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Abstract

The COVID 19 pandemic caused by the novel corona virus (SARS-CoV-2) has
been one of the major public health concerns across the globe, currently more
than 3.5 million individuals have been infected, and the number of deaths has
passed 250,000. The world wide burden of the disease has been massive, and
the governments are in dilemma to protect the health system of the country
while safeguarding the economy. There is no vaccine or antivirus drug found
against this virus while multiple research groups are actively working on a
suitable candidate. The only available mode of minimizing the disease burden
has been to control its transmission among the population. Since the occur-
rence of first COVID 19 local case on 11 March 2020, the government of Sri
Lanka introduced serious social distancing and public health interventions in
its fullest capacity as a developing nation to effectively combat with the disease
spread. This study focuses to develop a mathematical model to investigate the
dynamic of this novel disease using an extended version of an SEIR compart-
mental structure considering the heterogeneity of cases such as asymptomatic,
symptomatic with mild indications and the cases required intensive care treat-
ments. All the measures and interventions are in progress with a significantly
large social and economic cost, thus, optimal control techniques are used to
identify the most appropriate strategies to minimize this cost. The results of
the simulations prove that optimal control measures can be worked out as the
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epidemic curves are flattened while delaying the outbreak so that the health
system might not be under pressure to treat and care the patients.

Key Words: Corona virus, public health, mathematical model, stability,
optimal control

1 Introduction

The COVID 19 outbreak occurred in the city of Wuhan, Hubei province, China
during late December 2019 from a cluster of pneumonia cases. The Chinese
health authorities identified and informed World Health Organization (WHO)
that the pneumonia condition was due novel beta corona virus, the 2019 novel
virus (2019-nCoV, recently renamed as SARS-CoV-2, the cause of corona virus
disease COVID-19) [1]. It is claimed that the novel corona virus likely to have
originated from a zoonetic type of transmission, occurred in a wet sea food
market where wild animals are sold openly. Soon after few days, Chinese re-
searchers found out that the corona virus effectively show the human-to hu-
man transmission, and this new virus was identified to be extremely contagious
among people [2].

The novel corona virus transmitted to human through respiratory droplets
of another. It had also been revealed later that these droplets can survive in va-
riety of surfaces for multiple hours or even days. Common symptoms of COVID
19 disease have been fever, cough and fatigue. There are some less common
symptoms including sputum production, headache, hemophiliacs, and diarrhea
[3]. According to WHO, COVID 19 has spread for more than 210 countries
and independent territories while Italy, Spain, United States and Iran are the
hardest hit apart from China where the disease is known to be emerged but
now significantly controlled and stable. In numbers, currently more than 30
million people have been infected while there are 200 000 reported deaths
worldwide [4].

Since this is a new virus, there is no vaccination found yet, however, there
are number of experiments are in progress including animal and human trials,
across the globe to find a successful vaccine candidate to fight with the corona
virus [5]. Researchers claim that, though they are able to find a suitable vac-
cine, it would take reasonable number of months to make them available to
people. The only effective strategy to combat with COVID 19 is to control
its transmission through social distancing measures and public health inter-
ventions. Contact tracing and isolation of cases is a common intervention for
controlling infectious disease outbreaks which most of the countries have been
following, however, it might need intensive public health effort and community
mobilization due to the requirement of figuring out all possible contacts. Cur-
rent modeling outcomes suggest that at a minimum of 80% of symptomatic
contacts must be traced, isolated and treat to maintain the efficacy of control
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and the stability of the disease spread [6].

In Sri Lanka, the first COVID 19 case was found on 26 January 2020, was a
Chinese national and she recovered after few weeks. The first local patient was
found on 11 March 2020 and the government of Sri Lanka took strong decisions
to control the transmission of the disease over the community including shut-
ting down all the places of public gatherings such as schools, universities and
non essential services, imposing travel ban to high risk countries, introducing
mandatory quarantine for all arrivals to the country, shutting down the air
port and finally imposing island wide curfew [7]. The time line of COVID 19
related events and responses by the government is illustrated in Figure 1. As
of 28 April 2020, there are 600 confirmed cases, 134 recoveries and 7 deaths
reported in the island while there are many suspected exposed cases are closely
monitored [7]. Few of the high risk areas and villages have been locked down
restricting any type of mobility. Even though the public health sector including
the military forces are acting effectively, one of the major challenges to combat
with the virus in Sri Lanka has been the significant rise in the asymptomatic
infections who are not showing any COVID 19 symptoms but they are carries
of the virus in the population [8].

Fig. 1: COVID19 events (red) and control measures (blue) in Sri Lanka from the first
reported case.

