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 Abstract 10 

The COVID-19 pandemic that swiped across the globe led many countries to apply unprecedented 11 

nationwide restrictions and control measures. Analyzing aggregate and anonymized mobility data 12 

from the cell-phone devices of>3 million users in Israel, we identified that poorer regions exhibited 13 

lower and slower compliance with the restrictions. We integrated these mobility patterns into  14 

age-, risk- and region-structured transmission model, and showed how we can explain the 15 

spatiotemporal dynamics of 250 regions covering Israel. Model projections suggest that applying 16 

localized and temporal interventions that focus on high-risk groups can substantially reduce 17 

mortality, particularly in poorer regions, while enabling daily routine for a vast majority of the 18 

population. These trends were consistent across vast ranges of epidemiological parameters, 19 

possible seasonal forcing, and even when we assumed that vaccination would be commercially 20 

available in 1-3 years. Our methodology can help policymakers worldwide identify hotspots and 21 

apply designated strategies against future COVID-19 outbreaks. 22 
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Introduction 26 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China, 27 

in December 2019. It has since developed into a pandemic wave affecting over 200 countries, 28 

causing over 6.9 million cases and claiming over 390 thousand lives, as of June 8, 20201. The rapid 29 

growth of the SARS-CoV-2 pandemic led to unprecedented control measures on a global scale. 30 

Travel bans, restrictions on mobility of varying degrees, and nationwide lockdowns have emerged 31 

sharply in over 200 countries2. In Israel, since March 9, 2020, travelers from any country are being 32 

denied entry unless they can prove their ability to remain under home isolation for 14 days. From 33 

March 16 onward, daycare and schools were shut, and work was limited to less than a third of the 34 

capacity. On March 26, inessential travel was limited to 100 meters away from home, and three 35 

lockdowns were applied in most regions in Israel to prevent crowding due to holiday celebrations3. 36 

 37 

These massive measures have led to a sharp decline in transmission but pose a significant 38 

humanitarian and economic crisis4–7. Recent estimates have suggested that 1.5-3 month lockdowns 39 

will lead to an enormous economic loss, with high variability across countries ranging between 40 

1.7-13.1% decline in the gross domestic product4. Restrictions to mitigate the outbreak also led to 41 

various types of psychological distress, including anxiety, helplessness, and depression5–7. 42 

Furthermore, social isolation is a primary public health concern in the elderly, as it also amplifies 43 

the burden of neurocognitive, mental, cardiovascular, and autoimmune problems7. Thus, given that 44 

pandemics rarely affect all people in a uniform manner8, it is essential to improve our 45 

understanding of the COVID-19 transmission dynamics to customize control efforts.  46 

 47 

As human mobility is an intrinsic property of human behavior, it serves as a key component of the 48 

transmission of respiratory infections, including COVID-199–13. The four billion mobile phones in 49 

use worldwide are ubiquitous sensors of individuals’ locations and can be utilized not only to track 50 

mobility patterns, but also to understand compliance with ongoing restrictions 12. The importance 51 

of human mobility is further intensified by the 2.2-11.5 days of incubation, and the observation 52 

that as many as 95% of cases are unreported14. Thus, utilizing real-time data on human mobility is 53 

instrumental for early detection and prompt isolation of COVID-19 infection.  54 

 55 

A variety of factors besides human mobility affect the risk of infection and manifestations, 56 

including demographics, education, underlying conditions, and epidemiological characteristics15. 57 

The high variance in the severity of the disease for different age groups suggests that age-based 58 

strategies might be useful in reducing mortality16. Age-stratified modeling studies show  that 59 

interventions such as school closure can help delay the outbreak peak11. However, this will not 60 

necessarily result in a reduction in the total number of deaths, particularly in light of the estimated 61 

time for vaccine availability being >1 year17. In addition to age, individuals with comorbidities are 62 

2.8-21.4 times more likely to become hospitalized following COVID-19 infection18. Another 63 

factor may be socioeconomic status. Impoverished populations often live in denser regions and 64 

have reduced access to health services, thereby being most vulnerable during a crisis8. The 65 
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considerably high rate of household transmission for respiratory infections19 may also suggest a 66 

higher risk for larger families, regardless of lockdowns.  67 

  68 

We analyzed a large-scale data of location records from mobile phones to explore the 69 

spatiotemporal effect of human mobility and population behavior on transmission. We integrated 70 

these mobility data into regional age- and risk-structured transmission model and used our model 71 

to identify efficient and effective strategies for reducing COVID-19 mortality. Our methodology 72 

can help policymakers worldwide utilize aggregate and anonymized cellphone data to develop 73 

designated strategies against future outbreaks. 74 

 75 

Results 76 

Human mobility and poverty 77 

We utilized aggregated and anonymized information about mobility based on cellular data. The 78 

data specifies movement patterns of >3 million users within and between 2,630 zones covering 79 

Israel, on an hourly basis, from February 1, 2020, to May 16, 2020. This period corresponds to the 80 

period from a month before the COVID-19 outbreak began in Israel until 16,600 cases were 81 

reported. Each zone includes ~3500 residents with available information regarding several 82 

socioeconomic characteristics, including household size, age distribution, mean socioeconomic 83 

score, and religion. 84 

 85 

During the aforementioned period, the government applied and lifted several movement 86 

restrictions. We define a mobility index (MI) as the daily proportion of individuals who traveled 87 

