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Abstract  

COVID-19 disease, caused by SARS-CoV-2 virus, has infected over four million people globally. 

It has been declared as a "Public Health Emergency of International Concern" (PHEIC), by the 

World Health Organization (1). Several mathematical models, mostly based on compartmental 

modeling, are being used for projections for COVID-19 in India. These projections are being 

used for policy level decisions and public health prevention activities (2,3). Unlike 

compartmental models, which consider population averages, Agent Based Models (ABM) 

consider individual behavior in the models for disease projections. ABMs, provide better 

insights into projections compared to compartmental models (4).   

We present an ABM approach with a synthetic population from Rangareddy district, Telangana 

state, India, to examine the patterns and trends of the COVID-19 in terms of infected, 

admitted, critical cases requiring intensive care and/ or ventilator support, mortality and 

recovery. The model is developed based on data pertaining to a local area, i.e. district, as this 
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prove to be much helpful for policymaking compared to models estimating nation-wide 

disease projections. The parameters for the ABM model were defined and model run for a 

period of 365 days for three different non-pharmaceutical intervention (NPI) scenarios, 

namely; no lockdown, 50% lockdown and 75% lockdown scenarios. AnyLogic platform was 

used for the ABM simulations. Results revealed that the peak values and slope of the curve 

declined as NPI became more stringent. The results could provide a platform for researchers 

and modelers to explore using ABM approach for COVID-19 projections with inclusion of 

interventions and health system preparedness.   
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1. Introduction 

The first reported case of the novel coronavirus (COVID-19 or SARS-CoV-2) in India dates back 

to January 30, 2020 when it was also announced as pandemic by WHO (5,6). Since then, 

epidemic has spread across India infecting 44,94,389 people with 9,27,545 active cases, 

34,90,908 recovered cases and 75,328 deaths as on Sep 10, 2020 (7). Globally, COVID-19 has 

spread across 213 nations, infecting 28,035,700 people worldwide and claiming 908,991 lives 

as on Sep 10, 2020, posing a global health emergency (8–10).  

In a country like India having a denser population, the situation poses a serious challenge (11). 

There are several underlying factors such as age, comorbidities, exposure to air pollution, 

amount of exposure to virus, etc., that may determine the severity of infection and rate of 

recovery (12). Higher transmission rate of the disease further increases the vulnerability. 

Reports estimate that the transmission rates range from 2.24 to 3.58 and WHO estimates 

transmission rates between 1.4 to 2.5 (10,13). The behaviour of COVID-19 is found to be 

similar to that of Severe Acute Respiratory Syndrome (SARS) epidemic family which reduces 
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the chance of reinfection (12,14). Common symptoms of COVID-19 include fever, cough and 

fatigue (9). Yet, the existence of a significant proportion of asymptomatic carriers makes it a 

greater cause for concern as they remain unidentified and can unknowingly spread the disease 

to healthy people (15–17). Travel restrictions have reduced the rate of spread of the infection 

(18,19). Other non-pharmaceutical interventions (NPIs) such as restrictions on public 

gatherings, intra-city movements, etc., may flatten the curve. It is important to understand the 

time required between exposure and complete recovery, using these interventions, to take 

timely responsive actions against COVID-19 (20).  

Simulation is an effective technique to provide solutions to real-time problems because it 

obviates the burden of making changes to physical systems that require a lot of investment in 

time, cost and risks (21). Simulation represents a way of mapping several real-world scenarios 

as a model (22). Simulation outperforms analytical models for handling optimization of 

complex and dynamic systems (23). There are several mathematical models being utilized at 

this time for COVID-19 that are based on compartmental models and Discrete Event Simulation 

(DES). Since compartmental models and DES do not account for the interactions between 

individual entities within the system, Agent Based Modeling (ABM) may be a better option to 

gain insights (24).  

There are major differences among the widely used simulation models. DES mainly focusses on 

the flows of entities through various states/ processes of the system. There are no interactions 

between the entities of the system. System Dynamics concentrates on flows, stocks and 

delays. It focusses on collective measures rather than on measures pertaining to single/ group 

of agents. ABM is said to direct agents based on their parameters. This method also considers 

the interaction between agents whilst distinguishing them based on their individual 

parameters (25,26). Advancements in information technology and computational capabilities 
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have paved way for system science techniques like ABM (27). ABMs have gained interest 

among researchers across various verticals, including public health in recent times (28–30).  