Since COVID 19 is a new disease emerged in the world, lack of data is avail-
able related to the dynamics so that they fit to existing mathematical models to
predict the outbreak. However, these models may be used to demonstrate the
possible different scenarios of the disease transmission with respect to social
distancing and public health intervention measures introduced by authorities
[9].
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In this study, we use the SEIR (Susceptible, Exposed, Infected, Recovered)
compartmental approach to model the dynamic of COVID 19 in Sri Lanka. As
it it critical to test, trace and isolate not only the symptomatic cases but also
the asymptomatic, the infected population then is divided into asymptomatic
(IA) and the symptomatic with mild symptoms (IM ). In the context of Sri
Lanka, all cases who are tested positive for the virus are isolated in designated
hospitals and treated. The patients whose condition is not developed for the
severe level (IH) are treated in isolated general wards however, the patients
whose condition is worsen due to their demography and various other health
related issues (IC) are transferred to Intensive Care Units (ICUs) [10]. In order
to deal with this COVID 19 outbreak, the government has decided to imple-
ment tough measures such as social distancing, personal protection, aggressive
testing for the virus of all contacts and etc. In this context, the optimal control
problem is considered to study the effect of said control measures to spread
the COVID 19 disease [11,12].

This manuscript is organized as follows: In section 2, the deterministic
mathematical model without control is discussed. Furthermore, basic analysis
and the disease free equilibrium are presented by defining the basic reproduc-
tion number (R0). In section 3, we present the optimal control problem with
essential mathematical analysis. Numerical results and discussion are given in
section 4 and finally the conclusion is presented in section 5.

2 Methods

2.1 Mathematical Model with out Control

First, we introduce the mathematical model of COVID19 transmission with
out any control measures. A more extended version of the SEIR (Susceptible-
Exposed-Infected-Recovered) compartment model structure is used to formu-
late this dynamic [10,13–15]. In Sri Lanka, the health authorities treated all
the symptomatic COVID19 cases in government hospitals, rather than advis-
ing them to be self-isolated. However, recent international travelers and close
contacts of the identified COVID19 patients are isolated in government man-
aged quarantine centers in the different parts of the island [7]. If patients are
identified from those groups then they are immediately taken to the hospitals
and treated. However, it is also found that a reasonable number of individuals
who are tested positive while they were asymptomatic [7,5]. Based on this
policy structure in Sri Lankan context, seven population compartments are
considered for the model; Susceptible (S), Exposed (E), Infected with asymp-
tomatic (IA), Infected with mild symptoms (IM ), Isolated in designated hospi-
tals (IH), Patients with critical conditions treated in Intensive Care Units (IC)
and the patients who clinically determined as Recovered (R) [10]. Following
the compartmental transition schematic diagram illustrated in Figure 2, the
seven dimensional differential system describing the COVID19 transmission is
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given by

dS

dt
= −(β1E + β2IA + β3IM )S − qS

dE

dt
= k + (β1E + β2IA + β3IM )S − σE

dIA
dt

= φσE − δ1IA − γ1IA
dIM
dt

= (1− φ)σE − δ2IM
dIH
dt

= δ1IA + δ2IM − ηIH − γ2IH
dIC
dt

= ηIH − γ3IC − µIC
dR

dt
= γ1IA + γ2IH + γ3IC

(1)

where β1, β2 and β3 represent the transmission rates from the exposed, infected
and asymptomatic, and infected and symptomatic respectively while q is the
rate of isolation of the susceptible individuals due to lock down, k is the rate
of imported exposed cases, σ is the rate at which the exposed cases become in-
fected, φ is the percentage of exposed individuals who become asymptomatic,
δ1 is the rate at which the asymptomatic cases are tested and hospitalized, δ2
is the rate at which the symptomatic cases are tested and admitted to hospi-
tals, η is the rate of patients condition becomes severe and require intensive
care treatments, γ1 is the recovery rate of asymptomatic cases who are not in
hospitals, γ2 is the recovery rate of mild symptomatic cases who are in general
wards in hospitals, γ3 is the recovery rate of critically sick patients and µ is
the death rate of the disease.

The initial conditions for the model (1) is as S(0) = S0, E(0) = E0, IA(0) =
I0A, IM (0) = I0M , IH(0) = I0H , IC(0) = I0C and R(0) = R0.
We let the set of solutions denoted by Ω to the system of nonlinear differential
equations in (1) as

Ω = {(S,E, IA, IM , IH , IC , R) ∈ R7
+ : S + E + IA + IM + IH + IC +R

≤ 1, S, E, IA, IM , IH , IC , R ≥ 0}.

2.2 Analysis of the Model

2.2.1 Basic Reproduction Number

Basic reproduction number R0 stands for the number of secondary infections
those can be produced by a single infected patients on average [18]. It is very
critical to distinguish new infections in the dynamic of the population to com-
pute R0. In general, we let x = (x1, . . . , xn)T , xi ≥ 0, be the number of
individuals in each population class. For simplicity, we arrange the compart-
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Fig. 2: Schematic diagram of COVID19 transmission

ments in such a way that first m stand for the infected individuals. We also
define the set X0 = {x ≥|xi = 0, i = 1, . . . ,m}.

