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Abstract 

Acute Myocardial Infarction (AMI) is responsible for the death of millions of people annually around the world, which 
makes predictive analyses of AMI mortality risk necessary. Rich clinical data in electronic health records (EHR) 
makes such predictive modeling possible. However, missing values in EHR data is a major issue. Also, the 
interpretability of predictive models in medicine and healthcare is vital for medical professionals. Therefore, this 
study examines the impact of imputing missing values in EHR data on the performance and interpretations of 
predictive models. Our experiments showed a small standard deviation in root mean squared error of different runs 
of imputation under similar method does not necessarily imply small standard deviation in prediction models’ 
performance and interpretation. Our findings reveal that the imputation method and the level of missingness impact 
not only the predictive models’ performance but also the interpretation of the models in terms of feature importance.  

Introduction 

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide.1 Based on a recent report from the 
European Heart Network,2 CVDs cause 3.9 million deaths in Europe every year. In 2012, there were 17.5 million 
deaths from CVDs worldwide with 7.4 million deaths because of coronary heart disease and 6.7 million deaths due to 
heart attack.3 CVDs cause a heavy social and economic toll on the nations as well as governments.4 Among various 
CVDs, acute myocardial infarction (AMI) is the most severe form of coronary artery disease and a fatal CVD 
responsible for the death of millions of people annually around the world.5 Thus, predictive analyses for AMI mortality 
risk are important for early interventions and procedures.  

The wide adoption and implementation of electronic health records (EHR) systems in the United States is the result 
of a government initiative6 leading to a large amount of clinical data accumulated in digital forms.7 These data are a 
rich source of patient information for predictive analytics in healthcare.8 Predictive analytics in healthcare and clinical 
decision-support is not a new topic.9 Nevertheless, in recent years, there is an increasing demand of using routinely 
collected real-world data (RWD) such as EHRs, administrative claims, and billing data to generate real-world evidence 
(RWE) that informs medical care.10 On the other hand, the emergence and efficient implementation14 of state-of-the-
art machine learning11 and deep learning methods,12 as well as powerful computing infrastructure make predictive 
analytics using EHR data more possible than ever. 

However, using EHR data for predictive analytics with machine learning and deep learning methods is still 
challenging. One major issue is the quality of EHR data due to incompleteness.15 The existence of missing values in 
EHR data is due to various reasons including human error, lack of documentation (e.g., the medical expert did not 
document an evaluation result), or lack of collection (e.g., the medical expert did not perform an evaluation).16 Thus, 
a significant body of studies has attempted to approach this challenge by imputing missing values, rather than 
eliminating records with missing data.17 Mean imputation is a common approach for imputing missing values in EHR 
data mainly due to its ease of implementation.18 Researchers have used multiple imputation by chained equations 
(MICE)19 or its variations to deal with missing values in EHR data.16,20 Other imputation methods based on predictive 
modeling using machine learning methods are also popular approaches such as MissForest21 and K-nearest neighbors 
(KNN)-based imputation.22 A few recent studies have also used deep learning methods such as generative adversarial 
networks (GANs)23 and autoencoders for missing value imputation in EHR data.22  
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On the other hand, predictive analyses using complex machine learning methods (e.g., deep learning), which yield 
superior prediction accuracy, usually result in black-box models that are not easily interpretable by the end-users. 
Despite their promising performance, using such complex predictive models in healthcare and clinical decision-
making process is quite challenging. Medical professionals need to understand the rationale behind the predictive 
models’ prediction,24 thus, prefer less complex models such as logistic regression for clinical decision-making.12 
Researchers in the field have taken different approaches to address the interpretability of machine learning models, 
for instance, feature interaction and importance,25,26 attention mechanism,27,28 data dimensionality reduction,29,30 
knowledge distillation and rule extraction.31,32 However, there are still some fundamental issues that need to be 
addressed in this regards such as fidelity of the post-hoc interpretation methods to the reference model, evaluation of 
the interpretation methods, and design biases due to focusing on the intuition of researchers rather than real end-users’ 
(medical professionals in this context) needs. In this study, we consider the interpretation of the predictive models as 
using feature coefficients and importance of intrinsically interpretable models. Further, although missingness has been 
recognized as a major kind of the data quality issues of EHR for secondary reuse,33 how different imputation methods 
would affect interpretations of machine learning models based on EHR data has not been explored.  

