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Abstract

Monitoring health systems during and after natural disasters, epidemics, or outbreaks is
critical for guiding policy decisions and interventions. In the case of natural disasters the
effects on public health can be direct or indirect. Direct effects are defined as those resulting
from the immediate destruction such as drowning and trauma from flying debris, while indirect
effects are delayed, longer lasting, and, often harder to measure or detect. In the case of
outbreaks and epidemics, lack of comprehensive testing or reporting can lead to challenges in
measuring direct effects, while indirect effects can arise due to, for example, increased stress
levels or reduced access to health services. When the effects are long lasting and difficult to
detect in the short term, the accumulated effects can actually be devastating. Improved access
to mortality data provides an opportunity to develop data-driven approaches that can help
monitor health systems and quantify the effects of natural disasters, epidemics, or outbreaks.
Here we describe a statistical methodology and software that facilitates data-driven approaches.
Our work was motivated by events occurring in Puerto Rico after the passage of Hurricane
Maŕıa, but can be applied in other contexts such as estimating the effects of an epidemic in the
presence of inaccurate reporting of cases. We demonstrate the utility of our tools by applying it
to data related to six hurricanes and data related to the COVID-19 pandemic. We also searched
for other unusual events during the last 35 years in Puerto Rico. We demonstrate that the
effects of hurricanes in Puerto Rico are substantially worse than in other states, that the 2014
Chikungunya outbreak resulted in an unusually high mortality rate in Puerto Rico, that in the
United States the excess mortality during the COVID-19 pandemic already exceeded 100,000
on May 9, 2020, and that the effects of this pandemic was worse for elderly black individuals
compared to whites of the same age. We make our tools available through free and open source
excessmort R package.
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1 Introduction

Hurricane Maŕıa made landfall in Puerto Rico on September 20, 2017, interrupting the water
supply, electricity, telecommunications networks, and access to medical care[1, 2]. Two weeks after
the hurricane, the official death count stood at 16[3]. This figure was in conflict with estimates
obtained using a historical approach by groups that ostensibly had access to death counts for
September and October from the demographic registry of Puerto Rico, not yet readily available to
the general public. By comparing these two numbers to historical averages, additional deaths were
estimated to be in excess of 1,000 [4, 5, 6, 7] raising concerns that Puerto Rico was in the midst of
a public health crisis. However, on December 13, 2017, almost three months after landfall, Puerto
Rico’s Secretary of the Department of Public Safety, dismissed these concerns [5]. As of May 2018
the official death count stood at 64 [3] and it appeared the government was not concerned. On
May 29, 2018, three days after a study was published describing a survey of 3,299 households and
reporting a much higher estimate of the death count received worldwide media coverage [8], the
government finally made the data public and acknowledged the possibility of a higher excess death
count of 1,427 [9] based on the vital statistics numbers. On August 2018 the official death toll was
revised to 2,975 based on a study commissioned by the government of Puerto Rico [10].

More recently, the limited capacity to perform molecular tests has raised concerns that COVID-
19 cases are under-reported in several jurisdictions in the United States and across the world.
Simultaneously, polls show that a substantial proportion of the US population believes that reported
COVID-19 fatalities are inflated [11]. Estimating excess mortality provides a way to measure the
impact of the epidemic, even in the presence of inaccurate reporting.

Here we describe data-driven tools that, when applied to death records, can help answer ques-
tions such as: are current excess mortality counts a reason for concern? For how long is the
population affected by an event? How much do the effects vary across jurisdictions? Was there a
specific demographic that was at greater risk? Our approach provide informative summaries that
can help detect concerning patterns, including tools that can also help detect abnormalities in close
to real-time.

The main goal of our method is to determine if an observed death count for a given demographic
and period of time is unusually high. Reporting unusually high death rates can alert government
officials and policy makers that an intervention is required. Because of stochastic variation, usual
cannot be defined with one number and instead a distribution is appropriate. The uncertainty
associated with count data, such as daily deaths totals, are typically accounted for with Poisson
models [12, 13]. However, these models do not account for year-to-year increases or decreases that
may be due to natural, possibly correlated in time, stochastic variation. Examples of possible
causes are variation in the severity of the flu season in the winter or the number of extremely hot
days in the summer. Ignoring this source of correlated variation can lead to underestimates of the
uncertainty associated with mortality excess estimates. The engine behind our tools is a statistical
model that accounts for such variability and can be fit to data stratified by demographic group or
cause of death.