Let Fi(x) be the rate of arrival of new infections in compartment i, V+
i (x)

be the rate of transfer of individuals into compartment i in various other
routes, and V−i (x) be the rate of transfer of individuals out of compartment i.
The functions Fi(x), V+

i (x) and V−i (x) are assumed to be continuous and at
a minimum of twice differentiable on x. Now in general terms, the system of
differential equations can be represented in the form

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n, (2)

where Vi(x) = V−i (x)−V+
i (x) and the above functions must meet the assump-

tions A(1)-A(5) listed below.

A(1) Since each function represents a directed transfer of individuals in the popu-
lation, they are all non-negative. That is, if x ≥ 0, then Fi(x),V+

i (x),V−i (x) ≥
0 for i = 1, . . . , n.

A(2) If a compartment is empty, then there can be no transfer of individuals out
of the compartment by death, migration, infection, nor any other means.
That is, if xi = 0 then V−i (x) = 0.

A(3) The incidence of infection for uninfected compartments is zero. That is,
Fi(x) = 0 if i > m.

A(4) If the population is free of disease then the population will remain free of
disease. Thus, if x ∈ X0 then Fi(x) = 0 and V+

i (x) = 0 for i, . . . ,m.
A(5) If the population is held closed to the Disease Free Equilibrium (DFE) then

the population will get back to the DFE as ruled by the linearized system

ẋ = Df(x0)(x− x0) (3)
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where Df(x0) =
[ ∂fi
∂xi

]
assessed at the DFE, x0. This can be written as if

F(x) = 0 then all eigenvalues of Df(x0) have negative real parts.

Using th assumptions A(1)-A(5) enable us to partition the matrix Df(x0).
This is given by the following lemma.

Lemma 1 If x0 is a DFE of the system (2) and fi(x) satisfies A(1)-A(5) then
the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
,

where F and V are the m×m matrices defined by F =
[∂Fi
∂xj

(x0)
]

and

V =
[∂Vi
∂xj

(x0)
]

with 1 ≤ i, j ≤ m. Further, F is non-negative, V is a non-

singular M-matrix and all eigenvalues of J4 have positive real part.

Proof. Let x0 ∈ X0 be a DFE. By A(3) and A(4),
∂Fi
∂xi

(x0) = 0 if either

i > m or j > m. Similarly, A(2) and A(4) gives that if x ∈ X0 then Vi(x) = 0

for i ≤ m. This provides
∂Vi
∂xi

(x0) = 0 for i ≤ m and j > m. This shows the

stated partition and zero blocks. The non-negativity of F follows from A(1)
and A(4).
Let ej be the Euclidean basis vectors. That is, ej is the jth column of the
n× n identity matrix. Then, for i = 1, . . . ,m

(∂Vi
∂xi

)
(x0) = limh→0+

(Vi(x0 + hej)− Vi(x0)

h

)
.

To show that V is a non-singular M-matrix, note that if x0 is a DFE, then
using A(2) and A(4), Vi(x0) = 0 for i = 1, . . . ,m and if i 6= j, the the jth com-
ponent of x0 + hej = 0 and Vi(x0 + hej) ≤ 0, by A(1) and A(2). Therefore,
∂Vi
∂xj
≤ 0 for i ≤ mand j 6= i and V has the Z sign pattern [16]. Furthermore,

by A(5), all eigenvalues of V have positive real parts. These two conditions
provide that V is a non-singular M-matrix [16]. Finally, A(5) also implies that
the eigenvalues of J4 have positive real part. This completes the proof.

Now we aim to compute the basic reproduction number for the system
(1). The method of next generation matrix is used to derive R0. For this pur-
pose we now define the new vector of only infected variables X = (E, IA, IM )
containing the classes which are responsible to transmit the virus in the pop-
ulation. It is assumed that the classes of IH and IC are fully isolated and it
is unlikely that the virus is transmitted to the society anymore. Hence, we
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establish the following system of differential equations [16–18]:

dE

dt
= k + (β1E + β2IA + β3IM )S − σE

dIA
dt

= φσE − δ1IA − γ1IA
dIM
dt

= (1− φ)σE − δ2IM

(4)

To apply the next generation matrix method, the necessary matrices F
and V are obtained as follows [16,17]:

F =

β1S
0 β2S

0 β2S
0

0 0 0
0 0 0

 , (5)

and

V =

 σ 0 0
−φσ (δ1 + γ1) 0

−(1− φ)σ 0 δ2

 . (6)

Now the next generation matrix system is

FV −1 =


S0β1
σ
− S0β3(φ− 1)

δ2
+
S0φβ2
δ1 + γ1

S0β2
δ1 + γ1

S0β3
δ2

0 0 0
0 0 0

 . (7)

So, the basic reproduction number is the spectral radius ρ of the matrix FV −1.
Thus, we obtain

R0 = S0
[β1
σ

+
(1− φ)β3

δ2
+

φβ2
δ1 + γ1

]
(8)