Thus, inspired by the importance of predictive modeling in medicine, the challenge of missing values in EHR, and the 
necessity for building interpretable models in medicine, in this study, we examine the impact of imputation methods 
on EHR data of AMI patients in ICU on the produced interpretations of several predictive models in terms of feature 
importance. We use a complete dataset without missing values as the baseline and introduce different levels of 
missingness (i.e., from 10% to 50%) through simulations. Then, we apply different statistical and machine learning-
based imputation methods including mean (mode for two binary variables), MICE, MissForest, and a KNN-based 
method, as well as Generative Adversarial Imputation Networks (GAIN)23 - a novel imputation method based on 
neural networks. We build less complex machine learning models that are intrinsically interpretable and preferred by 
medical experts, such as logistic regression, linear support vector machine (SVM), and decision tree. We compared 
these models’ performances and interpretations. Further, we build predictive models based on DeepConsensus34 to 
experiment if the consensus mechanism would reduce the variance in the performance of predictive models based on 
slightly different imputed datasets. Our goal is to investigate the impact of imputation methods on not only the 
performance of the resulting models, but also the interpretation results. To the best of our knowledge, this is the first 
study to investigate how imputation methods might impact derived interpretations of predictive models on EHR data. 
Figure 1 demonstrates the workflow of this study. 

Figure 1. The workflow of this study. (icons are downloaded from https://www.flaticon.com/) 

 

Methods 

Missingness mechanisms  

Since there might be various reasons for a value to be missing in a dataset, there are three main categories of 
missingness mechanism, including missing completely at random (MCAR), missing at random (MAR), and not 
missing at random (NMAR). MCAR means the missingness mechanism is not dependent on the outcome variable or 
any other variables of the dataset. MAR means the missingness did not happen at random. In other words, the 
missingness is dependent on one or more variables in the dataset. NMAR, the most difficult condition to model for, 
means the missingness is dependent on the actual value of the missing data.35 Characterizing the missingness 
mechanism in EHR data can be an indicator of choosing an appropriate imputation method. This impact has been 
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explored previously.22 In this study, we focused on exploring the impact of imputation methods on models’ 
performance and derived interpretation. We simulated random missingness on the complete dataset. Any value in the 
data was as likely to be missing as any other value. Thus, the missingness mechanism in this study was MCAR.  

Data 

The Medical Information Mart for Intensive Care (MIMIC-III) database is an integration of de-identified and 
comprehensive EHR data of patients admitted to the Beth Israel Deaconess Medical Center in Boston, 
Massachusetts.36 This dataset is freely available and contains patient information spanning over more than a decade. 
MIMIC-III is widely used in different academic and industrial research. Considering the importance of studying the 
mortality risk in cardiovascular diseases, especially AMI, in this study, we focused on patients with AMI and post 
myocardial syndrome (PMS). Thus, the International Classification of Diseases, 9th revision, Clinical Modification 
(ICD-9-CM) codes considered for this study are 410.0 to 411.0. For each admission, we aggregated the laboratory and 
chart values and considered the average value of each of the 19 numerical features. We also considered two categorical 
features with few missing values including gender and initial emergency room diagnosis of AMI. Since our purpose 
for this study was to examine how the ranking of feature importance would change under different imputation methods 
and level of missingness, we did not consider longitudinal structure of features. Also, because we compared deep 
learning-based models with conventional machine learning-based models, we chose to include consistent features 
throughout the whole experiments. Further, because we should have had a reference to compare the ranking of features 
under different imputation methods and levels of missingness, we excluded features with more than 50% missing 
values and applied listwise deletion to the rest of the original dataset. The resulting complete dataset has 3054 
observations and 21 features. The binary outcome was dead or not dead within one year after admission. Features 
description and summary statistics are reported in Table 1. 