To demonstrate the utility of our approach, we provide a detailed picture of the effect Hurricane
Maŕıa had on mortality in Puerto Rico and compare these to those observed in Hugo and Georges,
two previous hurricanes in Puerto Rico, Katrina in Louisiana, Irma in Florida, and Sandy in New
Jersey. We also used our approach to search for unusually high mortality rates during the last 35
years in Puerto Rico. We then apply our method to recently released state-level data by the CDC
and compare the excess deaths during the COVID-19 epidemic to those from the 2018 flu season.
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We also compare the excess mortality between racial groups in Cook County, Illinois, the only
county we are aware of that is currently releasing up to date medical examiner records. Finally, we
propose a data-driven index that does not require complete data nor an estimate of population size,
which is useful in cases in which estimating population size is challenging, thus making real-time
estimates less reliable. We make our method available through the excessmort R package.

2 Results

2.1 Model-based approach provides informative parameterizations

Extending the work developed for monitoring outbreaks [14, 15, 16, 17] we modeled death counts
with the following mixed model

Yt | εt ∼ Poisson {µt[ 1 + f(t) ]εt} for t = 1, . . . , T (1)

with µt the expected number of deaths at time t for a typical period, 100×f(t) the percent increase
at time t due to an unusual event, εt a time series of auto-correlated random variables representing
natural variability, and T the total number of observations. The expected counts µt can be further
decomposed into

µt = Nt exp[α(t) + s(t) + w(t)] (2)

with Nt the population at time t, α(t) a slow moving trend that accounts for changes such as the
improved health outcomes we have observed during the last 20 years (Supplemental Figure 1A),
s(t) a yearly periodic function representing a seasonal trend (Supplemental Figure 1B), and w(t) is
a day of the week effect. We refer to f as the event effect and assume f(t) = 0 for typical periods
not affected by a natural disaster or outbreak. As described in Section 3, our model permits non-
continuities in f(t) to account for sudden direct effects caused by natural disasters. Note that we
can conveniently represent excess deaths at time t as µt × f(t) and compute excess deaths for a
time period by just adding these up for the t’s in the interval of interest.

2.2 Detecting and quantifying indirect effects after hurricanes

Using our approach, we found that the death rate in Puerto Rico increased by 73% (95% CI: 58% to
87%) the days after hurricane Maŕıa made landfall. The increased death rate persisted until March
2018 (Figure 1A, Supplemental Figure 2). To understand if such a large and sustained increase is
common after the passage of a hurricane, we examined mortality counts in Louisiana after Katrina,
New Jersey after Sandy, Florida after Irma as well as two other hurricanes in Puerto Rico, Hugo
in 1989 and Georges in 1998. Although not as severe, a similar pattern to Maŕıa was observed for
Georges in 1998 when the death rate increased by 36% (95% CI: 24 to 48%) the days after landfall
and an increased death rate persisted until December 1998 (Figure 1A, Supplemental Figure 2).
The effects of Katrina on Louisiana were much more direct. On August 29, 2005, the day the levees
broke, there were 834 deaths, which translates to an increase in death rate of 689% (not shown
in Figure 1A). However, the increase in mortality rates for the months following this catastrophe
was substantially lower than in Puerto Rico after Maŕıa and Georges. None of the other hurricanes
examined had direct or indirect effects nearly as high as in Puerto Rico (Figure 1A, Supplemental
Figure 2).
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Figure 1: Estimated event effects as percent increase over expected mortality. A) Comparison of
six hurricanes. B) Estimated increase and point-wise confidence intervals during the Chikungunya
epidemic in Puerto Rico. C) Estimated increase and confidence interval for the the United States
from January 2017 through May 2020.

2.3 Quantifying the effects of epidemics

Our approach can also be used to detect and quantify the effects of epidemics or outbreaks. As an
example, we fit our model to Puerto Rico mortality data from 1985 to 2020 and, apart from the
hurricane seasons mentioned in the previous section, we detected an unusual increase in mortality
rates from July 2014 to February 2015. These period coincide with the 2014-2015 Chikungunya
outbreak [18, 19] (Figure 1B). The effects were particularly strong on individuals over 60 years and
for the 0 to 4 years age group. (Supplemental Figure 3).

Although mortality records for the time period of the COVID-19 pandemic are not yet complete,
the Center for Disease Control and Prevention (CDC) has implemented a correction to the most
recent counts and are making weekly state-level data from January 2017 to May 12, 2020 publicly
available [20]. We fit our model to these data for each state and our event effect estimates clearly
detect the COVID-19 pandemic for several states, as well as the 2018 flu epidemics (Supplemental
Figure 4). By aggregating the results for the entire United States we confirm that the COVID-19
pandemic had a substantially larger impact than the 2018 flu season (Figure 1C).