>1.5 km away from their home. While a sharp decline has been observed in the overall population 88 

following restrictions, the decline varied considerably among individuals of different 89 

socioeconomic statuses (SESs). Specifically, during routine days, the low-SES population had the 90 

lowest MI. Shortly after the restrictions started, this trend changed, and populations of all SESs 91 

had similar MIs, while during the lockdowns, the high-SES population had the lowest MI (Figure 92 

1A). 93 

 94 

Before the COVID-19 outbreak, the population was highly clustered such that people of a specific 95 

SES typically traveled to zones where the residents matched their SES and were therefore more 96 

likely to meet with each other (Figure 1B, and Figures S1 and S2 Supplementary materials). 97 

Likewise, people of similar demographic groups, such as those with the same religious affiliations, 98 

typically traveled to zones where the residents matched their group. These trends further 99 

intensified following the restrictions (Figure 1C). Notably, the clustering was not attributable to 100 

only the geographical distance, as many high-SES zones are geographically close to the low-SES 101 

zone. 102 
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 103 
Figure 1: Mobility patterns with and without restrictions (A) Percentage of individuals who traveled >1.5km, 104 
stratified by socioeconomic groups, during routine and when mobility restrictions were applied and lifted: (1) closing 105 
schools and stores and limiting workplaces to 30% activity; (2) limiting nonessential travels to 100 meters away from 106 
home; (3) and (4) national daily lockdowns due to Passover; (5) opening stores; (6) lockdown due to Independence 107 
Day; (7) lifting the 100 meter limit for nonessential travels. (B) and (C) Travel patterns based on individuals’ SES 108 
during February 2-29 (B) and March 26-April 18 (C). 109 

  110 
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Human mobility and poverty explain transmission 111 

To explore the spatiotemporal effect of human mobility and poverty on transmission, we calculated 112 

the number of new cases and the amount of travel between zones observed during three periods: 113 

February 13-March 26, March 27-April 20, and April 20-May 20 (Figure 2). These periods 114 

correspond to 1) the early phase before restrictions started, 2) between the time of restrictions and 115 

until the restrictions were lifted, and 3) after restrictions were lifted. Our analysis indicated that 116 

during the first period, the infection was evenly distributed among different SESs. During the 117 

second period, 71% of the cases were residents of zones with a low SES, particularly religious 118 

orthodox Jews. During the third period, 81% of the cases were residents of low SES, mainly 119 

residents of zones of Israeli Arabs and orthodox Jewish people. We also identified a high 120 

correlation ranging from 79.2-82.8% (p value<0.001) with a lag of 12-14 days between the MI and 121 

the disease growth factor, i.e., the number of new cases daily per active case (Figure S3 122 

Supplementary materials). This lag includes the incubation period, the time from symptom onset 123 

until a test is conducted, and the time until the test results arrive. 124 
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 125 

 126 

Figure 2. Association between mobility and poverty in COVID-19 transmission. Spatiotemporal transmission by 127 
socioeconomic status. We present the 50 municipalities with the highest incidence. Each circle represents one 128 
municipality. The radius (presented on a logarithmic scale for clarity) reflects the total number of new cases reported 129 
during the corresponding period. The colors reflect socioeconomic status. The lines between the municipalities 130 
represent the traffic of each municipality, wherein the line thickness represents the relative traffic intensity and the 131 
color matches the color of the SES of origin. We present below each map the number of reported cases among different 132 
SEGs for three periods corresponding to (A) the early phase before restrictions started, (B) from the time of restrictions 133 
and until the restrictions were lifted, and (C) after restrictions were lifted.  134 
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We integrated the daily mobility data into an age-, region-, and risk-stratified model for SARS-135 

CoV-2 transmission. Model parameters were calibrated to the number of new cases daily in 30 136 

subdistricts covering Israel. With only five free parameters, the model recapitulated SARS-CoV-137 

2 trends (Figure 3). For example, the calibrated model showed that the national SARS-CoV-2 138 

infections peaked during March 17-25 (Figure 3B) and yielded age and regional distributions of 139 

SARS-CoV-2 consistent with the data (Figure 3C and D). Our calibration further indicated that a 140 

model ignoring mobility poorly captured the spatiotemporal dynamics and provided 141 

overestimation of disease transmission (Table S5, Supplementary materials). We also found that a 142 

model that accounted for seasonal forcing yielded a higher, but not significant (p value<0.35), 143 

likelihood than a model that did not account for seasonal forcing (Table S5, Supplementary 144 

materials). 145 

146 
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 147 

 148 
Figure 3. Structure and fit of the transmission model. (A) Compartmental diagram of the transmission model. 149 

Susceptible individuals S transition to the exposed compartment with a force of infection λ, where they are infected 150 

but not yet infectious, until moving to an early infectious compartment at rate σ, in which they do not show symptoms 151 

but may transmit. Infected individuals in the early stage move to a reported 𝐼𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑  or unreported 𝐼𝑈𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑  152 

infectious period, in which they may have a mild or an asymptomatic infection until death or complete recovery. For 153 

clarity of depiction, age, risk, and region stratifications are not displayed. (B) Time series of reported daily COVID-154 
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19 cases and model fit countrywide. (C) Data and model fit to the age distribution among COVID-19 infections. (D) 155 

