;<,;      Eq. 6 

 

which includes a correction factor α’ for a systematic scalar deviation in susceptible 

depletion and reporting rate constants during the forecasted season (e.g. due to antigenic shift 

or variation in vaccination coverage). 

 

 

5. Generate forecast variants by repeating steps 2-4 with different values of α and α’, as well as 

variations in a scalar template shift parameter τ. We then assess the skill of each variant in 

the ensemble over 30 weeks using root mean squared error (RMSE). 
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Results 

Seasonal transmission patterns appear to differ systematically among cities (Figure 1). This is 

consistent with previous work (1, 11), which indicates these differences are driven by climate 

(specific humidity) as well as population size and density. The magnitude of these inter-city 

differences suggest they may be robust to underlying uncertainty in rates of susceptible depletion 

and reporting, represented by the polygons in Figure 1. 

 

City-specific forecast ensembles always contained skillful variants at the 30-week time horizon 

(Figure 2). Ensembles were parameterized with these transmission templates but varied 

randomly in assumptions about reporting, susceptible depletion and the local onset of flu season. 

Both the best variant and the top 10% of variants performed well, as assessed by RMSE between 

observed and forecasted ILI incidence. The best variants are skilled enough to predict differences 

in the timing and number of peaks across cities (Figure 2). 

 

The best variants in hindsight consistently performed better than average throughout most of the 

season, starting within approximately 30 days of the forecast state date (Figure 3). This indicates 

the best variants could in principle be identified far in advance of peak incidence. 

 

Discussion 

Long-range city-specific influenza forecasting requires integrating the impacts of local drivers of 

transmission, modeling local susceptible depletion and reporting, and anticipating the impacts of 

year-to-year variation in these processes. This interannual variation may be driven by secular 

demographic or climatic processes, random differences in regional spread patterns, antigenic 

evolution of influenza viruses, and ecological interactions between the respiratory pathogens that 

contribute to ILI incidence. The approach demonstrated here uses high-resolution incidence data 

to extract information on the average result of these processes across years, then generates an 

ensemble of forecasts to encompass year-to-year variation in ILI dynamics. 

 

This path to long-range city-specific ILI forecasts rests on two results. First, we show that these 

forecast ensembles reliably contain a subset of highly skilled long-range forecasts (Figure 2). 

Second, we show that these forecasts can be identified early in the season (Figure 3). Early 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.07.20078956doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.07.20078956


 7 

identification of skilled forecast variants should allow for enrichment of the ensemble, by 

replacing variants that are performing worse than average with variants similar to those that are 

performing better than average. Thus, the next step forward with this approach is developing 

and/or implementing methods for adapting and improving the forecasting ensemble as the 

influenza season progresses. 
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Figure 1. Seasonal patterns in transmission rates in nine cities (i.e. “transmission templates”), 

estimated using daily data from July 1, 2016 – Oct 31, 2018 (i.e., the 2016-2017, and 2017-2018 

influenza seasons). Shaded regions enclose the mean weekly template values conditioned on α 

ranging from 1/3 to 3, which corresponds to peak susceptible depletion between of 

approximately 5-20%, with the yellow line indicated the mean value. 

 

  

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

New York, NY

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

Raleigh, NC

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

Atlanta, GA

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

Cleveland, OH

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

Fargo, ND

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

Chicago, IL

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

New Orleans, LA

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

Denver, CO

Jul Nov Mar Jul

Tr
an

sm
is

si
on

 ra
te

1.
3

2.
3

3.
3

Los Angeles, CA

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.07.20078956doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.07.20078956


 9 

 

 
 

 

Figure 2. Forecasting the 2018-2019 influenza season 30 weeks ahead from Nov 1, 2018. Grey 

points show daily ILI incidence, the black line is a backcast, iterating equation 2 using estimated 

Rt with the best fitting estimate of γ. The red line shows the “best-in-hindsight” variant, with skill 

assessed using RMSE on predicted versus observed incidence over the entire forecast. Red 

polygons enclose the best 10% of 1000 forecast variants which differ randomly in α, α’, and τ. 

Variants were created by sampling from uniform distribution with the following ranges: α ~ 

U(1/3, 3), α’ ~ U(1/2/,2), τ ~ U(-8 weeks, +8 weeks). Figure 3 shows the best variants are likely 

identifiable by their performance in the early season. 
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Figure 3. The best-in-hindsight variant (red line) has strong performance in the early season. 

Red polygons enclose the best 10% of 1000 forecast variants. Dashed line shows the mean 

performance across all forecast variants. Solid vertical line shows the timing of the peak 

incidence in the data for each city. 
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