2.4 Excess mortality estimates

Once we have fit our model, we can compute excess mortality estimates for any time period as
well as standard errors that take into account, not just sample variability associated with count
processes, but natural variation as well. We used the estimated parameters from the Puerto Rico
data to compute excess deaths for the 365 days following the day hurricanes Georges, and Maŕıa
made landfall. We also computed these quantities for the 365 days following the start of the detected
effects from the 2014 Chikungunya outbreak. Finally, we computed excess deaths in Puerto Rico
during the COVID-19 pandemic, specifically from March 1, 2020 to April 15 2020, the last day
for which the death registry has complete data (typically, it takes 90 days for 99% of deaths to be
registered).

For Maŕıa the excess death curve grew for over six months after landfall, with a point estimate
on March 20, 2018, six months after landfall, of 3,229 (95% CI: 2,794 to 3,664), and for Georges the
excess death curve grew for over three months after landfall, with a point estimate on December
21, 1998, three months after landfall, of 1,232 (95% CI: 945 to 1,519) (Figure 2A). The period of
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July 14, 2014 to February 20, 2015, associated with a Chikungunya outbreak was also identified
to have unusually high mortality rates. However, we also noted a decrease in cumulative deaths
for several months after the February 20 consistent with a harvesting effect [21, 22]. A year after
the start of the Chikungunya epidemic, on July 14, 2015 we observe a point estimate for excess
mortality of 975 (95% CI:395 to 1,556) (Figure 2A). We note that for the period of March 15, 2020
to April 15, 2020, associated with the COVID-19 pandemic, we do not observe an effect as nearly
as large as for these other three events.
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Figure 2: Cumulative excess mortality estimates. A) Daily excess death estimates and 95% confi-
dence intervals for events in Puerto Rico starting on September 20, 2017, September 21, 1998, July
14, 2014, and March 1, 2020 for Hurricane Maŕıa, Hurricane Georges, the Chikungunya epidemic,
and the COVID-19 pandemic, respectively. B) Estimated cumulative excess mortality and reported
COVID-19 cumulative deaths in the United States. C) State-specific cumulative excess death es-
timates from March 1, 2020 to May 9, 2020, the period associated with the COVID-19 pandemic,
plotted against the excess mortality estimates from December 10, 2017 to February 17, 2018, the
period associated with the 2018 flu season. The identity line is represented in red and separates
states in which the increase in mortality was higher during COVID-19 from those in which the
increase in mortality was higher during the 2018 flu season.

Next, using the CDC data we computed excess mortality for the period of the COVID-19
pandemic for which we have data, specifically for the week ending on March 15, 2020 to the week
ending on May 9, 2020. When we compared these numbers to the reported numbers of COVID-19
deaths [23], we find a difference of 29,246 (95% CI: 27,317 to 31,175) deaths (Figure 2B, Table
1). We also note that in the US, the number of excess deaths during the COVID-19 pandemic are
much larger than the 2018 flu season, although this is not true for all states (Figure 2C, Table 1).
We also note that 58% of the cases come from the four northeast states: New York, New Jersey,
Massachusetts, and Pennsylvania (Supplemental Figure 4). We note that Connecticut was not
included in the analysis due to missing data.

2.5 Across group comparisons

Since our model provides both estimates and standard errors of event effects, we can compare the
effects for two or more groups and assess the statistical significance of the observed differences. We
demonstrate how this can be used by comparing black and white populations during the COVID-19
pandemic in Cook County, Illinois. At the time of writing, the Cook County Medical Examiner’s
Office was making up-to-date records available online including demographic information for each
individual. This office investigates any human death in Cook County that falls within categories
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COVID-19 2018 Flu
State Excess Reported Rate Excess Rate