Data and model fit to the 30 subdistricts covering Israel. 156 

 157 

Focused lockdowns reduce mortality 158 

As transmission varied considerably among regions, we projected the number of total deaths for 159 

1-3 years under local and temporal lockdown strategies. Specifically, we simulated three strategies 160 

triggered by a threshold of daily COVID-19 incidence in each of the 250 regions where we 161 

considered a lockdown for 1) the entire population in the region, 2) daycare- and school-age 162 

children (between 0-19 years of age (children), and 3) high-risk groups and individuals >65 years 163 

of age (high-risk). To examine the efficiency of local strategies compared to nationwide strategies, 164 

we also simulated a global strategy triggered by similar national daily incidence. When a lockdown 165 

is applied, we consider the same compliance rate as that observed during previous lockdowns, 166 

which is reflected in our data for each region by different values of the MI and travel between 167 

zones. 168 

 169 

We evaluated the efficiency of the lockdown strategies, defined as the number of deaths averted 170 

per lockdown day (Figure 4). We found that the local strategy of targeting the high-risk group was 171 

substantially more efficient than any other strategy. For example, assuming the proportion of 172 

unreported cases is 85% and a lockdown threshold of 5/10,000 (cases/individuals), a strategy 173 

targeting the high-risk group is 4.3-5.5 times more efficient than a global strategy (Figure 4C and 174 

D).  175 
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 176 
Figure 4. Efficiency of lockdown strategies. Median and interquartile values of the projected number of deaths 177 
averted per 1 million lockdown days due to the implementation of lockdown strategies (A,C) after one year and (B, 178 
D) after three years. (A,B) The thresholds for lockdowns in a local region are 1/10,000 [cases/individuals] and (C,D) 179 
5/10,000 [cases/individuals].  180 
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We evaluated the effectiveness of each strategy in reducing mortality (Figure 5). We found that a 181 

strategy locally targeting the high-risk group yielded a lower number of deaths than a strategy 182 

targeting children. For example, assuming the proportion of unreported cases is 85% and a 183 

lockdown threshold of 5/10,000 (cases/individuals), a strategy targeting the high-risk group 184 

resulted in 4,500-4,900 deaths while on targeting children resulted in 7,900-10,500 deaths after 185 

one year (Figure 5A and C). In addition, for lockdown thresholds exceeded 5/10,000, which aligns 186 

with the current practice in Israel, a strategy locally targeting the high-risk group either is projected 187 

to be the most effective or is comparable to the most effective strategies. Although comparable on 188 

the effectiveness, such a policy includes 2.2-5.5 times fewer individuals under lockdowns (Figure 189 

5C and D).  These trends were consistent across vast ranges of epidemiological parameters, 190 

different plausible ranges of threshold values, and different considerations of seasonal forcing. 191 
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 192 
 193 
Figure 5. Effectiveness of lockdown strategies. Median and interquartile values of the projected number of deaths 194 
after implementation of strategies (A, C) after one year and (B, D) after three years. (A, B) The thresholds for 195 
lockdowns in a local region are 1/10,000 [cases/individuals] and (C, D) 5/10000 [cases/individuals].  196 
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Discussion 197 

Our key findings suggest that COVID-19 infection does not spread uniformly in the population, 198 

and thus, intervention strategies should be localized and temporal and should focus primarily on 199 

protecting individuals at high risk. Such a strategy can reduce mortality while enabling daily 200 

routine for a vast majority of the population. Furthermore, temporary lockdown strategies that 201 

focus on the population at high risk were found to be most efficient and likely to result in 202 

comparable mortalities to lockdown strategies of all individuals in a region.  203 

 204 

Our work demonstrates that to understand the spatiotemporal dynamics of transmission, models 205 

must account for mobility as well as behavioral aspects that are associated with sociodemographic 206 

and socioeconomic factors. In particular, we found that SARS-CoV-2 is more likely to spread in 207 

more impoverished regions and is affected by human mobility. The intensive interactions likely 208 

led to higher transmission in developed countries than in developing countries. However, our 209 

model suggested that people of low SES are at higher risk due to poorer compliance and larger 210 

household size. 211 

 212 

Our analyses indicate that localized lockdowns with incidence thresholds as low as five reported 213 

cases in 10,000 individuals are essential to decrease mortality. This finding underscores the 214 

importance of maintaining a high level of testing20, particularly in regions with elevated risk of 215 

transmission. However, with such a strategy, at least 2500 total years of lockdowns (equivalent to 216 

a one-day lockdown of 912,500 individuals) are required to prevent a single death. Considering 217 

that one day of lockdown is equivalent to a quality of life value that is ~0.85 times that in a routine 218 

day21, even local lockdowns should be prudently considered from a health economic perspective. 219 

Thus, future modeling studies should also include localized and temporal massive screening 220 

efforts, which result in more focused quarantines and isolations than massive lockdowns. 221 