ABM is thought to be of a greater importance in the public health domain as it incorporates 

actions of individuals/ agents within the system, helping the model comprehend infection 

spread dynamics better (31,32). ABM follows a bottom-up approach i.e., the behaviour of the 

system is a result of behaviour of individuals, defined as agents within the system (33,34). ABM 

allows definition of factors such as age, underlying health conditions and other susceptibility 

factors to the agents to make each of them behave distinctly (34). Various factors such as the 

data quality, disease dynamics, ever-changing social and environmental interactions, 

uncertainties in effects of these interventions need to be properly dealt with as they impact on 

the accuracy of models (35). Mixing patterns among the agents within a system play a vital role 

in dynamic transmission models for close contact infections (36).  

In the past, ABMs have been employed to address various infectious diseases such as, a 

bioterrorist introduction of smallpox (37), design vaccination strategies for influenza (38), 

curtail transmission of measles through contact tracing and quarantine (39), control of 

tuberculosis (40), implementation of distancing measures and antiviral prophylaxis to control 

H5N1 influenza A (bird flu) (41) and devise evacuation strategies in the event of airborne 

contamination (42). 

An evaluation of use of ABM on COVID-19 globally suggests its use to measure; the effects of 

lockdown on transmission dynamics (43–46), post-lockdown measures (47), use of control 

measures (face mask, social distancing) (47,48), isolation of vulnerable proportion of 

population (47,49), contact tracing, intelligence of agents (based on awareness level (44) or 

protection level), contact tracing measures (44,48), good practices such as sneezing into one's 

hands (45), both direct (upon contact) and indirect transmission (through suspended particles) 
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(45), scheduled-based contacts (45,47,50) with close circle and in work, transport and public 

places (45,49,51), viral-load based transmissibility (48), examination of genomic sequencing to 

determine the spread (52), etc.  

In India, several COVID-19 models have been conducted based on Susceptible (S), Exposed (E), 

Infective (I) and Recovered (R) (SEIR) (53–56), Susceptible (S), Exposed (E), Symptomatic (I), 

Purely Asymptomatic (P), Hospitalized or Quarantined (H), Recovered (R) and Deceased (D) 

(SIPHERD) (57), mathematical models (58,59), etc., to compare  the spread during lockdown 

and no lockdown scenarios. Majority of these models ignore certain important aspects as they 

encapsulate the entire population as a compartment whilst the ABMs account for granular 

details. However, the complexity of models is associated with computational intensity. Ability 

of ABM to account for details of individual agents steered the present study to adopt ABM.   

The present study aims to define an ABM approach using AnyLogic 8.5.2 University edition, to 

examine the patterns and trends for the number of infected people, admitted people, people 

who might require intensive care and/ or ventilator support, mortality rate, recovery and  

effect of non-pharmaceutical interventions on the transmission dynamics, for the COVID-19 

epidemic in Rangareddy district, Telangana State, India. Nation-wide models restrict the 

policymakers locally to devise strategies based on the results as they might not fit properly to 

the locality (60). In countries like India where people are diverse in all respects like population 

dynamics, contact network, migrating population, nature of work, etc., local models might 

prove effective and would assist policymakers to take local decisions for disease mitigation. 

2. Materials and Methods 

The present study models a local population of Rangareddy district, Telangana state, India with 

an aim to help the policymakers to identify the latent factors of COVID-19 that lead to influx of 
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infections and impose measures (61). The modeling follows an ABM approach using AnyLogic 

8.5.2 University edition to model the interaction environment (22).  

The parameters that were available through review of literature were used to define the 

proportion of people who get infected and die, number of people to whom an infected 

individual would transmit the infection, etc. The three key components of ABM namely i) a 

realistic synthetic population, ii) social contact network among the agents, and iii) a disease 

model was considered to construct the model (35). The entire simulation and reporting follows 

the ISPOR-SMDM Modeling Good Research Practices and ethical good practice in modelling 

(62–64). These guidelines were used so that the assumptions, scope and shortcomings of the 

model are transparent to the readers and policymakers.  