mortality (SD) cases (per million) mortality (SD) (per million)
New York City 24132 (134) 19324 2873 806 (129) 96
New Jersey 13364 (153) 9116 1505 525 (147) 59
New York (not including NYC) 11178 (179) 7260 1011 1147 (174) 104
Massachusetts 5995 (131) 4840 870 325 (126) 47
Michigan 6240 (189) 4526 625 1025 (187) 103
Pennsylvania 7638 (214) 3793 597 1022 (206) 80
Louisiana 2544 (133) 2267 547 1053 (129) 226
District of Columbia 309 (37) 311 437 116 (36) 165
Maryland 2632 (120) 1614 435 355 (117) 59
Illinois 4802 (205) 3362 379 1601 (199) 126
Vermont 212 (41) 53 340 106 (40) 169
Delaware 283 (49) 221 291 58 (47) 60
Colorado 1588 (91) 965 276 307 (91) 53
Mississippi 791 (94) 421 266 773 (92) 260
Virginia 2147 (132) 827 252 671 (131) 79
South Carolina 1265 (115) 330 246 667 (113) 129
Indiana 1646 (144) 1490 244 898 (141) 133
Arizona 1467 (156) 532 202 1390 (157) 191
New Hampshire 255 (54) 131 188 45 (53) 33
Ohio 1958 (233) 1331 168 1724 (226) 147
New Mexico 345 (73) 191 164 54 (73) 26
Georgia 1599 (201) 1380 151 1398 (197) 132
Rhode Island 152 (50) 418 144 81 (50) 77
Minnesota 781 (119) 558 139 478 (118) 85
Florida 2854 (372) 1714 133 2458 (368) 114
Texas 3840 (370) 1086 132 4021 (359) 139
Wisconsin 715 (133) 398 123 653 (131) 112
Missouri 736 (169) 492 120 1169 (164) 191
Washington 711 (168) 925 93 -13 (164) -2
Alabama 400 (129) 390 82 904 (126) 184
California 2975 (501) 2732 75 4530 (487) 115
Tennessee 481 (172) 241 70 1120 (169) 164
Utah 213 (62) 66 66 47 (62) 15
Nevada 187 (77) 306 61 290 (76) 94
Kentucky 231 (113) 312 52 708 (111) 158
Arkansas 129 (94) 88 43 537 (92) 178
Iowa 136 (91) 252 43 160 (89) 51
Oregon 120 (112) 127 29 47 (111) 11
South Dakota 25 (47) 34 29 -56 (47) -63
Kansas 66 (80) 172 23 230 (79) 79
Maine 27 (54) 64 20 46 (54) 34
Idaho 33 (53) 67 19 97 (54) 54
Nebraska 37 (66) 95 19 50 (64) 26
Wyoming 9 (30) 7 16 15 (31) 26
Montana -7 (49) 16 -6 -72 (48) -68
Alaska -34 (32) 8 -47 -6 (33) -9
Hawaii -81 (51) 17 -57 87 (51) 62
North Dakota -88 (41) 35 -115 18 (42) 24
Total 107041 (1091) 74905 347 33664 (1066) 109

Table 1: Excess mortality estimates for the weeks ending on March 14, 2020 to May 9, 2020
(COVID-19) and December 10, 2017 to February 17, 2018 (2018 Flu). The standard deviation
for excess mortality for these periods is included in parenthesis. The states are ordered by the
per-million excess mortality rate. Connecticut and North Carolina are excluded due to missing
data. Numbers for New York do not include New York City which is listed separately.
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such as criminal violence, suicide, accident, diseases constituting a threat to public health, among
other unusual circumstances [24]. If we consider µt to be the expected number of deaths recorded
by the Medical Examiner’s Office, we can fit our model and interpret f(t) as the percent increase
in deaths examined by this office. We fit the model to these data and clearly observed the effects of
the COVID-19 epidemic, in particular among individuals over 75. However, a persistent increase
in mortality above normal levels is observed for individuals above 40 (Supplemental Figure 5).
Furthermore, we found a difference in the effect between white and black individuals in the months
of March and April (Figure 3). Among those between 40 and 59 years of age, the percent increase
in medical examiner death rates for Cook county was as high as 185% (95% CI: 144% to 227%)
and 57% (95% CI:24% to 89%) on April 11 for blacks and whites, respectively. Furthermore, for
the 60 to 74 age group we observed a percent increase of 600% (95% CI: 525% to 674%) and 480%
(95% CI: 416% to 543%) on April 25, respectively. Finally, the percent increase for individuals 75
years and older was 2,282% (95% CI: 2,047% to 2,518%) and 1,222% (95% CI: 1,109% to 1,335%)
on April 29, respectively, another statistically significant finding (Figure 3). The population size,
in this database, for other racial groups was substantially smaller and were not included in the
analysis.
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Figure 3: Comparison of estimated percent increase in mortality in Cook county, Illinois, for
individuals above 40 between whites and blacks with corresponding 95% confidence intervals. A)
40 to 59 age group. B) 60 to 74 age group. C) 75 and over age group.