 222 

As in any modeling study, we made several simplifying assumptions. Our local lockdowns 223 

correspond to regions with a population of ~36,000 people. A smaller lockdown may be more 224 

efficient but could not be tested by our model. Additionally, with the growing evidence of a 225 

disproportionate risk from COVID-19 to the elderly18,22, focused control measures are likely to be 226 

conducted in retirement homes and facilities with populated communities at high risk, which we 227 

did not explicitly account for in our model23. Although the transmission dynamics are unlikely to 228 

change with such focused interventions, the overall mortality is expected to be lower than what we 229 

have found. 230 

 231 

While there is a debate in the literature regarding the extent of infectiousness and transmissibility 232 

in children 24, our results highlighted a not less important question: to whom do children transmit? 233 

Our findings reveal that children are less likely to transmit to populations at risk, and thus, a 234 

differential lockdown strategy that targets children may be even harmful. 235 

 236 
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In conclusion, we showed that using aggregated and anonymized human mobility data from 237 

cellular phones under the General Data Protection Regulation (GDPR) guidelines is a powerful 238 

tool to improve the understanding of transmission dynamics and to evaluate the effectiveness of 239 

control measures. Our transmission model predicted that rather than nationwide lockdowns, 240 

applying temporal and localized lockdowns that focus on groups at high risk can substantially 241 

reduce mortality. Such focused measures will enable a vast majority of the population to maintain 242 

a daily routine. Our methodology can help policymakers worldwide utilize aggregate and 243 

anonymized cellphone data to develop designated strategies against future outbreaks. 244 

 245 

Methods 246 

 247 

Human mobility 248 

Our data include mobility records based on cellular data of >3 million users from one of the largest 249 

telecommunication companies in Israel. With the exception of children <10 years of age, the users 250 

are well representative of Israel demographically, ethnically, and socioeconomically. In 251 

accordance with the GDPR, the data include aggregated and anonymized information. The data 252 

specifies movement patterns within and between 2,630 zones covering Israel, on an hourly basis, 253 

from February 1, 2020, until May 16, 2020. To ensure privacy, if less than 50 individuals were 254 

identified in the zone in a given hour, the number of reported individuals was set to zero. 255 

 256 

We determined the location of individuals based on the triangulation of cell towers, which was 257 

found to be accurate to 300 meters in most cases but varied by up to 1 km in less populated areas. 258 

To prevent signal noise and identify stay points, we tracked only locations where users stayed for 259 

at least 15 minutes within a distance threshold of 1.7 km. We defined users as residents of a zone 260 

based on the location at which they had the highest number of signals on most nights during 261 

February 2020. 262 

 263 

To calculate the MI for each zone, we counted the daily number of individuals in each group that 264 

showed a signal away from their home location. Conservatively, we counted only individuals who 265 

were located more than 1.5 km away from home. 266 

 267 

Next, we integrated data from the Central Bureau of Statistics (CBS) that specifies several 268 

socioeconomic characteristics, including population size, household size, age distribution, 269 

socioeconomic score, and dominant religion, for each zone. Each zone includes ~3,500 residents. 270 

For each zone, we scaled the number of resident users of the telecommunication company to match 271 

the actual number of residents in the zone, as reported by the Israeli CBS. The CBS specifies for 272 

each zone a socioeconomic cluster from 1 to 10. Based on these clusters, we defined three SES 273 

groups that were nearly equal in size: low (clusters 1-3), middle (clusters 4-7), and high (clusters 274 

8-10). We aggregated the MI according to SES to test the mobility trends on a national level 275 

(Figure 1A). To evaluate the travel patterns based on an individual's SES (Figure 1B and 1C), we 276 
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counted the mean daily number of travels between the 2,630 zones, including for those individuals 277 

who stayed in their origin zone. Grouping by SES and scaling the daily number of travels to one 278 

for each zone, we created an origin-destination travel probability matrix. 279 

 280 

To analyze the relationship among poverty, mobility, and transmission (Figure 2), we divided the 281 

data into three periods: 13 Feb-26 Mar, 27 Mar-19 Apr, and 20 Apr-15 May, corresponding to 1) 282 

the early phase before restrictions started, 2) the time from restrictions until they were first lifted, 283 

and 3) after the restrictions were lifted. For each period, we ranked municipalities with a population 284 

of >10,000 residents based on the number of new cases per person observed in each period. For 285 

improved clarity of Figure 2, we present the 50 most prevalent municipalities. We calculated for 286 

each city the number of newly reported cases, the SES, and the distribution of travels to the other 287 

49 municipalities. 288 

 289 

Transmission model 290 

We developed a dynamic model for age-, risk- and region-stratified SARS-CoV-2 infection 291 

progression and transmission in Israel. Our model is a modified susceptible exposed infected 292 

recovered (SEIR) compartmental framework25, whereby the population is stratified into health-293 

related compartments, and transitions between the compartments change over time (Figure 3A). 294 

To model age-dependent transmission, we stratified the population into age groups: 0-4 years, 5-295 

9 years, 10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years and ≥70 296 

years. We distinguished high-risk and low-risk individuals in each age group based on the ACIP 297 

case definition 26,27. We also distinguished the 250 regions covering Israel in the model. 298 

 299 

The mean incubation period of SARS-CoV-2 is 6.4 days (95% CI, 5.6 to 7.7 days)28,29, but early 300 

evidence shows that viral shedding occurs during a presymptomatic stage30,31. Thus, we considered 301 

an exposure period E and an early infectious period 𝐼𝑒𝑥𝑝𝑜𝑠𝑒𝑑. Underreporting arises from 302 

asymptomatic cases or mild cases in individuals who do not seek care. Thus, following the early 303 

infectious phase, individuals in the model transition either to an infectious and reported 304 

compartment 𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 or to an infectious and unreported compartment 𝐼𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑32,33. 305 