Table 1. Summary statistics of the variables in the reference complete dataset with 3054 instances. 
Variable Name Description Variable 

Type 
Min Max Median Mean Standard 

Deviation 
diastolic Diastolic blood pressure Numerical 18.31 134.69 51.2 52.2 11.28 
systolic Systolic blood pressure Numerical 37.97 484.12 104.96 105.44 22.74 
heartRate Heart rate Numerical 42 139.48 83.81 84.13 11.97 
respRate Respiratory rate Numerical 9 42.7 19.33 19.62 3.28 
bicarbonate Bicarbonate Numerical 8 41.88 24.92 24.61 3.65 
calcium Calcium Numerical 5.6 13.95 8.43 8.44 0.59 
chloride Chloride Numerical 80.42 125.61 104 104.01 4.55 
potassium Potassium Numerical 1.87 6.9 4.14 4.18 0.36 
sodium Sodium Numerical 118.18 158.5 138.72 138.67 3.47 
glucose Glucose Numerical 65.67 543 131.76 141.25 39.93 
hematocrit Hematocrit Numerical 21.11 50.61 30.97 31.53 3.6 
hemoglobin Hemoglobin Numerical 6.4 16.27 10.43 10.63 1.34 
wbc White blood cell count Numerical 0.45 107.68 10.93 11.75 5.19 
alt Alanine aminotransferase  Numerical 2 5509 30.33 89.71 270.59 
ast Aspartate 

aminotransferase 
Numerical 2 13511.7 46 142.36 486.22 

alp Alkaline phosphatase Numerical 19 1147.92 80 102.61 83.6 
albumin Albumin Numerical 1.2 5 3.2 3.2 0.6 
bilirubin Bilirubin Numerical 0.1 31.14 0.6 0.97 1.77 
admitAge Age at admission Numerical 21.22 97.52 72.55 70.89 12.96 
InitialERDiagno
sisMI (0 = No, 1 
= Yes) 

Initial emergency room 
diagnosis was AMI or rule 
out AMI  
(#0s = 2050 , #1s = 1004) 

Binary 

Not applicable 
gender (0 = 
Female, 1= 
Male) 

Gender  
(#0s = 1202, #1s = 1852) 

Binary 
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Imputation Methods  

In this study, we evaluated five different imputation methods, including (1) mean value imputation, (2) MICE, (3) K-
nearest neighbors (KNN)-based, (4) MissForest, and (5) GAIN. For implementation purposes, we used available 
packages in R to implement methods (1) to (4). The implementation code of GAIN in Python is made available by its 
authors on GitHub (https://github.com/jsyoon0823/GAIN). The performance of different imputation methods was 
compared using root mean squared error (RMSE). The details of these methods are described as follows. 

Mean value imputation: The easiest to implement and most conventional approach to impute missing values in EHR 
data is mean value imputation. However, this simplicity might result in ignoring the underlying statistical information 
in data and introduce unintentional biases in the subsequent analyses.16  

MICE: MICE is one of the most popular methods for imputing missing values in EHR data. The main reason resides 
in its ability to impute different types of variables that might be present in the EHR data. Using MICE, each variable 
with missing observations is regressed on all the remaining variables in the dataset. The missing values are replaced 
with the predicted value, and this imputation process is repeated sequentially until all missing values are imputed.  

KNN-based: KNN is a machine learning method that can be used for imputing missing values in EHR data.22 In this 
approach, missing values are replaced with the mean value of k most similar complete observations. A distance 
function (e.g., Euclidean) is used to measure this similarity.  

MissForest: MissForest is a promising imputation method for missing values in EHR data.21 In this method, first, 
mean imputation (or any other imputation method) is performed as an initial guess for the missing values. Then, 
variables in the dataset are sorted based on the amount of missing values they have with the one with fewest missing 
values ordered first. Further, for each variable x, a random forest 37 model is fitted on all other variables’ observed 
values and the outcome variable being the observed values of variable x. Then, the trained model is used to predict 
the missing values of x. This process is repeated until a stopping criterion is met.  