The expression for R0 reveals very useful information about the dynamic of
COVID19 transmission such that the expected number of secondary infection
is the addition of infections due to the exposed, asymptomatic, symptomatic
cases respectively. As φ goes to 1, the secondary infections are not produced
by the cases with mild symptoms as they have been tested and isolated early.
Mathematically, it can be very easily shown that

limφ→1R0 = S0
[β1
σ

+
β2

δ1 + γ1

]
.
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2.2.2 Stability Analysis of the Disease Free Equilibrium

Let us first obtain matrix M such that

M = F − V =

 S0β1 − σ S0β2 S0β3
−φσ (δ1 + γ1) 0

−(1− φ)σ 0 δ2

 . (9)

Now define s(M) = max{Re(α) : α is an eigenvalue of M}. Note that s(M)
is a simple eigenvalue of M with a positive eigenvector. In relation to R0 we
can establish the following equivalences: R0 > 1 if and only if s(M) > 0 and
R0 < 1 if and only if s(M) < 0.

Let us now define the set of solution to system (4) by

Ω1 = {(E, IA, IM ) ∈ R3
+ : E + IA + IM ≤ 1, E, IA, IM ≥ 0}.

Theorem 1 If R0 < 1 then the DFE, E0 is locally asymptotically stable on
Ω1.

Proof. To prove this we need to apply the assumptions A(1)-A(5) and A(1)-
A(4) are easily verified. For A(5) we need to show that the matrix

JE0 =

(
M 0
−J3 J4

)
.

have negative real parts with J3 = −F ,

J4 =

 −σ 0 0
φσ −(δ1 + γ1) 0

(1− φ)σ 0 −δ2

 .

We then compute the eigenvalues of J4 and yield,

s(J4) = max{−δ2,−σ,−(δ1 + γ1)} < 0

Thus, if R0 < 1 then the DFE, E0 is locally asymptotically stable.

3 Optimal Control

It is very clear that the only available strategy to combat with the novel corona
virus is to control its spread over the population. Controlling can be achieved
by reducing the transmission rates [19]. In our model in system (1), the spread
of the virus is mainly due to three population compartments, exposed, infected
with asymptomatic and infected with mild symptoms, and non of the three
groups are isolated until the individuals are being clinically tested. The asymp-
tomatic cases have been a very serious concern for the public health system
across the globe including Sri Lanka. It has been estimated that around 20% of
the cases may be asymptomatic hence they are undetected, however, with the
potential of spreading the virus over the population. In this section, we intro-
duce control measures to the system (1) and modify our model and necessary
mathematical derivations and analysis will be carried out.
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3.1 Mathematical Model with Control

In the model with control, we introduce the combined factor (1−u1) to reduce
the transmission rates β1, β2 and β3 respectively from exposed, infected with
asymptomatic and infected with mild symptoms population classes. Thus, this
u1 measures the effort of personal protection such as wearing face marks, per-
sonal hygiene practices, social distancing methods and etc. The control variable
u2 measures the rate of identifying asymptomatic cases through contact trac-
ing, testing and isolating them to treat in designated hospitals. The control
variable u3 measures the rate of tracing, testing and isolating of patients with
mild symptoms. In this model, we assume that u2IA and u3IM are removed
from IA and IM compartments and they are added to the compartment IH .
In addition, the critically sick patients who are currently at IH compartment
will be transferred to the class of patients in intensive care units with a rate
of η. It is further assumed that asymptomatic cases who are undetected and
could be recovered themselves with a rate of γ1, patients who are in general
wards with mild symptoms are recovered with a rate of γ2 and the patients
in ICUs are recovered with a rate of γ3, and all are added to the recovery
compartment. The modified version of the system (1) can now be established
as in system (10).

dS

dt
= −(1− u1)(β1E + β2IA + β3IM )S − qS

dE

dt
= k + (β1E + β2IA + β3IM )S − σE

dIA
dt

= φσE − u2IA − γ1IA
dIM
dt

= (1− φ)σE − u3IM
dIH
dt

= u2IA + u3IM − ηIH − γ2IH
dIC
dt

= ηIH − γ3IC − µIC
dR

dt
= γ1IA + γ2IH + γ3IC

(10)

3.2 Mathematical Analysis of the Model with Control

It is clear that we have introduced three time invariant control variables
u(t) = (u1, u2, u3) ∈ U into system (1) and these variables are associated
with the population compartments S, E, IA, IM and IH . Further, the control
variables are bounded and measurable such that

U = {(u1, u2, u3)|ukis Lebsegue measurable on[0, 1], 0 ≤ uk(t) ≤ 1, t ∈ [0, T ],

k = 1, 2, 3}
(11)
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The objective functional for the control problem in (10) is now defined as