 306 

Multiple infections with SARS-CoV-2 are not yet fully understood. A recent study indicated that 307 

there is protective immunity following infection34. This result is consistent with a previous study 308 

indicating that for SARS-CoV-1, memory T cells persist for up to 11 years35. In addition, similar 309 

to other respiratory infections, it is likely that if reinfection occurs, it is less severe and less 310 

transmissive36. Thus, we assumed that upon recovery, individuals are fully protected, which is 311 

consistent with other SARS-CoV-2 transmission models37 (Supplementary materials). Altogether, 312 

our model includes 5 ∗ 9 ∗ 2 ∗ 250 =  22,500 compartments (ℎ𝑒𝑎𝑙𝑡ℎ − 𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠 ∗ 𝑎𝑔𝑒 −313 

𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 𝑟𝑖𝑠𝑘 − 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠).  314 

 315 

 316 
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Force of infection and seasonality 317 

The rate at which individuals transmit depends on (i) contact mixing patterns between the infected 318 

individual and his or her contact, (ii) age-specific susceptibility to infection, (iii) region-based 319 

behavioral susceptibility, and (iv) potential seasonal forcing. 320 

Age-specific contact rates were parameterized using data from an extensive survey of daily 321 

contacts38 and data from CBS regarding the household size in each region. In addition, we utilized 322 

the aggregate mobility data regarding movement patterns within and between 250 regions as 323 

observed in the data during routine and following restrictions (Supplementary materials). We 324 

specifically distinguished the contact patterns of infected individuals for different locations, 325 

namely, at home, at work and during leisure, such that the number of contacts was based on the 326 

extensive survey38 and the household size, whereas the mixing patterns were based on the locations 327 

of the individuals as analyzed using the mobile data. These contact data reveal frequent mixing 328 

between similar age-groups, moderate mixing between children and people their parents’ age, and 329 

infrequent mixing among other groups. The data based on mobility reveal more frequent mixing 330 

between individuals of similar SES, at similar geographical distances, and with cultural similarities 331 

(Supplementary materials). 332 

We distinguished between in-home and out-of-home transmission. We evaluated the in-home 333 

transmission is independent of age, and based on a previous retrospective studies, that suggested 334 

a value of 0.1619. The age-specific susceptibility rate for out-of-home individuals 𝛽𝑗 was 335 

parameterized by calibrating our model with daily COVID-19 records. 336 

To account for behavioral susceptibility, we explicitly considered in our model a parameter 337 

reflecting the order to maintain physical distancing, 𝜅𝑝. The high regional variations in 338 

susceptibility were parameterized based on fertility rates and socioeconomic characteristics. 339 

Specifically, we computed for each region the relative change in mobility compared to routine. 340 

Our analysis indicated that for regions of low SES, the change was lower, which was reflected in 341 

our model by higher susceptibility (Supplementary materials). The use of regional fertility and 342 

relative change in mobility allowed us to refrain from calibrating the model to an excessive number 343 

of unknown parameters and avoid overfitting. 344 

Seasonal patterns have been observed in common circulating human coronaviruses (HCoVs), 345 

mostly causing infections in humans between December and May in the Northern Hemisphere39. 346 

The two HCoVs 229 E and OC43 show distinct winter seasonality. In addition, many 347 

coronaviruses in animals exhibit a distinct seasonal pattern of incidence in their natural hosts40. 348 

There is growing evidence that SARS-CoV-2 is also seasonal, with the optimal setting for 349 

transmission in Israel occurring during winter41. Thus, we considered in our base-case seasonal 350 

forcing by including general seasonal variation in the susceptibility rate of the model as 351 
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𝑇(𝑡) = (1 + 𝑐𝑜𝑠(
2𝜋(𝑡+𝜑)

365
)), 352 

in which 𝜑 is the seasonal offset. This formulation was previously shown to capture the seasonal 353 

variations in several respiratory infections, including RSV and influenza36,42. We incorporated the 354 

possible values of 𝜑 to reflect peaks from December through February (Supplementary materials). 355 

 356 

Model calibration 357 

To empirically estimate unknown epidemiological parameters (Table S5, Supplementary 358 

materials), we calibrated our model to daily age-stratified cases of COVID-19 confirmed by PCR 359 

tests in 30 subdistricts covering Israel. The calibration was conducted on a 30-subdistrict level 360 

rather than in the 250 regions to ensure that there were sufficient time series data points in each 361 

location for each age-group. The data were reported by the Israeli Ministry of Health between 362 

February and May and include daily information for the patients, including age, residential zone, 363 

underlying conditions, and clinical outcomes, including hospitalizations and death. 364 

Due to the uncertainty regarding the proportion of unreported cases, we calibrated our model to 365 

different scenarios. Specifically, underreporting is affected by testing policy and testing 366 

capabilities for each country, as well as individuals' tendency to seek care once clinical symptoms 367 

appear. In addition, underreporting is affected by the severity of the infection, which is associated 368 

with age18. Thus, we chose different estimates for the proportion of underreporting, ranging from 369 