2.6 Natural Variability and Correlated Counts

Exploration data analysis after fitting a standard Poisson model demonstrates that the daily data
measurements are correlated (Supplemental Figure 6). Assuming independence, when in fact vari-
ables are correlated, leads to underestimates of the standard error of sums or averages. Cumulative
excess mortality is the sum of excess deaths during a period of interest, therefore accounting for
correlation allows our approach to better estimate the uncertainty of this quantity. To demonstrate
this, we compared our model to a standard Poisson model and a over-dispersed Poisson model both
assuming independent outcomes [14, 15, 16, 17]. We fit each of the three models to the Puerto
Rico data for individuals 75 and over, and randomly selected 100 intervals of sizes L = 10, 50, and
100 days from periods with no events and computed the total number of deaths in each interval
Sl =

∑
t∈L Yt. We then used the fitted models to estimate the expected value Ê(Sl) and standard

error and ŜE(Sl) and form a z-statistic Zl = [Sl − Ê(Sl)]/ŜE(Sl). The Central Limit Theorem pre-
dicts that, if the expected value and standard errors are estimated correctly, Zl is approximately
normal with expected value 0 and standard error 1. We found that the Poisson and over-dispersed
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Poisson model underestimate the variance of this sum, while modeling the correction improves our
standard error estimates (Figure 4).
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Figure 4: Accounting for correlation in the error structure improves uncertainty estimates. We
fitted our model along with a Poisson and over-dispersed Poisson GLM to Puerto Rico data of
individuals 75 years and over, and randomly picked 100 intervals of varying sizes to compute z-
scores of total number of deaths. Each plot shows the Pearson residual quantiles versus theoretical
quantiles from the standard normal distribution. A) Intervals of 10 days. B) Intervals of 50 days.
C) Intervals of 100 days.

2.7 An index based on relative proportion of specific causes of death

Limitations of our approaches for detecting and monitoring health crises in real-time are that it
requires 1) complete death count data and 2) an estimate of population displacement. Note that
incomplete death counts or underestimates of population displacement will result in an underesti-
mate of the death rate. However, if we redefine Yt as the number of deaths due to a specific cause
at time t and Nt as the total number of recorded deaths at time t, then the estimate of f can be
interpreted as the percent increase in the proportion of deaths due to that cause, even if the data is
incomplete. The underlying cause of death for the Puerto Rico mortality data was coded using the
tenth version of the International Classifications of Diseases (ICD10) codes [25]. Because deaths
due to bacterial infections have been reported to increase after natural disasters in locations with
poor public health infrastructure [26, 27], we defined an index based on ICD10 codes between A00
and A79 as bacterial infections. We found that deaths attributable to this cause were elevated after
the landfall of hurricane Maŕıa in Puerto Rico (Figure 5A) pointing the possibility that this index
could be used in real-time to detect challenges to the health system. During the COVID-19 pan-
demic, if under-reporting is occurring, one would expect causes related to the respiratory system
to increase. A similar index for respiratory diseases defined as ICD10 codes between J00 and J99
computed for the COVID-19 pandemic shows no anomalies (Figure 5B).

3 Methods

In this section we provided a description of the model and estimation procedure applied to ob-
tain results. All details of our analysis are available by examining the code which is made avail-
able on GitHub: https://github.com/rafalab/excess-mortality-paper The code for the R
package implementing the methods is also available on GitHub: https://github.com/rafalab/

excessmort
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Figure 5: Cause-specific mortality index. The solid-black line corresponds to the percent change
in proportion of mortality, f̂(t), attributable to a cause of interest. The shaded area represents a
95% confidence interval for f̂(t). A) Bacterial infections mortality index defined as ICD10 codes
between A00 and A79 for the dates around Hurricane Maŕıa. B) Respiratory diseases mortality
index defined as ICD10 codes between J00 and J99 for the dates around the COVID-19 pandemic
in Puerto Rico.

3.1 Mortality Data

We obtained detailed mortality and population size data related to hurricanes Hugo, Georges, and
Maŕıa in Puerto Rico, Katrina in Louisiana, Sandy in New Jersey, and Irma in Florida. For Puerto
Rico, we requested individual level mortality information with no personal identifiers from the
Department of Health of Puerto Rico and obtained individual records including date, gender, age,
and cause of death from January 1985 to May 2020. We used this data to construct daily death
counts for different strata of the Puerto Rican population throughout the study period. We also
obtained daily death counts from Florida, New Jersey, and Louisiana’s Vital Statistic systems from
January 2015 to December 2018, January 2007 to December 2015, and January 2003 to December
2006, respectively. Note that we did not obtain individual records from these jurisdictions. We
also obtained mortality data made public on May 29, 2020 by the CDC [20]. This dataset included
weekly estimates of death counts for each state and Puerto Rico for the period of January 2017 and
May 2020. Finally, we obtained individual level mortality data from the Cook County, IL, medical
examiner office [24]. These data included demographic information for each death including age,
sex, and race.