J(u1, u2, u3) =

∫ T

0

[
A1E +A2IA +A3IM +

1

2

3∑
k=1

Cku
2
k

]
dt (12)

subject to (10).
It is aimed to minimize the cost functional in (12) which consists of pop-

ulations exposed (E), asymptomatic infected (IA) and mildly infected (IM )
as well as the socio-economic cost related to wearing masks, sanitizing meth-
ods, cost of social distancing measures, and etc given by C1u

2
1, public health

cost on contact tracing, testing and isolation of asymptomatic cases given by
C2u

2
2, and the same cost that is for cases with mild symptoms represented by

C3u
2
3. The constants A1, A2, A3, C1, C2 and C3 are the weights and balancing

parameters and they measure the associated relative cost of the interventions
over the interval [0, T ]. We find the optimal control measures u∗ = (u∗1, u

∗
2, u
∗
3)

such that
J(u∗1, u

∗
2, u
∗
3) = min

U
J(u1, u2, u3) (13)

Now we derive necessary conditions to find the solution for the optimal control
problem using Pontryagins Maximum Principle [17,19,21,22]. to show the ex-
istence of the control problem, we rewrite the system (10) as in the following
form [17,20].

X
′

= BX + F (X ) (14)

where

F (X ) =



S(t)
E(t)
IA(t)
IM (t)
IH(t)
IC(t)
R(t)


,

B =



−q 0 0 0 0 0 0
0 σ 0 0 0 0 0
0 0 −(u2 + γ1) 0 0 0 0
0 0 0 −u3 0 0 0
0 0 0 0 −(η + γ2) 0 0
0 0 0 0 0 −(µ+ γ3) 0
0 0 0 0 0 0 0


,

and

F (X ) =



−(1− u1)(β1E + β2IA + β3IM )S
k + (β1E + β2IA + β3IM )S

φσE
(1− φ)σE
u2IA + u3IM

ηIH
γ1IA + γ2IH + γ3IC


,
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and X ′
is the derivative of X with respect to time.

To show the uniform Lipschitz continuity, we let

G(X ) = BX + F (X ). (15)

The function F (X ) in equation (15) satisfies
|F (X1)− F (X2)| ≤ Z1|S1 − S2|+ Z2|E1 − E2|+ Z3|IA1 − IA2|
+ Z4|IM1 − IM2|+ Z5|IH1 − IH2|+ Z6|IC1 − IC2|+ Z7|R1 −R2|.
Now choose Z > 0 such that Z = max(Z1, Z2, Z3, Z4, Z5, Z6, Z7). Thus, we
have
|F (X1)− F (X2)| ≤ Z(|S1 − S2|+ |E1 − E2|+ |IA1 − IA2|
+ |IM1 − IM2|+ |IH1 − IH2|+ |IC1 − IC2|+ |R1 −R2|).
Further we have |G(X1)−G(X2)| ≤ Z|X1−X2| with Z = Z1 +Z2 +Z3 +Z4 +
Z5 + Z6 + Z7 + ‖K‖ <∞.
Therefore, the function G(X ) is uniformly Lipschitz continuous. Hence we can
state that the solution of the control system in (10) exists.

Theorem 2 Given the objective functional J(u1, u2, u3) according to (12),
where the control set U given by (11) is measurable subject to (10) with initial
condition for the problem at t = 0, then there exists an optimal control
u∗ = (u∗1, u

∗
2, u
∗
3) such that J(u∗1, u

∗
2, u
∗
3) = min{J(u1, u2, u3), (u1, u2, u3) ∈ U}

Proof. It is noted that the state variables and the control variables in the
problem (10) are nonempty and the set U contains the control variables is
closed and convex. The right hand side of system (10) is continuous, bounded
above and can be written as a linear function of u with time invariant coeffi-
cients and are depending on state. There exist constants l1, l2 > 0 and m > 1
such that the intergrand L(y, u, t) of the objective functional J is convex and
it satisfies

L(y, u, t) ≥ l1(|u1|2 + |u2|2 + |u3|2)m/2 − l2.

The state variables and the set of control U is clearly bounded and nonempty.
The solutions are bounded, and convex. Thus, the system is bi-linear in control
variables as the solutions are bounded. Now the following is verified so that

A1E+A2IA+A3IM +
1

2
(C1u

2
1+C2u

2
2+C3u

2
3) ≥ l1(|u1|2+ |u2|2+ |u3|2)m/2− l2

where A1, A2, A3, C1, C2, C3, l1, l2 > 0 and m > 1 [23,24].