2.1. Synthetic population 

A synthetic population is one of the commonly used approaches to represent a group of 

people, preserving the confidentiality of individuals. Synthetic population has statistical 

equivalence with the original population being represented and is indistinguishable from the 

census data (65). For this study, we used a synthetic population developed for Rangareddy, 

Telangana state consisting of 5,48,323 people (representing  10.35 % of total population (n- 

52,96,741 as per Census of India 2011), to demonstrate the ABM (66,67). .  

Age was a major parameter considered to distinguish the population as it is one of the major 

parameters governing the number of people who would be met by an individual (12,36). Table 

1 represents the age-wise distribution of the synthetic population.  

Table 1: Age-wise distribution of synthetic population of Rangareddy 

Age group (years) Population/ No. of agents 

Less than 5 47039 
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5 to 59 459372 

Above 60 41912 

2.2. Transmission rates of COVID-19 

Based on the WHO report on COVID-19 (16 to 24 Feb 2020), the transmission rates were 

defined using the upper and lower limits given for the close contact infections (considering 

both household and other infections). The close contact transmission rate was varied from 1 to 

10 percent (68).  

2.3. Contact network 

The contact network plays a vital role in transmission dynamics. This includes i) contact rate 

estimation, ii) mapping the estimated contact rate in proportion with the population densities 

of various townships and iii) estimation of average contact rate based on proportion of various 

population densities. For contact rate estimation, we used a study from Ballabgarh, India, 

which determined the number of close contacts made by individuals on a daily basis, which 

could assist the researchers to define contact rates for close contact infections (69). The 

dataset representing the number of people met by each individual was input into the ‘Input 

Analyzer’ tool of Arena (Version 16.00.00002). Input Analyzer takes the values of a dataset and 

gives the best-fit distribution. It also provides the option to fit the data to any desired 

distribution with some errors of fitting into a distribution. The contact rates of each group 

were found to follow normal distributions using "Input Analyzer" tool of Arena software (Table 

2). Density-Dependent contact rate was presumed for the study.  

Table 2: Contact rate distribution of Ballabgarh (69) 

Years 
Number of 

respondents 

Average no. of 

people met per 

day 

Min Max 
Distribution of 

contact rate(s) 

Square 

Error 

<5 378 15.108 4 48 NORM(15.1,  6.82) 0.00656 
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5 to 59 2185 17.194 1 67 NORM(17.2,  8.01) 0.003202 

60+ 380 12.863 1 41 NORM(12.9,  5.49) 0.002328 

To determine the population densities of various classified townships of India, we used the 

Indian population proportion classified based on types of towns that are presented in table 3 

(70,71). The population density of Ballabgarh is 551 people per square kilometer (69). This was 

used to proportionately determine the contact rates that would be obtained for various types 

of towns based on their respective population densities, assuming Density Dependent (DD) 

contact rate  (72,73). 

Contact rate 
  Slope �  
���������	 

���
  …(1) 

For estimation of average contact rate based on proportion of various population densities, 

the corresponding proportions of people from the sample size of the study in Ballabgarh were 

segregated and mapped to be living in Statutory town, Census town, Outgrowth and Village, 

respectively. The contact rates for people in these various townships were calculated 

proportionately based on their corresponding population densities using the multiplication 

factor (slope in equation (1)) (table 3), which represents the ratio of the population density of 

a particular location type to the population density of Ballabgarh.  

Table 3: Classification of Indian towns with population proportions and densities (70)  

Census 

classification 

Population density per 

km
2
 

Proportion of Indian 

population (%) 
Multiplication factor 

Statutory town 3977 26.3 7.22 

Census town 2069 4.5 3.75 

Outgrowth 1241 0.4 2.25 

Village 292 68.9 0.53 
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Table 4: Contact rate distributions of various age groups (for India). Indicated are the 

parameters of Lognormal distributions: μ – mean of the included Normal; σ – standard 

deviation of the included Normal; Min – minimum sample (contact) value. 