3.2 Population Estimates

Yearly population estimates for Puerto Rico were obtained from the Puerto Rico Statistical Insti-
tute. Yearly population estimates for other US states were obtained from the US Census bureau.
We computed daily population estimates via linear interpolation of the available data. To obtain
an estimate of the population displacement after Hurricane Maŕıa in Puerto Rico, we use popula-
tion proportion estimates from Teralytics. Teralytics is a company that works with governments
and private clients to assess human movement by partnering with mobile network operators. This
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company provided daily population proportion estimates relative to an undisclosed baseline from
May 31, 2017 to April 30, 2018. This was based on all subscribers of a major, undisclosed, telecom-
munications company in Puerto Rico. Due to structural damage post Hurricane Maria, proportion
estimates for the four weeks after the storm were not provided. We imputed missing data with
linear interpolation of observed values. We then computed population estimates by multiplying the
US census population estimate on July 19, 2017, Teralytics baseline date, times the aforementioned
proportions, and obtained smooth values using local regression (Supplemental Figure 7).

3.3 Statistical model

We assume the mortality counts at t follows a generalized linear mixed model defined in Section
2.1. Specifically, we assume:

Yt | εt ∝ Poisson {µt [1 + f(t)] εt} , for t = 1, . . . , T

where the expected counts have the form:

µt = Nt exp[α(t) + s(t) + w(t)]

and the vector [ε1, . . . , εT ]> follows a multivariate normal distribution with mean 1 and variance-
covariance matrix Σ determined by an auto-regressive (AR) process of order p:

Σ = σ2


1 ρ1 ρ2 . . . ρT
ρ1 1 ρ1 . . . ρT−1
...

...
...

...
...

ρT ρT−1 ρT−2 . . . 1

 .

Here σ corresponds to the standard deviation associated with natural variability and ρh is the
auto-correlation of two error terms that are h time units from each other. In practice, obtaining
Maximum Likelihood Estimates (MLE) for this model is not straight-forward, in particular because
the flexibility in f(t) and Σ makes the model non-identifiable in practice. To overcome this chal-
lenge, we implemented a three step approach that works well in practice, as demonstrated both by
simulation and empirical validation.

We start by modeling the yearly trend α(t) with natural cubic splines with a knot every seven
years. We model the seasonal effect s(t) with a harmonic model with 2 harmonics. Finally, w(t)
represents seven parameters, one for each day of the week.

Natural disasters and outbreaks are rare, hence we assume that for the majority of time points
f(t) is 0, which implies that

Yt | εt ∝ Poisson(µtεt)

and that, for example, for N = T/365 years of daily data we would have T data points to fit a
model with at most N/7 + 7 + 4 + 1 parameters. For seven years of data this translates into
2,556 data points and 13 parameters. As a result, we can obtain highly precise estimates even in
the presence of the extra dispersion introduced by ε. We therefore fit a Poisson Generalized Linear
Model (GLM) to regions that we know do not include natural disasters or outbreaks and in the
next step consider the MLE, α̂(t), ŝ(t), and ŵ(t) as fixed.
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In the second step we estimate Σ, and to do this we select a control contiguous region for which
we know f(t) = 0. To estimate the σ2 and the autoregressive parameters we can use the law of
total variance to note that the observed percent change from the mean

rt =
Yt − µt
µt

has expected value and variance

E (rt) = 0 and Var (rt) = σ2 + 1/µt

Intuitively, these two components are the variance added by ε and the Poisson variability respec-
tively. The above implies that if we define the transformation:

Zt =
rt√

Var (rt)

we have an approximately normally distributed random variable with the same correlation structure
as εt, which is what we want to estimate. We use the Yule-Walker equation approach to estimate
the AR process parameters from the observed Zt. To estimate σ2 we use:

σ̂2 = max

{
1

T

T∑
t=1

(
Yt − µ̂t
µ̂t

)2

− 1

µt
, 0

}

Using these estimates we can form an estimate Σ̂ which we will consider known in the next step.
In the third step we treat Σ̂ as known, assume f(t) can be modeled as a natural cubic spline, and

use iteratively re-weighted least squares to obtain an estimate f̂(t). To account for non-continuities
due to direct effects from natural disasters we permit the spline to be discontinuous at the event
day.

3.4 Approximation for uncorrelated data

Note that our model can be easily adapted to be fitted to weekly data. In this case there is no
need to include weekday effect parameters w(t) and much less need for a correlation structure for
the errors (Supplemental Figure 8).