Now we discuss the method of obtaining the solution to the problem (10).
For this, it is necessary to define the Lagrangian and Hamiltonian for the
optimal control problem (10). Thus, the Lagrangian L is stated as

L(E, IA, IM , u1, u2, u3) = A1E +A2IA +A3IM +
1

2
(C1u

2
1 + C2u

2
2 + C3u

2
3)

(16)
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and for the HamiltonianH we letX = (S,E, IA, IM , IH , IC , R), U = (u1, u2, u3)
and λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7), and we write

H(X,U , λ) = L(E, IA, IM , u1, u2, u3)

+ λ1(−(1− u1)(β1E + β2IA + β3IM )S − qS)

+ λ2(k + (β1E + β2IA + β3IM )S − σE)

+ λ3(φσE − u2IA − γ1IA)

+ λ4((1− φ)σE − u3IM )

+ λ5(u2IA + u3IM − ηIH − γ2IH)

+ λ6(ηIH − γ3IC − µIC)

+ λ7(γ1IA + γ2IH + γ3IC)

(17)

where λj , j ∈ {S,E, IA, IM , IH , IC , R} are the adjoint variables. Next deriva-
tion is the necessary conditions for the Hamiltonian H given in (17).

Theorem 3 Given an optimal control u∗ = (u∗1, u
∗
2, u
∗
3) and a solution

X∗ = (S∗, E∗, I∗A, I
∗
m, I

∗
H , I

∗
C , R

∗) with respect to the system (10), there exist
adjoint variables λj , j ∈ {S,E, IA, IM , IH , IC , R} satisfying

dλ1
dt

= (u1 − 1)(β1E + β2IA + β3IM )(λ2 − λ1) + qλ1

dλ2
dt

= −A1 + Sβ1(u1 − 1)(λ2 − λ1) + σ(λ2 − λ3φ+ λ4(φ− 1))

dλ3
dt

= −A2 + u2(λ3 − λ5) + (u1 − 1)Sβ2(λ2 − λ1) + γ1(λ3 − λ7)

dλ4
dt

= −A3 + Sβ3(u1 − 1)(λ2 − λ1) + u3(λ4 − λ5)

dλ5
dt

= γ2(λ5 − λ7) + η(λ5 − λ6)

dλ6
dt

= γ3(λ6 − λ7) + µλ6

dλ7
dt

= 0

(18)

with transversality conditions

λj(tf ) = 0, j ∈ {S,E, IA, IM , IH , IC , R}. (19)

In addition, the optimal control functions u∗1, u
∗
2, u
∗
3 are given by

u∗1 = min
{

1,max
{

0,
S∗(β1E

∗ + β2I
∗
A + β3I

∗
M )(λ2 − λ1)

C1

}}
u∗2 = min

{
1,max

{
0,
I∗A(λ3 − λ3)

C2

}}
u∗3 = min

{
1,max

{
0,
I∗M (λ4 − λ5)

C3

}} (20)
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Proof. The control system (10) is obtained by taking the derivative

dX

dt
=
∂H(t, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂λ

and the adjoint system (18) is obtained taking

dλ

dt
=
−∂H(t, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂X∗

and the optimal control measures can be derived using

0 =
∂H(t, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂U
.

4 Numerical Results and Discussion

In this section, we obtain the numerical solutions for the problem with out
control (1) and for the control problem (10). The Runge-Kutta algorithm of
order four is implemented in MATLAB to solve the problem with out control
and the numerical schemes presented in [25–27] are coupled with Runge-Kutta
method of order four to carry out the simulation for the problem with control.

4.1 Algorithm for the Optimal Control Problem

STEP 0: Guess an initial estimation to control parameters u and tf .
STEP 1: Use initial conditions S(0), E(0), IA(0), IM (0), IH(0), IC(0) and R(0) and

the stocked values by u and tf .
Find the optimal states S∗, E∗, I∗A, I

∗
M , I

∗
H , I

∗
C and R∗ which iterate forward

in the control problem (10)-(20).
STEP 2: Use the stocked values by u and the transversality conditions λj(tf ) for

j = 1, 2, 3, 4, 5, 6, 7 while searching the constant λ7(tf ) using the scant-
method.
Find the adjoint variables λj(tf ) for j = 1, 2, 3, 4, 5, 6, 7 which iterate back-
ward in the control problem (10)-(20).

STEP 3: Update the control utilizing new state variables S,E, IA, IM , IH , IC , R and
λj(tf ) for j = 1, 2, 3, 4, 5, 6, 7 in the characterization of optimal u∗ given in
(20).

STEP 4: Test the convergence. If the values of the sought variables in this iteration
and the final iteration are sufficiently small, check out the recent values as
solutions. If the values are not small, go back to STEP 1 [28–30].
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4.2 Simulation of the COVID 19 Dynamic System with out Control