 

No lockdown 50% lockdown 75% lockdown 

Years μ σ Min Μ σ Min μ Σ Min 

<5 2.774 0.899 6 2.080 0.899 3 1.387 0.899 1.5 

5 to 59 2.883 0.856 6 2.189 0.856 3 1.496 0.856 1.5 

60+ 2.599 0.844 5 1.906 0.844 3 1.213 0.844 1.25 

Table 4 indicates the contact rate distributions for each of the age groups, which were 

calculated as explained subsequently. Number of people in each age group were divided 

further based on the proportion of people residing in each of the town type (70). The number 

of contacts made by people under town category were multiplied by their respective 

multiplication factors as reported in Table 3. These values were integrated to Input Analyzer 

and their respective contact rate distributions were then determined. Lognormal distributions 

as mentioned in table 4 were obtained for contact rates. Natural log of the lognormal variables 

was then determined, the parameters of which indicate the included normal values. 

2.4. State chart 

A state chart represents the various states in which an agent would exist, at any given instant 

(23). Figure 1 represents the state chart for the disease model (22). The initial state of all 

agents is defined to be healthy, as it is linked with the ‘start’ of the simulation. Once the 

simulation is run, an agent would be triggered to move to the ‘infected’ state randomly based 

on the probability i.e., he/ she is considered to acquire the infection. Further, based on the 

parameters assigned as per table 5, the agents would interact with other agents in the 
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population and transmit the infection which is dependent on the number of contacts an agent 

interacts every day and the probability of an agent to get infected through contact, i.e., 

transmission rate. Agents in ‘infected’ state go through an incubation period from the time of 

exposure and turn out to be either symptomatic or asymptomatic. Agents continue to contact 

other agents and transmit till they either get ‘admitted’ after being ‘symptomatic’ or till they 

‘recover’ being ‘asymptomatic’ for a defined time duration. Once admitted, all agents undergo 

treatment and either recover from the illness or move to serious illness condition and are 

taken to Intensive Care Unit (ICU) state. Upon further treatment, some patients recover after 

intensive care whereas a proportion of them turn critical and would require ‘ventilator’ 

support. Patients in this state either recover or are deceased after the treatment. Illness levels 

of patients during treatment tenure are categorized in three levels represented by ‘admitted’, 

‘ICU’ and ‘ventilator’ states indicating severity of illness as illness, serious illness and critical 

illness respectively (33).  
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Figure 1: State chart for agent(s) (people) 

2.5. Model calibration  

Various parameters that are included in the model were determined based on various sources 

as discussed in this section. Models of Infectious Disease Agent Study (MIDAS) has also been 

used as a source of acquiring parameters through the pre-prints and manuscripts available 

(74). Calibration of the model depicts the assignment of run parameters required for 

simulation that are presented in table 5 and also in points that follow.  
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Table 5: Parameters for the model 

Parameters <5 5-59 >59 References 

Number of contacts per day 

Table 4 (Lognormal 

distribution) 

(69,70) 

Probability of getting infected 

through contact 

Varies in random 

from (1 to 10) 

percent 

(68) 

Proportion of people remaining 

asymptomatic after infection 

0.8 (75,76) 

Average incubation period (for both 

symptomatic and asymptomatic) (in 

days) 

5 (34) 

Average treatment duration (in days) 14 (20) 

Proportion of hospitalized cases in 

ICU 

0.11 (77,78) 

Treatment duration in ICU (in days) Triangular(7,8,9) (20,78) 

Proportion of people moving from 

ICU to critical illness (Ventilator 

assistance) 

0.88 (78) 

Treatment duration in ventilator 

state (in days) 

Triangular(5,7,12) (20) 

Time between symptom arrival and 

admission (with no intervention) (in 

days) 

5 (79) 
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Time between symptom arrival and 

admission (with intervention) (in 

days) 

3 (79) 

Proportion of people who die 

Number of deaths/ 

Number of 

infections (as per 

Indian statistics) 

(7) 

References for parameters: 

• The WHO estimates that in India, about 80% of the cases remain asymptomatic or mild, 

15% of the cases are severe and 5% cases require intense care and/ or ventilator assistance 

(76).  

• Recovered patients are not infected again and hence are excluded from further simulation 

process.  

• Number of people who come in contact with an individual in the population follows a 

lognormal distribution as mentioned in table 4.  

• Hospital admission duration was determined to be 13 days with an Inter-quartile range 

(IQR) of (10-18) days for patients with no severity (20). 

• Time duration between exposure to discharge was 23 days with an IQR of (18-24.5) days 

(20). 

• Time duration of illness onset to discharge i.e., after the arrival of symptoms, was 18.5 

days with an IQR of (15-22) days (20). 