3.5 Excess death estimates

We estimate cumulative excess deaths for any interval I = [a, b] by adding the excess deaths for
each day in I:

Excess deaths =
b∑

t=a

µ̂tf̂(t)

We construct a 95% confidence interval using the fact that the sum
∑b

t=a µ̂tf̂(t) is approximately
normally distributed, and if we define H as the hat matrix, we can compute the variace with:
{f̂(a), . . . f̂(b)}> = H(Y1, . . . , YT )> then

Var

[
b∑

t=a

µ̂tf̂(t)

]
= (µ̂a, . . . , µ̂b)HΣ̂H>(µ̂a, . . . , µ̂b)

>.
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3.6 Simulation study

To assess our procedure we conducted a Monte Carlo simulation. We start by denoting: 1) an
event day, t0, which may correspond to a hurricane landfall or peak-day of an epidemic, 2) an effect
size, θ, that represents the percent change from expected mortality at event day, and 3) a period
of effect, L, which constitutes the number of days with unusually high levels of mortality. Second,
we use a normal distribution centered at t0 and scaled so that the value equals θ and that the
standard deviation is equal to L/3 to estimate the true percent change in mortality, f(t). Then
we compute µ̂t for t = 1, . . . , T , using the Puerto Rico mortality data with model (2) and generate
rates µ̂t [1 + f(t)]. To generate the AR process, we first fit an AR model to our data and use the
estimated coefficients to generate T auto-correlated errors ε1, . . . , εT . We set the standard deviation
of these errors to be σ = 0.05. Finally, we generate data Y ∗t ∼ Poisson (µ̂t[1 + f(t)][1− ε̂t]). We
generated three scenarios to mimic 1) a hurricane-like event where we expect mortality to increase
rapidly and stay above normal levels for some time, 2) an epidemic-like event in which mortality
increases slowly until reaching some plateau and then decreasing to normal levels, and 3) a time
period of no event in which we expect our estimate of f(t) to be centered around 0. For each
scenario we ran 100 simulations with t0 = September 21, 1998, θ = 0.55, and L = 150 days. Our
implementation produces accurate and precise results for both f and Σ (Supplemental Figure 9).

4 Discussion

We have introduced methods and software useful for estimating excess mortality from weekly or
daily counts. The engine of our approach is a statistical model that accounts for long-term trends,
seasonal effects, day of the week effects, and natural variation. An important contribution of
this new approach are the improved uncertainty estimates permitted by modeling the correlation
observed in the data. Another advance is the added flexibility that permits accounting for both
direct and indirect effects.

We used the model to demonstrate that the indirect effects for Hurricanes Georges and Maŕıa
on Puerto Rico were like nothing seen in previous hurricanes in the United States. We also demon-
strated that the 2014 Chikungunya epidemic resulted in substantial excess mortality in Puerto
Rico. These results suggest a lack of robustness of Puerto Rico’s health system. We note that in
New Orleans, shortly after Katrina, the U.S. Army Corps of Engineers admitted that faulty design
specifications, incomplete sections, and substandard construction of levee segments, contributed to
the damage and a $14.5 billion investment was made to construct stronger levees [28, 29, 30]. In
contrast, after Hurricane Georges resulted in similar excess mortality toll, as far as we know, no
systematic effort was put in place to improve, for example, Puerto Rico’s electrical grid nor it’s data
collection infrastructure. On the contrary, it appears that the grid continued to deteriorate during
the 19 years between Georges and Maŕıa. Furthermore, while Puerto Rico seems to have dodged a
bullet during the COVID-19 pandemic, its health system does not appear to be ready to withstand
another shock to its fragile infrastructure. As an application of our method, we introduced an index
that can be used in real-time to at least attempt to detect when there is reason for concern.

Our analysis of CDC data demonstrated that by May 9, 2020 excess mortality was already
above 100,000. We also performed a state-by-state analysis and found that over 58% of these
deaths occurred in New York (35,653) and three of its neighbors: New Jersey (14,537), Pennsylvania
(8,383), and Massachusetts (6,159). Note that Connecticut, the other neighboring state, was not
included in the analysis due to missing data. However, it is important to note that the weekly
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death counts used in our analysis are adjusted for missing data by the CDC [20] and hence, the
accuracy of our results depends on the accuracy of this adjustment.

Finally, we used our model to compare the effects of the pandemic in blacks and whites in Cook
county, IL, and found a disturbing trend, with elderly blacks affected much more severely than
their white counterparts. However, note that this analysis was not based on total mortality counts,
but counts calculated from the Medical Examiner. Our conclusions assume that COVID-19 cases
from whites and blacks are equally likely to be included in the Medical Examiner dataset.