GAIN: Recently, GAIN, a neural network-based imputation method was introduced for missing value imputation. 
This imputation method is based on the generative adversarial networks (GAN)23 framework. In the framework, 
corresponding to a minimax two-player game, two models are trained simultaneously, a generative model and a 
discriminative model. The generative model captures the data distribution while the discriminative model estimates 
the probability of a sample being from the training data or from the generative model. The objective of the generative 
model is to make the discriminative model make more mistakes. In GAN, the generative and discriminative models 
are defined based on multilayer perceptron (feedforward neural networks). GAIN is an imputing GAN framework in 
which the goal of the generative model is to accurately impute the missing values in data, while the goal of the 
discriminative model is to predict the probability of a value being from the original dataset or from the generative 
model (observed or imputed component). The objective of the discriminative model in GAIN is to minimize the error 
loss (on guessing if the elements in the generative model’s output are produced by the generative model or from the 
original data) while the generative model’s goal is to maximize discriminative model’s mistakes. The authors of GAIN 
have reported superior imputation performance of GAIN in comparison to autoencoders and other statistical and 
conventional machine learning-based imputation methods.  

Suppose a d-dimensional space 	𝝌	 = 	𝝌𝟏 ×…× 𝝌𝒅 and X as a random variable 𝑿	 = 	 (𝑿𝟏, . . . , 𝑿𝒅) taking values in 𝝌 
and a mask vector 𝑴 =	(𝑴𝟏, . . . ,𝑴𝒅) as another random variable that takes 0 if the value in X is missing and 1 if it 
is not missing. A new space is defined for each 𝒊 ∈ 	 {𝟏, . . . 𝒅} as 𝝌2𝒊 ∪ {∗} , where * represents an unobserved value. 
𝑿5 =	 (𝑿5𝟏, . . . , 𝑿5𝒅) 	∈ 	𝝌2 is the partial observation of X that takes the corresponding value of X if M is 1 and * 
otherwise. We inputted the missing data to GAIN and got the imputed datasets as output using Equation 1 and 2, 

𝑿6 	= 	𝑮(𝑿5,𝑴, (𝟏 −𝑴)	⨀	𝒁)																																																									(1) 

							𝑿; = 𝑴	⨀	𝑿5 	+ (𝟏 −𝑴)	⨀	𝑿6                                                  (2) 

where	𝑿6 ∈ 𝝌 is the vector of imputed values, G is the generator function, 𝑿; ∈ 𝝌 is the vector obtained by partial 
observations 𝑿5 and replacing missing values with the values of 	𝑿6  , Z is a d-dimensional noise which is independent 
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of all the other variables, and ⨀	is element-wise multiplication. In (1) G function takes 𝑿5, M, and Z as input and 
outputs 𝑿6. Then in (2), 𝑿; is obtained by replacing each * with the corresponding value from 𝑿6.  

Predictive Modeling 

To compare the prediction performance and feature importance ranking of different prediction models with different 
level of missingness, we performed predictive analyses using three popular machine learning methods in predictive 
modeling with EHR data,38 namely logistic regression, SVM, and decision tree. Further, we captured feature 
coefficients and importance in each model to compare to the same in the reference model of its own kind. For 
comparison, we used Pearson correlation coefficients. Higher correlations mean closer results (in terms of feature 
importance) to the reference model based on the complete dataset. Also, we built a deep learning model (i.e., 
DeepConsensus) to investigate if it can reduce variance. The binary prediction task was patient mortality within one 
year after admission. The dataset is divided to separate training and testing sets at the ratio of 0.9 to 0.1 respectively. 
The dataset is imbalanced with 65 (negative class) to 35 (positive class) ratio. For implementation purposes we used 
Python programming language with Tensorflow, NumPy, Pandas, and Sklearn packages. We give a brief description 
of DeepConsensus in the following.  