• Incubation period was found to be 4 days with an IQR of (3-6) days. The longest incubation 

period was determined to be 14 days (20). 

• Time between illness onset to admission was 5 days (20). 
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2.6. Model scenarios 

Once the model was developed and the parameters were assigned appropriately, the 

simulation was run for a duration of 365 days. The model was designed to trigger one infected 

agent (5-59 years) into the healthy population to understand the transmission dynamics and 

spread of infection based on the given parameters. In order to study the effect of minimization 

of number of contacts among the agents, three different scenarios were simulated and the 

results were compared that are discussed in the subsequent sections.  

First scenario, referred to as  “no lockdown” scenario can be comprehended as a routine day-

to-day life as there were no NPI put in place from the day when the epidemic marked its onset 

in India (7). The parameters considered for the simulation of “no lockdown” scenario (scenario 

1) are all based on the statistics obtained after the origination of the epidemic. Second and 

third scenarios considered 50% and 75% reductions in day-to-day contact among people, that 

are referred to as “50% lockdown” or “scenario 2” and “75% lockdown” or “scenario 3” 

respectively in this manuscript. In order to study the effect of lockdown, the contact rate of 

people needs to be reduced. To achieve this, the results of a study that presented the 

proportion of contacts made by individuals of different age groups were utilized (table 6). The 

number of contacts made at different locations namely home, school, work and others, as 

designated by the authors of the study was used to enact the lockdown (80). To simulate the 

NPI scenarios, the number of people met in work and other places were reduced by 75 percent 

and 50 percent for the two scenarios whereas the contacts in school was completely discarded 

owing to the closure of schools. These resulted in reduced diffusion of the infection across the 

population, results of which are discussed subsequently.  

Table 6: Age-wise contact rate (average) based on different locations  

Age group Home Work School Other 

0-5 4.97 0.03 0.52 3.54 
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5 to 59 41.17 34.06 31.67 60.41 

60+ 12.86 1.45 0.76 10.94 

Total 59 35.54 32.95 74.89 

3. Results  

Simulations were run for different age groups as per the categorization for all the three 

scenarios. Detailed day-wise data of the number of people in each health state is provided in 

the supplementary excel file. The results of the same and their interpretations are discussed 

below. 
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Figure 2: a) Number of uninfected people – all age groups b) Number of infected people – all 

age groups (Cumulative) c) Number of infected people (for a given instant) 

Figure 2 a) represents the number of uninfected people on each day and it is clear that the rate 

of reduction in number of uninfected people declines as the stringency of the imposed 

lockdown increases. After a duration of one year, proportion of people who remain uninfected 

are 28.53, 76.33 and 93.8 percent in No lockdown, 50% lockdown and 75% lockdown scenarios 

respectively.  

Figure 2 b) indicates the total number of people infected till any day cumulatively. These 

results complement figure 2 a) owing to the fact that lockdown conditions hinder the rate of 

spread of the infection. The rate of spread of the infection is the minimum for the third 

scenario and is the maximum for scenario without any lockdown. Maximum number of people 
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infected in scenarios 2 & 3 over a one-year simulation run are 129779 and 33973 which would 

be reached in a period of just 33 and 25 days in a no lockdown condition.  

Figure 2 c) represents the number of infections on a given day for all the three scenarios. These 

values reach a maximum of 191907, 37790 and 7986 which corresponds to 35%, 6.89% and 

1.46% respectively of the initial population. A significant amount of reduction in peak 

infections is seen due to the lockdowns imposed. Furthermore, it is also noteworthy that there 

is a delay in the occurrence of these peak values as the stringency of the lockdowns-imposed 

increases. 
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Figure 3: a) Number of asymptomatic people – all age groups b) Number of admitted people– 

all age groups c) Number of people in ICU – all age groups d) Number of people using 

ventilators – all age groups 

Figure 3 a) represents the number of asymptomatic people on each day indicating the peak 

values for the three different scenarios. The proportion of asymptomatic people is as high as 

80% of the total infected people. Number of asymptomatic carriers reach a peak value 

corresponding to 31.71%, 6.28% and 1.33% of the initial population respectively for the three 

scenarios. There is an occurrence of a maximum equal to 173892 on 44
th

 day, 34414 on 84
th

 

day and 7281 on 90
th

 day for the no lockdown, 50% and 75% lockdown scenarios respectively.  

