Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

The impact of school reopening on the spread of COVID-19 in England

View ORCID ProfileMatt J. Keeling, View ORCID ProfileMichael J. Tildesley, Benjamin D. Atkins, Bridget Penman, Emma Southall, Glen Guyver-Fletcher, Alex Holmes, Hector McKimm, Erin E. Gorsich, View ORCID ProfileEdward M. Hill, Louise Dyson
doi: https://doi.org/10.1101/2020.06.04.20121434
Matt J. Keeling
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matt J. Keeling
  • For correspondence: M.J.Keeling@warwick.ac.uk
Michael J. Tildesley
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael J. Tildesley
Benjamin D. Atkins
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bridget Penman
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emma Southall
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
2Mathematics for Real World Systems Centre for Doctoral Training, Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Glen Guyver-Fletcher
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
3Midlands Integrative Biosciences Training Partnership, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alex Holmes
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
2Mathematics for Real World Systems Centre for Doctoral Training, Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hector McKimm
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
4Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erin E. Gorsich
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward M. Hill
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Edward M. Hill
Louise Dyson
1The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

By mid-May, cases of COVID-19 in the UK had been declining for over a month; a multi-phase emergence from lockdown was planned, including a scheduled partial reopening of schools on 1st June. Although evidence suggests that children generally display mild symptoms, the size of the school-age population means the total impact of reopening schools is unclear. Here, we present work from mid-May that focused on the imminent opening of schools and consider what these results imply for future policy.

We compared eight strategies for reopening primary and secondary schools in England. Modifying a transmission model fitted to UK SARS-CoV-2 data, we assessed how reopening schools affects contact patterns, anticipated secondary infections and the relative change in the reproduction number, R. We determined the associated public health impact and its sensitivity to changes in social-distancing within the wider community.

We predicted reopening schools with half-sized classes or focused on younger children was unlikely to push R above one. Older children generally have more social contacts, so reopening secondary schools results in more cases than reopening primary schools, while reopening both could have pushed R above one in some regions. Reductions in community social-distancing were found to outweigh and exacerbate any impacts of reopening. In particular, opening schools when the reproduction number R is already above one generates the largest increase in cases.

Our work indicates that while any school reopening will result in increased mixing and infection amongst children and the wider population, reopening schools alone in June was unlikely to push R above one. Ultimately, reopening decisions are a difficult trade-off between epidemiological consequences and the emotional, educational and developmental needs of children. Into the future, there are difficult questions about what controls can be instigated such that schools can remain open if cases increase.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work has been funded by the Engineering and Physical Sciences Research Council through the MathSys CDT [grant number EP/S022244/1] and by the Medical Research Council through the COVID-19 Rapid Response Rolling Call [grant number MR/V009761/1]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Data from the CHESS database was supplied after anonymisation under strict data protection protocols agreed between the University of Warwick and Public Health England. The ethics of the use of these data for these purposes was agreed by Public Health England with the Government's SPI-M(O) / SAGE committees and there is a minuted agreement to the effect that DHSC and PHE agreed that a group of academics, including Prof Keeling were to have access to these data for the types of analyses that he has presented to you for publication.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • Text clarifications. We also now comment on the potential implications for current school reopening.

Data Availability

Data on cases were obtained from the COVID-19 Hospitalisation in England Surveillance System (CHESS) data set that collects detailed data on patients infected with COVID-19. Data on COVID-19 deaths were obtained from Public Health England. These data contain confidential information, with public data deposition non-permissible for socioeconomic reasons. The CHESS data resides with the National Health Service (www.nhs.gov.uk) whilst the death data are available from Public Health England (www.phe.gov.uk).

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 16, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The impact of school reopening on the spread of COVID-19 in England
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The impact of school reopening on the spread of COVID-19 in England
Matt J. Keeling, Michael J. Tildesley, Benjamin D. Atkins, Bridget Penman, Emma Southall, Glen Guyver-Fletcher, Alex Holmes, Hector McKimm, Erin E. Gorsich, Edward M. Hill, Louise Dyson
medRxiv 2020.06.04.20121434; doi: https://doi.org/10.1101/2020.06.04.20121434
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
The impact of school reopening on the spread of COVID-19 in England
Matt J. Keeling, Michael J. Tildesley, Benjamin D. Atkins, Bridget Penman, Emma Southall, Glen Guyver-Fletcher, Alex Holmes, Hector McKimm, Erin E. Gorsich, Edward M. Hill, Louise Dyson
medRxiv 2020.06.04.20121434; doi: https://doi.org/10.1101/2020.06.04.20121434

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (70)
  • Allergy and Immunology (166)
  • Anesthesia (49)
  • Cardiovascular Medicine (447)
  • Dentistry and Oral Medicine (80)
  • Dermatology (55)
  • Emergency Medicine (157)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (188)
  • Epidemiology (5195)
  • Forensic Medicine (3)
  • Gastroenterology (192)
  • Genetic and Genomic Medicine (746)
  • Geriatric Medicine (76)
  • Health Economics (210)
  • Health Informatics (689)
  • Health Policy (350)
  • Health Systems and Quality Improvement (221)
  • Hematology (98)
  • HIV/AIDS (161)
  • Infectious Diseases (except HIV/AIDS) (5787)
  • Intensive Care and Critical Care Medicine (353)
  • Medical Education (101)
  • Medical Ethics (25)
  • Nephrology (80)
  • Neurology (754)
  • Nursing (43)
  • Nutrition (129)
  • Obstetrics and Gynecology (140)
  • Occupational and Environmental Health (230)
  • Oncology (473)
  • Ophthalmology (149)
  • Orthopedics (37)
  • Otolaryngology (93)
  • Pain Medicine (39)
  • Palliative Medicine (19)
  • Pathology (138)
  • Pediatrics (223)
  • Pharmacology and Therapeutics (135)
  • Primary Care Research (96)
  • Psychiatry and Clinical Psychology (851)
  • Public and Global Health (1982)
  • Radiology and Imaging (340)
  • Rehabilitation Medicine and Physical Therapy (154)
  • Respiratory Medicine (282)
  • Rheumatology (93)
  • Sexual and Reproductive Health (72)
  • Sports Medicine (74)
  • Surgery (107)
  • Toxicology (25)
  • Transplantation (29)
  • Urology (39)