DeepConsensus: The main idea behind DeepConsensus is that since different deep neural networks tend to classify 
training samples accurately, they generate similar linear regions. Thus, these models should behave similarly on 
classifying training samples. Such behavior enables multiple models to agree with each other on classifying valid 
inputs and filtering out adversarial examples, while individual models are sensitive to those examples. Using 
consensus among different models helps to capture the underlying structure of data. It is shown that consensus helps 
to differentiate extrinsically classified samples (i.e., classified under extrinsic factors such as randomness of weight 
initialization) from consistently classified samples (i.e., samples that are classified in the same class with high 
probability by multiple models). Thus, such consensus mechanism among multiple models can reduce the variance 
caused by extrinsic factors. The effectiveness of this method is demonstrated in the reference paper.34  

Results 

Imputation Performance 

We compared five different imputation methods including MICE, MissForest, KNN-based, Mean (mode for binary 
variables), and GAIN, on 10% to 50% missing datasets. We ran each experiment 10 times and computed the average 
RMSE along with its standard deviation. The results are reported in Table 2.  

Table 2. Average RMSE from different imputation methods on 10% to 50% missing data (10 runs). 
Missingness 
level 

 
Imputation Method 

10%  20%  30%  40%  50%  

MICE 0.2254±0.0025 0.2249±0.0020 0.2292±0.0013 0.2343±0.0014 0.2325±0.0014 
MissForest 0.1935±0.0017 0.1950±0.0013 0.1997±0.0018 0.2051±0.0018 0.2062±0.0011 
KNN-based 0.21447 0.2219 0.2241 0.2267 0.2228 
Mean\Mode 0.2038 0.2046 0.2052 0.2066 0.2059 
GAIN 0.1757±0.0049 0.1763±0.0064 0.1838±0.0039 0.1963±0.0114 0.2088±0.0100 

 

Averaging the RMSE of different imputation methods across all different levels of missing values, GAIN showed the 
best performance. MissForest was the second-best performing imputation method following GAIN showing only 
0.01276 difference in RMSE on average. Mean came next, showing quite monotonic behavior across all datasets with 
different amount of missing values. KNN-based and MICE showed similar performance reporting the highest RSME 
(worst performance).  

Prediction Performance 

Next, we based our experiments on the datasets imputed with the best performing imputation methods GAIN and 
MissForest. First, we built the reference models that served as the benchmark for our comparisons (models based on 
the complete dataset). Then, we built models based on datasets with varying percentage of missingness that are 
imputed using GAIN and MissForest (through 300 experiments = 5 levels of missingness * 2 imputation methods* 3 
ML methods * 10 runs each). The performance of these models based on GAIN imputed datasets and MissForest 
imputed datasets in terms of area under the receiver operating characteristic curve (AUROC) are depicted in Figure 
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2. AUROC is a classification performance measure that illustrates how models perform in terms of discriminating 
between the classes. The performance of SVM and logistic regression models based on MissForest imputed datasets 
(Figure 2) showed lower variance in comparison to the same models based on GAIN imputed datasets. The variance 
in decision tree models based on the datasets imputed by both GAIN and MissForest is relatively high, making those 
models’ performance unstable even under low levels of missingness.  

By increasing the number of missing values in the datasets from 10% to 50%, models based on the datasets imputed 
by MissForest showed a more stable behavior in comparison to GAIN across all models. A closer look at SVM 
performance (based on AUROC) from 10% to 50% missing values imputed by MissForest showed an increase of 
standard deviation from 0.00375523 to 0.01062501 with an average of 0.00674935. This measure was 0.00277818 to  

Figure 2. Comparing the performance of models that are built using (a) support vector machine (SVM) based on the 
imputed datasets with MissForest, (b) SVM based on the imputed datasets with GAIN, (c) decision tree (DT) based 
on the imputed datasets with MissForest, (d) DT based on the imputed datasets with GAIN, (e) logistic regression 
(LR) based on the imputed datasets with MissForest, (f) LR based on the imputed datasets with GAIN, under 
gradually increasing missingness level. The performance is reported on area under the receiver operating 
characteristic curve (AUROC). 