Figure 3 b) represents the number of  people who would be in admitted state on each day. The 

peak values correspond to 6.42%, 1.33% and 0.28% of the initial healthy population 
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respectively for the three scenarios. There is a considerable reduction in the maximum number 

of simultaneous admissions as the lockdown stringency is increased.  

Figure 3 c) indicates the number of people who move from normal illness to ICU on each day. 

The peak number of patients in ICU are 2390, 496 and 94 respectively for the three scenarios, 

which indicate the minimum number of intensive care setups required for the respective 

scenarios.  

The peak values represented in figure 3 d) indicate the number of people who would require 

ventilator assistance on any given day. The peak values 1929, 405 and 78 indicate the 

minimum number of ventilator setups required for each of the scenarios, as indicated in table 

7 for each state represented by figure 3 d).  

 

Figure 4: Number of people deceased – all age groups 

Figure 4 indicates the number of people deceased for various days. Higher mortality rate is 

seen for a no lockdown condition and it is seen to decline as the stringency of lockdown is 

increased. Number of people deceased after the model was simulated for 365 days are 2288, 

760 and 199 which correspond to 0.42%, 0.14% and 0.04% of the initial population respectively 

for three of the scenarios.  

-500

0

500

1000

1500

2000

2500

0 100 200 300 400

N
u
m
b
e
r 
o
f 
p
e
o
p
le

Days

Number of deceased People

NO LOCKDOWN

50% LOCKDOWN

75% LOCKDOWN

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.06.04.20121848doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20121848
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 7 indicates the peak values for various states possessed by the agents in the infection 

model. These values throw light on the timely measures to be taken to meet the peak 

demands for resources for each of the scenario considered. The peak values also decrease for 

all these states as the stringency of lockdown is increased, indicating the effectiveness of 

lockdown measures.  The values (in %) indicate the percentage with respect to the initial 

healthy population.  

Table 7: Peak values for various health conditions 

  No lockdown 50% lockdown 75% lockdown 

  Value % Day Value % Day Value % Day 

Uninfected 548320 100.00 1 548321 100.00 1 548321 100.00 1 

Infected 191907 35.00 43 37790 6.89 84 7986 1.46 90 

Asymptomatic 173892 31.71 44 34414 6.28 84 7281 1.33 90 

Symptomatic 23269 4.24 36 3450 0.63 78 723 0.13 85 

Admitted 35186 6.42 49 7271 1.33 91 1510 0.28 97 

ICU 2390 0.44 60 496 0.09 104 94 0.02 125 

Ventilator 1929 0.35 68 405 0.07 114 78 0.01 132 

Deceased 2288 0.42 224 760 0.14 209 199 0.04 231 

Recovered 389572 71.05 226 129018 23.53 216 33773 6.16 230 

The peak number of infections is seen to decline for 50% and 75% lockdown conditions 

compared to that of the no lockdown scenario. Likewise, there are drops across all the peak 

values such as the number of admissions in ICU, peak number of patients requiring ventilators, 

and number of people deceased. A significant drop in peak number of ICUs required from 2390 

for a no lockdown condition to 94 for a 75% lockdown is evident. Concurrently, the peak 
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number of ventilators decline from 1929 for a no lockdown condition to 78 for a 75% lockdown 

condition.  

4. Discussion 

This approach based on the synthetic population of 5,43,823 agents in Rangareddy District, 

Telangana state, India, for three different NPI scenarios (no lockdown, 50% lockdown and 75% 

lockdown) projects that the transmission rate of COVID-19 could be effectively brought down 

by stringency of lockdowns imposed. The focus of the study being on a district-level is a major 

strength of the study as it facilitates decision-making easier to policymakers at specific regions 

(60). The simulation results are presented using ISPOR-SMDM Modeling Good Research 

Practices and ethical good practice in modelling.  

Synthetic populations are most often generated from open source data such as Open data 

from French National Statistical Institute (INSEE), Santé Publique France, London Imperial 

College, etc., (47), US Census Bureau data, (45,49), Australian Census data (52), etc. The 

geographical scope of the study governs the number of agents considered and the number of 

agents considered  varies depending on the region studied. For example, 10 million stochastic 

agents for the State of Delaware, US (45), a scaled-down simulation of New York with 10000 

agents (44), synthetic population of NYC with 500,000 (49), 5000 agents in the premises of 

Università Politecnica delle Marche, Italy (50), 24 million agents representing the population of 

Australia (52), 750,805 agents representing Urmia, Iran (46), etc.  