Figure 3 shows the simulation results of the problem with out control mea-
sures given in (1). It is found recently that there are a significant number of
asymptomatic cases with in the populations who are also carriers of the virus.
In the public health perspectives, it is very critical to clinically identify these
cases through aggressive testing and isolate them if they are positive for the
virus. The outcome of this task depends on how many cases are asymptomatic
as a proportion. Therefore, we aim to assess the sensitivity of this proportion
in the parameter level. Thus, we let φ to be varying and consider the vector
of values φ = (0.1, 0.25, 0.35, 0.4, 0.45, 0.5) for this simulation. The rest of the
parameters are β1 = 0.5, β2 = 0.6, β3 = 0.45, γ1 = 0.5, γ2 = 0.2,
γ3 = 0.05, δ1 = 0.15, δ2 = 0.25, η = 0.005, µ = 0.04, σ = 1/5, φ = 0.25, k =
0.00405 and q = 0.0004. The initial conditions for the dimensionless form of the
problem are S(0) = 0.85, E(0) = 0, IA(0) = 0, IM (0) = 0, IH(0) = 0, IC(0) = 0
and R(0) = 0 [10,13]. No control measures u1, u2 and u3 are inactive in this
case.
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Fig. 3: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic
with mild (c), Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) as given in
(1) with varying parameter φ = (0.1, 0.25, 0.35, 0.4, 0.45, 0.5).

It is very clearly seen from Figure 3 that as φ increases, the number of
asymptomatic cases also increase and this critical early diagnostic strategy
has helped number of hospitalizations (IH) and that of severely sick patients

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.20122382doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20122382


16 WPTM Wickramaarachchi, SSN Perera

(IC) to reduce.

Solution trajectories of Exposed E population onto Asymptomatic IA,
Symptomatic with mild IM , Isolated in hospitals IH and Critically sick IC
are presented respectively in Figure 4 (a)-(d).
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Fig. 4: Solution trajectories (E, IA), (E, IM ), (E, IH) and (E, IC) for the problem 1 with
fixed parameter φ = 0.25.

4.3 Simulation of the Control Problem

In this section, we evaluate the efficacy of our three control measures, personal
protection and social distancing (u1 6= 0), diagnostic and isolation of asymp-
tomatic cases (u2 6= 0) and diagnostic and isolation of mild symptomatic cases
(u3 6= 0). First we simulate the problem in (10) considering non optimal con-
trol measures. We consider three combinations (u1 = 0.75, u2 = 0.5, u3 = 0.5),
(u1 = 0.5, u2 = 0.3, u3 = 0.3) and (u1 = 0.25, u2 = 0.2, u3 = 0.2). The sim-
ulated results are given in Figure 5. According to Figure 5, it is clearly seen
that when the control measures are increased the curves are flatten and the
peak is occurred with a delay so that the public health system and hospitals
can be prepared to handle the outbreak.

The cost functional given in (12) is used to compute the associate cost
for the government if non optimal control measures are introduced. The cost
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Fig. 5: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic
with mild (c), Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) as given in
problem (10) considering combinations of non optimal control measures (u1 = 0.75, u2 =
0.5, u3 = 0.5), (u1 = 0.5, u2 = 0.3, u3 = 0.3) and (u1 = 0.25, u2 = 0.2, u3 = 0.2).

incurred if u1 = 0.75, u2 = 0.5, u3 = 0.5 is 4.9214× 106, if u1 = 0.5, u2 = 0.3,
u3 = 0.3 is 4.0192× 106, and if u1 = 0.25, u2 = 0.2, u3 = 0.2 is 3.6519× 106.

The main goal of the optimal control problem presented in (10)-(20) is to
minimize the number of exposed (E), asymptomatic infected cases (IA) and
mild symptomatic infected cases (IM ). In the public health point of view, it
is aimed to reduce the number of patients who are in the community and able
to transmit the virus, and make them isolated in designated hospitals. The
simulation of the optimal control problem (10)-(20) is performed over three
scenarios based on the relative importance of the three control measures. The
parameters are β1 = 0.5, β2 = 0.6, β3 = 0.45, γ1 = 0.5, γ2 = 0.2, γ3 = 0.05, η =
0.005, µ = 0.04, σ = 1/5, φ = 0.25, k = 0.00405 and q = 0.0004. The initial
conditions for the problem are S(0) = 0.85, E(0) = 0, IA(0) = 0, IM (0) =
0, IH(0) = 0, IC(0) = 0 and R(0) = 0.

4.3.1 Scenario 1.

We assume the social distancing and personal protection measures are highly
important while the costs on two diagnostic and isolation are equal. The simu-
lated outcomes for each populations E, IA, IM , IH , IC and R are presented in
Figure 6 while the time invariant functions u1(t), u2(t) and u3(t) are illustrated
in Figure 7.
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Fig. 6: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic
with mild (c), Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) for the optimal
control problem given in (10)-(20) with A1 = 50, A2 = 75, A3 = 60, C1 = 8, C2 = C3 = 2.
It is assumed that the relative cost for social distancing and personal protection is high.
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Fig. 7: The optimal control profiles u1(t), u2(t) and u3(t) with A1 = 50, A2 = 75, A3 = 60,
C1 = 8, C2 = C3 = 2.
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It is seen from the Figure 6 that the control interventions are effective since
the number of cases for each E, IA and IM populations have reduced compared
to they are for the problem with out control in (1). Further, it is seen that
the peak of each curve has been reduced and it is delayed. Thus, the optimal
control measures have helped to flatten the curve. The control functions in
Figure 7 suggest that tracing, testing and isolation of both asymptomatic and
symptomatic infections are required for the entire period of time considered
for the simulation.