5.5-14 unreported cases for a single reported case. These estimates are based on observations from 370 

screenings conducted in Denmark, Czechia, Netherlands; Santa Clara, California14,18,43 (Table S1, 371 

Supplementary materials). Due to the uncertainty related to positive predictive values of 372 

serological screenings, we also tested a scenario of 2 unreported cases for a single reported case to 373 

confirm the robustness of our findings.  374 

To account for the age variation, we considered the detailed serological data from Santa Clara14. 375 

We also calibrated our model with scenarios assuming different phases of seasonal peaking 376 

between December 21 and February 21, as well as scenarios with no seasonality. The final 377 

transmission model included five parameters without constraints imposed from previous data: 378 

reduced susceptibility due to physical distancing 𝜅𝑝 and susceptibility rate based on age groups j: 379 

0-19, 20-39, 40-59, and >60 (Supplementary materials). 380 

Model simulations 381 

We evaluated the effectiveness of temporal lockdown strategies in reducing mortality by 382 

simulating the model for one year and three years or until disease elimination. Each strategy 383 

considered includes a threshold for activation of a lockdown, and the groups considered for 384 

lockdown were as follows: 1) the entire population in the region, 2) daycare- and school-age 385 
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children between 0-19 years of age (children), 3) high-risk groups and individuals >65 years of 386 

age (high-risk). 387 

Thus, to model the lockdown strategies, we defined an indicator for each region as the weekly 388 

number of new-reported cases per 10,000 people. Each week, we examined whether the indicator 389 

exceeds a certain threshold for each region. If so, a lockdown was activated for the following week. 390 

This process was continued for 1-3 years. 391 

To project the number of individuals who will die under each strategy considered, we utilized 392 

available detailed information from the Israeli Ministry of Health (Table S2, Supplementary 393 

materials). Specifically, we calculated for each age- and risk-group the proportion of individuals 394 

who died out of the reported cases. We multiplied these proportions with the daily model 395 

projections of newly reported cases and summed this product to calculate the total projected 396 

number of deaths. We also accounted for the uncertainty regarding the estimated probabilities. We 397 

define the efficiency of a lockdown strategy as the total number of deaths averted per total 398 

lockdown days. The number of deaths averted is calculated as the projected number of deaths with 399 

no lockdowns minus the number of deaths projected when the considered strategy is applied.  400 
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1. Model   623 

1.1. The model  624 

  625 

We developed a dynamic model for age-, risk- and regions-stratified SARS-Cov-2 infection 626 

progression and transmission in Israel. Our model is a modified Susceptible-Exposed-Infected-627 

Recovered (SEIR) compartmental framework 25, whereby the population is stratified into health-628 

related compartments, and transitions between the compartments occurs over time (Main text, 629 

Figure 3). To model age-dependent transmission, we stratified the population into nine age groups: 630 

0–4 years, 5-9 years, 10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years 631 

and ≥70 years. 10,44,45. We distinguished between high-risk and low-risk individuals for each age 632 

group based on the ACIP case definition 26,27. We also distinguish in the model between 250 633 

regions covering Israel.  634 

 635 

Multiple infections with SARS-Cov-2 is yet fully understood. A recent study indicated that there 636 

is a protective immunity following infection in humans 34 and animals 46. This result is in-line with 637 

a previous study indicating that for SARS-Cov-1, Memory T cells persist for up to 11 years 35. In 638 

addition, similarly to other respiratory infections, it is likely that if re-infection occurs, it is less 639 

severe and less transmissive 36. Thus, we assumed that upon recovery individuals are fully 640 

protected for the entire season wich consistent with other SARS-COV-247,48. 641 

The mean incubation period of SARS-Cov-2 is 6.4 days (95% CI, 5.6 to 7.7 days) 28,29, but first 642 

evidence shows viral shedding occurs during a pre-symptomatic stage 30,31. Thus, we considered 643 

an exposed period 𝐸, and an early infectious period 𝐼𝑒𝑥𝑝𝑜𝑠𝑒𝑑. Underreporting arises from 644 

asymptomatic cases or mild cases of individuals that do not seek care 14,43,49,50. Thus, following 645 

the early infectious phase, individuals in the model transition either to an infectious and reported 646 

compartment 𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑, or to infectious and unreported compartment 𝐼𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑. 647 

To enable in our model for a subset of the population to go for intervention (e.g., 30% of the 648 

individuals from specific regions, age groups or risk-group to go under lockdown during a selected 649 

time period), we also specifically distinguish between those who undergo and those who did not 650 

undergo an intervention. 651 

Accordingly, we stratified the population into six health-related compartments: 652 

susceptible 𝑆𝑗,𝑘,𝑟,𝑞(𝑡), exposed but not yet infectious 𝐸𝑗,𝑘,𝑟,𝑞(𝑡), infectious at early 653 

stage 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡), reported infectious 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡), unreported infectious  𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) and 654 

recovered  𝑅𝑗,𝑘,𝑟,𝑞(𝑡), such that at any given time t (in days) the population is fixed and scaled to 655 

one. Namely,  656 
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∑ ∑ ∑ ∑[𝑆𝑗,𝑘,𝑟,𝑞(𝑡) +  𝐸𝑗,𝑘,𝑟,𝑞(𝑡) +    𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) +   𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡)