Assumptions/ approaches to establish the contact networks augment variations in behavioral 

aspects of agents in each model. Classification of a group of people aged greater than 65 and/ 

or with underlying illness as obesity, chronic cardiac or respiratory illness, and diabetes (47), 

awareness level (that enhances protection), use of contact tracing mechanisms (48), schedule-

based contacts with house members (44,45,49), close contacts (49), closed spaces such as 
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work/ office spaces, university (44,50), indirect contact with suspended viral particles, public 

gatherings at café, gym, hospitals, transport, (45), touching contaminated surfaces, washing 

hands (44,48,81), etc., have all been modeled.  

Given the above variations in models, there are also a spectrum of scenarios analyzed by 

modelers with an aim to determine the ones that outperform others, such as the no lockdown 

scenario that is included in almost all studies to be used as a base for comparison, control 

measures such as face masks, physical distancing , shielding of vulnerable population (47), 

lockdowns for varying durations (47), by reducing number of contacts in external settings 

whilst maintaining the close contacts in family constant (45), lifting lockdowns based on age-

groups (49), and effect of contact tracing of symptomatic individuals (44,49).  

In the present study, a decrease in number of contacts at various locations such as in schools, 

works, etc., was incorporated to enact lockdown scenarios whilst maintaining the contacts 

made at house (54). It is evident from the results of present study that as the percentage of 

lockdown imposed was increased, the magnitudes of peak infections reduced with a delay in 

their corresponding occurrences, which provides more time for the policymakers to increase 

their capacities to meet the influx of cases. A team of researchers from The Center For Disease 

Dynamics, Economics & Policy (CDDEP) and Princeton University using ABM estimated the 

state-wise capacity requirements to accommodate the influx of hospitalizations to help the 

policymakers to increase their capacities to match the influx based on estimates in India   

(82,83).  

Considering some other parameters for projections could improve the accuracy of projections, 

such as high levels of clustering in contact networks, especially in the context of spread of 

infections would provide more accurate results (84–87). GIS information, migration routes and 

defined schedules could be included to improve the projections in specific areas (32,33). 
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Wearable devices could be integrated with mobiles to provide real-time monitoring of COVID-

19 patients by their healthcare practitioners (88). Other NPIs such as maintenance of face and 

hand hygiene, wearing protective face mask, etc. could be incorporated into the model to 

improve the accuracy and to understand the infection transmission dynamics (89). Exploring 

the contact network and dynamics of different regions would help us to represent the region-

specific disease spread better (60). Also, including spatial data, ethnicity, gender, etc., into the 

model would allow obtaining region-specific results.  

There are certain limitations to the study as parameters such as underlying health conditions, 

migration routes, adoption of control measures (face mask, social distancing, etc.), 

longitudinally varying lockdown phases, etc., have not been considered. The results of 

simulation model clearly indicate that the peak values of the number of infections, number of 

admissions in hospital, number of symptomatic/ asymptomatic cases, number of ICUs and 

ventilators required, and number of people deceased could significantly be reduced by 

increasing the lockdown imposed. Thus, the importance of reducing the number of contacts, 

i.e., social distancing, is apparent through the results of this study and flattening the disease 

curve.  

5. Conclusions  

Majority of the ABM studies focus on specific regions that is a major strength of ABM as it 

allows defining characteristics at individual level (49).  We present an approach towards ABM 

using AnyLogic on a synthetic population in Rangareddy district, Telangana state, India. 

Further, data specific to India to parametrize such ABM will be critical. Having a synthetic 

population of a country can provide several options to create ABMs for several disease 

conditions apart from COVID-19 and may prove efficient for decision-making. 

Data Availability 
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Detailed day-wise data of the number of people in each of the state (age-group wise), the 

AnyLogic model file, synthetic population (text file) and input template (Spreadsheet) are 

available at: https://cloud.anylogic.com/model/7cd10c0c-f1c1-4b8f-9aac-

0bf37a45379a?mode=SETTINGS and https://osf.io/utmhg/files/  
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