0.0253859 for GAIN with an average of 0.01441592. Also, a big jump in standard deviation was not observed in case 
of MissForest until 40% of missingness. This jump occurred at 20% of missingness in case of GAIN. The standard 
deviation of AUROC of multiple runs for logistic regression models based on GAIN showed an increasing trend from 
0.00561881to 0.01919611 with the average of 0.0101355. However, in case of MissForest, the trend is increasing 
from 10% to 30% and then decreasing from 30% to 50% with an average of 0.00619782. We hypothesized that the 
variance among models on the same missing level of missing data that is imputed with the same method 10 times can 
be reduced by using the consensus mechanism among multiple models. Applying DeepConsensus on the complete 
dataset (baseline) showed a significant increase of performance as expected: from 0.7212 AUROC in logistic 
regression and 0.7137 in SVM to 0.8095 in DeepConsensus. Further, we narrowed down our experiments to 10 
datasets that were the result of imputing 10% missingness (lowest missing rate) 10 times with MissForest (imputation 
method with less variance on machine learning models). The average AUROC across 10 experiments showed an 
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increase of performance to 0.7908 (from 0.67505 in SVM and 0.68307 in logistic regression). However, the variance 
in performance still persists at 0.034460858.  

Feature Importance Ranking Comparison 

Pearson correlation analyses (feature importance of each model with feature importance of corresponding baseline 
model) are reported in Table 3. These results showed a generally lower performance for decision tree models across 
all datasets. Focusing on SVM and logistic regression with higher performance, averaging coefficients as a result of 
10 runs for each level of missingness showed a correlation coefficient of more than 0.99 with statistically significant 
results on the imputed datasets of 10% missing value with GAIN and MissForest. However, this trend on models 
based on an increasing level of missingness on average showed a decreasing correlation with the baseline model across 
all machine learning methods and imputation methods. A further principal component analysis (PCA) on the complete 
dataset showed that a linear model based on 30% missing values could capture between 90.130% (14 features) 
and 92.824% (15 features) of the statistical information in this dataset. 

Table 3. Pearson correlation coefficients and p-values of feature importance comparison between the models based 
on complete dataset (baselines) and the models based on the imputed datasets. 