𝑞𝑟𝑘𝑗

+ 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) + 𝑅𝑗,𝑘,𝑟,𝑞(𝑡)] =  ∑ ∑ ∑ ∑ 𝑁𝑗,𝑘,𝑟,𝑞

𝑞𝑟𝑘𝑗

 = 1, 

(1) 

where the index 𝑗 ∈  {0 − 4𝑦, 5 − 10𝑦, … , > 70𝑦} represents the age-group of each individual, 657 

index 𝑘 ∈ {1,2, … ,250} specifies the home region of each individual,  index 𝑟 ∈  {𝐿, 𝐻} specifies 658 

the risk-group of each individual (i.e. High-risk, or low-risk) and index 𝑞 ∈659 

{𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛, 𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛} represent the intervention-group of each individual.  660 

 661 

1.2. Model transitioning  662 

 663 

Susceptible individuals 𝑆𝑗,𝑘,𝑟,𝑞(0), transition to the exposed compartment 𝐸𝑗,𝑘,𝑟,𝑞(𝑡), with force of 664 

infection  𝜆𝑗,𝑘,𝑞(𝑡), depending on their age-group j home region-group k and their intervention-665 

group q. At this compartment individuals are infected but not yet infectious until they move at rate 666 

𝜎  to an infectious compartment 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) , where they are at the early stage of the infectious 667 

period. Infected individuals at early stage of their infectious period, then move at rate 𝛿 to the late 668 

infectious period, where they can  become to a unreported case (having non to mild symptoms) 669 

with probability 𝑓𝑗,𝑟  which results in transition to 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡). With probability of (1 − 𝑓𝑗,𝑟) 670 

they can become to a reported case (having moderate to severe symptoms), which results in 671 

transition to 𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡). After infectious period, individuals’ transition into the recovered 672 

compartment at rate 𝛾, 𝑅𝑗,𝑘,𝑟,𝑞(𝑡),. (See Section, 2.3 Epidemiological parameters). We also 673 

consider a function of the initial spreaders with time   휀𝑗,𝑘,𝑟(𝑡), that reflects the individuals exposed 674 

to the virus the entered Israel from overseas between February 21 2020 - and March 9, 2020. Thus, 675 

the transmission model is composed of the following system of difference equations:   676 
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𝑆𝑗,𝑘,𝑟,𝑞(𝑡) = 𝑆𝑗,𝑘,𝑟,𝑞(𝑡 − 1) − 𝜆𝑗,𝑘,𝑞(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1), 

𝐸𝑗,𝑘,𝑟,𝑞(𝑡) = 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝜆𝑗,𝑘,𝑞(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1) − 𝜎 ∙ 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 휀𝑗,𝑘,𝑟𝑞(𝑡), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) = 𝐼𝑗,𝑘,𝑟,𝑞

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) + 𝜎 ∙ 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) − 𝛿 ∙  𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) =  𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + (1 − 𝑓𝑗,𝑟)𝛿 ∙ 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) − 𝛾 ∙ 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) =  𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝑓𝑗,𝑟𝛿 ∙ 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) − 𝛾 ∙ 𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1), 

𝑅𝑗,𝑘,𝑟,𝑞(𝑡) =  𝑅𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝛾 ∙ (𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1)), 

with initial conditions: 

𝑆𝑗,𝑘,𝑟,𝑞(0) =  𝑁𝑗,𝑘,𝑟,𝑞 . 

𝐸𝑗,𝑘,𝑟,𝑞(0) = 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(0) = 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(0) = 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(0) = 𝑅𝑗,𝑘,𝑟,𝑞(0) = 0. 

(2) 

 677 

1.3. Force of infection 678 

The rate at which individuals transmit SARS-Cov-2 at time t is 𝜆𝑗,𝑟,𝑞(𝑡). This rate depends on the 679 

combination of (i) contact mixing patterns between an infected individual and his or her contacts, 680 

(ii) age-specific susceptibility to infection, (iii) region-based behavioral susceptibility, and (iv) a 681 

potential seasonal forcing. 682 

 683 

We incorporate age- and region-specific contact patterns between individuals, represented by 684 

contact rate between an infected individual in age-group 𝑖, region-group 𝑙 and each of their contacts 685 

with susceptible in age-group 𝑗,region-group 𝑘, for different locations: at home, at work and during 686 

leisure, for each day 𝑡denoted by 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡), such that i𝜏 ∈ {𝐻𝑜𝑚𝑒, 𝑊𝑜𝑟𝑘, 𝐿𝑒𝑖𝑠𝑢𝑟𝑒}, is the 687 

location index of the contact location index. The contact matrix 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡) is detailed in section 688 

2.1 Contact mixing patterns.  689 

 690 

We distinguish between in-home versus out-of-home transmission. Consistent with a previous 691 

study 11, we assume the in-home transmission to be fixed and independent of age, 𝛽𝐻𝑜𝑚𝑒. (See 692 

Section 2.3 Epidemiological parameters). To account for the reduced probability of infection in 693 

house following a recovery of other house members, we multiple the susceptibility inside 694 

household, 𝛽𝐻𝑜𝑚𝑒, by decay function 𝜓𝑘(𝑡) =
𝑆𝑘(𝑡−1)