4.3.2 Scenario 2.

We assume that tracing, testing and isolating asymptomatic cases are more
critical. The simulated outcomes for each populations E, IA, IM , IH , IC and
R are presented in Figure 8 while the time invariant functions u1(t), u2(t) and
u3(t) are illustrated in Figure 9.
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Fig. 8: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic
with mild (c), Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) for the optimal
control problem given in (10)-(20) with A1 = 50, A2 = 75, A3 = 60, C1 = 5, C2 = 8,and
C3 = 2. It is assumed that the relative cost for tracing and testing asymptomatic cases is
high.

It is also seen from the Figure 6 that the control interventions are effective
since the number of cases for each E, IM , IH , IC populations have reduced
compared to they are for the problem with out control. All three control inter-
ventions needed in their full capacity during the initial stage of the outbreak,
according to Figure 9.
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Fig. 9: The optimal control profiles u1(t), u2(t) and u3(t) with A1 = 50, A2 = 75, A3 = 60,
C1 = 5, C2 = 8, C3 = 2.

4.3.3 Scenario 3.

We assume that social distancing with personal protection and tracing, testing
and isolating mild asymptomatic cases are equally more critical. The simulated
outcomes for each populations E, IA, IM , IH , IC and R are presented in Figure
10 while the time invariant functions u1(t), u2(t) and u3(t) are illustrated in
Figure 11.

According to Figure 10, if the health system focuses equally more on so-
cial distancing and personal protection, tracing of asymptomatic cases then
the peak of the exposed, asymptomatic, symptomatic, hospitalized, and ICU
treated cases can be minimized on the other hand each peak can be delayed.
Therefore, it can be stated, this control strategy is successful as the govern-
ment needs to encourage more on social distancing and personal protection
practices together with effective tracing, testing and isolation strategy for the
patients who do not show symptoms.

The algorithm for the optimal control problem was iterated 100 times until
the optimal solutions are found. The cost functional given in (12) is evaluated
in each iteration and the behavior of execution is given in Figure 12.

It can be clearly seen the convergence of cost to its optimal value 9.035×105

units for the scenario 1 while it is for scenario 2 obtained as 11.88× 105 units,
however, for the scenario 3, the cost is as small as 1.95× 103.
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Fig. 10: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic
with mild (c), Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) for the optimal
control problem given in (10)-(20) with A1 = 50, A2 = 75, A3 = 60, C1 = 9, C2 = 9,and
C3 = 3. It is assumed that the relative cost for tracing and testing symptomatic cases is
high while less importance is given for social distancing and personal protection.

5 Conclusion

Presently, COVID 19 disease caused by the novel corona virus has been a very
serious public health concern across the globe. This outbreak is more than five
months old since it was first claimed to be originated in the city of Wuhan,
China in late December 2019. The development of suitable vaccine candidate
is still in progress thus, strong social control measures and public health in-
terventions are critically needed to combat with the disease spread.

COVID 19 is a novel disease, therefore researchers are learning about the
dynamic of this virus everyday. In an epidemiological state in this type, math-
ematical models are very useful to understand the dynamic of the disease and
to evaluate the efficacy of different control measures such as social distancing,
personal protection, and public health interventions such as contact tracing,
isolation and treatments.

In this study, we develop an extended version of SIER conceptual model
considering two main clinical, epidemiological and public health facts; firstly,
the occurrence of asymptomatic and symptomatic infections of people and sec-
ondly, the individual demography such as age, life style and health condition

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.20122382doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20122382


22 WPTM Wickramaarachchi, SSN Perera

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

days

u

 

 

u
1
(t)

u
2
(t)

u
3
(t)

Fig. 11: The optimal control profiles u1(t), u2(t) and u3(t) with A1 = 50, A2 = 75, A3 = 60,
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Fig. 12: The behavior of cost functional given in (12) with respect to iterations.

found to have determined the patient’s situation might turn into severe.
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Since the government works hard utilizing most of its resources to control
the spread over the population, an optimal control model is also constructed.
Essential mathematical analysis is carried out for the models to check the
stability of the equilibrium points, derive disease’s R0, investigate the exis-
tence of solutions to the optimal control problem, and etc while numerical
simulations are performed in MATLAB. It is clearly seen from the simulations
presented in Figures 7-11 that optimal control measures have reduced the ex-
posed, asymptomatic, symptomatic cases significantly. The control scenario 3
provides a considerable effect on the epidemic curves, not only it minimizes
the infections but also delaying the peak of the outbreak approximately by
40 days in contrast to the outcomes with out control. This enables the health
system to be more equipped and prepared to combat with the epidemic. It
should be noted that the simulations are carried out for a period as short as
for 120 days.
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