Machine 
Learning 
method 

Imputation 
method 

Missingness 
% 

Pearson 
correlation 
coefficient 

p-value Imputation 
method 

Missingness 
% 

Pearson 
correlation 
coefficient 

p-value 

Decision 
Tree 

GAIN 

10% 0.9661 1.24E-12 

MissForest 

10% 0.9445 1.23E-10 

20% 0.9591 7.09E-12 20% 0.9146 6.56E-09 

30% 0.9174 4.84E-09 30% 0.9066 1.49E-08 

40% 0.8426 1.64E-06 40% 0.8741 2.24E-07 

50% 0.9033 2.05E-08 50% 0.7707 4.34E-05 

SVM 

10% 0.9924 8.57E-19 10% 0.9941 7.71E-20 

20% 0.9867 1.80E-16 20% 0.9839 1.12E-15 

30% 0.9491 5.54E-11 30% 0.9851 5.31E-16 

40% 0.8348 2.51E-06 40% 0.9758 5.09E-14 

50% 0.7939 1.73E-05 50% 0.9118 8.83E-09 

Logistic 
Regressio

n 

10% 0.9954 6.80E-21 10% 0.9968 2.56E-22 

20% 0.9883 5.14E-17 20% 0.9872 1.28E-16 

30% 0.9620 3.62E-12 30% 0.9854 4.24E-16 

40% 0.8959 4.00E-08 40% 0.9787 1.53E-14 

50% 0.8541 8.39E-07 50% 0.9589 7.44E-12 

 
Discussion 

Comparing the imputation methods’ RMSE performance reported in Table 2 might imply that (1) GAIN performs 
better than MissForest, and (2) the standard deviation between different runs of the same method on the same dataset 
with missing values is small. However, our experiments showed that choosing the best imputation method might not 
always be a straightforward process. Although GAIN surpassed all imputation methods in terms of RMSE on all 
datasets, MissForest imputation yielded more stable results (smaller standard deviation on average) at the presence of 
gradually increasing missing values. Also, comparing the performance of models based on datasets with different 
percentage of missingness reveals the fact that higher performance does not necessarily indicate more similar 
interpretations to the reference model. We observed that, on average a relatively small standard deviation of RMSE 
across all levels of missingness yielded a bigger standard deviation in models’ performance and a lower correlation 
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of feature importance between baseline models and the models based on imputed datasets. Also, the dilemma of 
bias/variance is well understood regarding neural networks which are hyperparameterized.39 Training neural networks  
requires a larger number of training samples to achieve acceptable performance and less variance. Thus, although 
using consensus of deep models did not resolve the issue of variance in this study, we hypothesize that using a bigger 
dataset (with more samples and more features) could potentially yield a more stable consensus of deep learning models 
and result in less variance.   

These observations might not be generalizable to other datasets or imputation methods. There is no universally optimal  
approach for missing data imputation or predictive modeling using EHR data. However, these experiments showed 
that the way we approach missing values in EHR data impacts not only the model performance but also the 
interpretations of the models’ predictions. In real-world predictive analyses of EHR data, it is usually not possible to 
obtain a dataset with no missing values. However, in cases where the interpretations of predictive models matter, in 
order to choose the best imputation method, just relying on RMSE or model performance measures might not be 
sufficient. In these cases, we suggest to run extensive experiments on a smaller complete-case version of the dataset 
first, evaluate the impact of different imputation methods on the interpretations in comparison to the complete-case, 
and then apply the best performing method on the original dataset with missing values. In cases where it is not possible 
to have the complete-case dataset, researchers should be aware of this potential impact, use different imputation 
methods for predictive modeling, and discuss the resulting interpretations with medical experts or compare to the 
medical knowledge when choosing the imputation method that yields the most reasonable interpretations. Also, more 
in-depth analyses of data with methods such as PCA can be used to investigate the redundancy in datasets and 
determine the maximal allowed missing value rate. 

Limitations and Future Opportunities  

A potential limitation of this study was the relatively small and imbalanced dataset (65:35). Although the findings in 
this study are robust, future studies could be done on datasets with more balance and more samples to investigate how 
these results would change. Another limitation was using snapshot of features instead of longitudinal structure. The 
focus of this study was to examine how different imputation methods can potentially impact the resulting performance 
and interpretations of different predictive models. Thus, we had to be consistent in terms of the data representation to 
models and the number of features we used across all experiments. Future studies could be conducted on longitudinal 
features and investigating the impact of imputation methods on the resulting interpretations. However, modeling and 
interpreting longitudinal EHR data is inherently challenging due to different granularity of different variables. Another 
limitation to this study was the fact that the missingness mechanism of data was MCAR. However, in real-world EHR 
data this might not be the case. Investigating the impact of imputation methods, especially on the models’ 
interpretations, under MAR and NMAR in comparison to MCAR can provide a broader view and understanding of 
the underlying challenges with regards to EHR data imputation. Another limitation of this study is that it is an 
empirical study rather than a theoretical study. We encourage future theoretical studies on investigating the possible 
impacts of missing value imputation on the models’ interpretations.  

Conclusions 

In this study, we simulated 5 levels of missingness (10% to 50%) on a complete EHR dataset of 21 features for 3054 
patients with AMI from MIMIC-III database. We examined different statistical and machine learning-based 
imputation methods such as mean, MICE, MissForest, and KNN-based, as well as GAIN-a novel imputation method 
based on GAN. Our experiments showed that GAIN and MissForest yielded best performance in terms of RMSE and 
small standard deviations across all levels of missingness. However, further predictive modeling (using machine 
learning and deep learning methods) based on each of these datasets revealed the fact that the variance in their 
performance (in terms of AUROC) gradually grows with more missingness. Also, Pearson correlation analyses 
showed that the similarity of feature importance of models based on the imputed datasets to the feature importance of 
baseline models gradually decreases, a trend that could not initially be inferred by just looking at the performance of 
imputation and predictive modeling in terms of RMSE and AUROC respectively.  
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