When applying our methodology, there are several potential pitfalls and considerations to con-
template. First, one should be aware that the choice of spline knots can change the results. In
general, we found that using 12 knots per-year was appropriate for exploring the data and detecting
unknown periods of excess mortality, while six knots per year was appropriate to estimate indirect
effects for hurricanes and outbreaks. However, we highly recommend viewing diagnostic plot that
aid in determining if the model fits the data and sensitivity analysis to determine how much these
choices affect final summaries. Our software provides tools that facilitate this. Second, we note
that the results of our analysis would change if different population sizes Nt were used and that
these sizes are themesevles estimates produced by government agencies. Third, we note that it
is not always obvious if an increase in mortality should be classified as natural variability, several
large εts, or an event for which f(t) > 0. This choice will often have to be guided by context and
expertise rather than data. Finally, we point out that it is important to consider that our method,
in it’s current form, does not permit the decoupling of estimated effects from different events during
the same period. For example, the estimated effect for Hurricane Maŕıa in Puerto Rico ran into
the winter of 2017-2018 during which time some United States were affected by a particularly sever
flu season.
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Supplementary Figure 1: Estimated components of the expected counts for six age groups in Puerto
Rico. A) Death rate (deaths per 1,000 per year) trend components. B) Seasonal component for
each age group as percentage increase or decrease from the average.
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Supplementary Figure 2: Estimated hurricane effects as percent increase over expected mortality
for the six hurricanes. The solid line corresponds to percent change from expected mortality and
the shaded region represents a 95% confidence interval.
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Supplementary Figure 3: Estimated event effects as percent increase over expected mortality. The
solid line corresponds to percent change from expected mortality, the shaded region represents a
95% confidence interval, and points show observed percent change from expected mortality. A)
Percent change during the Chikungunya epidemic in Puerto Rico for six age groups. B) Percent
change during the 2005 flu season in Puerto Rico.
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Supplementary Figure 4: Estimated event effects as percent increase over expected mortality for
New York City and 8 states in the United States with the largest percent increase in mortality
rates during the COVID-19 pandemic. The solid line corresponds to percent change from expected
mortality and the shaded region represents a 95% confidence interval. Note that no data was
provided for Connecticut or North Carolina.
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Supplementary Figure 5: Estimated effect of the COVID-19 pandemic in Cook county, IL, as
percent increase over expected mortality stratified by age groups. The solid line corresponds to
percent change from expected mortality and the shaded region represents a 95% confidence interval.
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Supplementary Figure 6: Evidence of correlated errors. A) A Poisson GLM was fitted to Puerto
Rico daily death counts of individuals 75 years and over from an interval with no known natural
disasters or outbreaks (Jan 1, 2006 to Dec 31, 2013). The plot shows the Pearson residuals quantiles
versus theoretical quantiles from the normal distribution. One can see that the tail of the empirical
data are larger than the theoretical values. B) The sample autocorrelation function for these
Pearson residuals with the red-dash lines represent a 95% confidence interval centered at zero. C)
As A) but for residuals after prewhitening based on an estimate of the covariance matrix. D) As
B) but for the prewhittened residuals.
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Supplementary Figure 7: Estimated population displacement in Puerto Rico after Hurricane Maŕıa.
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Supplementary Figure 8: Accounting for correlation in the error structure of weekly data yields
very similar uncertainty estimates to over-dispersed Poisson GLM. We fitted our model along with
a Poisson and over-dispersed Poisson GLM to weekly Puerto Rico mortality data of individuals
75 years and over, and randomly picked 100 intervals of varying sizes to compute z-scores of total
number of deaths. Each plot shows the Pearson residual quantiles versus theoretical quantiles from
the standard normal distribution. A) Intervals of 1 week. B) Intervals of 7 weeks. C) Intervals of
14 weeks.
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Supplementary Figure 9: Simulation study. For all three scenarios, the event day (t0), the effect
size (θ), and the period of effect (L) are September 21, 1998, 55%, and 150 days, respectively.
For each scenario we ran 100 simulations. A) Percent increase in mortality from the average
in the hypothetical scenario of a hurricane making landfall on September 21, 1998. The gray
lines correspond to estimates from each simulation and the red line represents the true curve. B)
Percent increase in mortality from the average in the hypothetical scenario of an epidemic with
peak mortality on September 21, 1998. The gray lines correspond to estimates from each simulation
and the red line represents the true curve. C) Percent change from expected mortality during a
period with no event. D) Standard error of f(t) for estimates in A). The gray lines correspond
to the standard error estimates for each simulation and the red line represents the true standard
error, computed as the standard deviation of fitted values taken across simulations. E) As in D)
but for estimates in B). F) As in D) but for estimates in C).
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