𝑆𝑘(0)
.  This function serve as an unbiased estimator 695 
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to the proportion of susceptible individuals in the house Age-specific susceptibility rate for 696 

individuals out-of-home 𝛽𝑗, was parameterized by calibrating our model with daily COVID-19 697 

records (See Section 3. calibrated parameters). 698 

 699 

 To account for behavioral susceptibility, we explicitly considered in our model a parameter 700 

reflecting the order to maintain physical distancing, 𝜅𝑝, as vast number of countries, including 701 

Israel, adopted measures such as physical-distancing to control the susceptibility of SARS-Cov-2 702 
51. This parameter was calibrated to the epidemiological data of COVID-19 in Israel. Moreover, 703 

the high regional variations in susceptibility were parameterized based on fertility rates and 704 

socioeconomic characteristics relative to the national average, using the data from Central Bureau 705 

of Statistics (CBS), 𝛼𝑘. Specifically, we computed for each region the relative reduction in travels 706 

>1.5 km compared to routine 𝑀𝑗,𝑘,𝑞(See Section 2.2 Relative reduction in travels). Our analysis 707 

indicated that for regions of low SES the change was lower, which was reflected by our model 708 

with higher susceptibility.  709 

 710 

Seasonal patterns have been observed in common circulating HCoVs, mostly causing infections 711 

in humans between December and May in the Northern Hemisphere 40. The two human 712 

coronaviruses 229 E and OC43 show distinct winter seasonality. In addition, many coronaviruses 713 

in animals do exhibit a distinct seasonal pattern of incidence in their natural hosts 39. There is 714 

growing evidence that SARS-CoV-2 is also seasonal, with the optimal setting for transmission in 715 

Israel during winter 41,52. Thus, we considered in our base-case seasonal forcing by including 716 

general seasonal variation in the susceptibility rate of the model as 717 

 𝑇(𝑡) = 1 + cos (
2𝜋(𝑡 + 𝜙)

365
). (3) 

 718 

in which 𝜑 is seasonal offset. This formulation was previously shown to capture the seasonal 719 

variations of several respiratory infections including RSV and influenza 36,42. We incorporated 720 

possible values of 𝜑 to reflect peak from December thru February (See Section 2.3 721 

Epidemiological parameters).   722 

Taken together, the force of infection 𝜆𝑗,𝑘,𝑞(𝑡) is given by  723 

 724 
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𝜆𝑗,𝑘,𝑞(𝑡) =  𝑀𝑗,𝑘,𝑞 ∙ 𝜅𝑘 ∙ 𝑇(𝑡) ∙ (𝛽ℎ𝑜𝑚𝑒 ∙ 𝜓𝑘(𝑡) ∙

∑ ∑ ∑ 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝐻𝑜𝑚𝑒 (𝑡) ∑ (𝐼𝑗,𝑘,𝑟,𝑝

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 −𝑟𝑝𝑙𝑖

1)) + 𝛽𝑗 ∙ 𝛼𝑘 ∙ [∑ ∑ ∑ ∑ 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡) ∑ (𝐼𝑗,𝑘,𝑟,𝑝

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) +𝑟𝜏∈{𝑊𝑜𝑟𝑘,𝐿𝑒𝑖𝑠𝑢𝑟𝑒}𝑝𝑙𝑖

𝐼𝑗,𝑘,𝑟,𝑝
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1))])  

(4) 

 725 

2. Fixed parameters    726 

 727 

2.1. Contact mixing patterns 728 

At the core of the transmission model lies the contact mixing patterns between a susceptible 729 

individual and infectious individual 𝐶(𝑙,𝑖),(𝑟,𝑗)
𝜏 (𝑡). Similar to a previous study 11, the contact 730 

matrices depends on the age-group and region of residency for the susceptible individual (𝑙, 𝑖),  the 731 

age group and region of residency for an infectious individual (𝑟, 𝑗) at location 𝜏 ∈732 

{𝐻𝑜𝑚𝑒, 𝑊𝑜𝑟𝑘, 𝐿𝑒𝑖𝑠𝑢𝑟𝑒} on day 𝑡 . Here we detail the process of how we conducted the contact-733 

mixing.  734 

 735 

Household contacts  736 

We estimated the contact mixing at home for each region based on the average household size and 737 

its age distribution from the Israeli Central Bureau of Statistics (CBS) 53,54. We assume all 738 

individuals in the same household will meet with each other daily regardless of the control 739 

measures applied by the country (e.g.  lockdowns). The CBS data suggest that low socioeconomic 740 

status is characterized by larger and younger household size.  741 

 742 

Work and leisure contact patterns 743 

Age-specific contacts  744 

We parametrized the age-specific contact rates using data from a survey of daily contacts collected 745 

in eight European countries 38. This contact data includes contact rates for different locations: 746 

works (or school for children <10), leisure. In addition, the data exhibits frequent mixing between 747 

similar age-groups, moderate mixing between children and adults in their thirties (likely their 748 

parents), and infrequent mixing between other groups. To generate the age-specific contact mixing 749 

used in our model, we used the means of each age-group over the eight countries. To ensure the 750 

matrices is symmetric and convert between age-groups used in the survey to those used in out 751 

model, we adjusted the contact matrices according to the means for reciprocal age group pairing 752 
36.  753 

 754 

Origin-destination from mobility data  755 

 756 

Our data includes mobility records based on cellular data of >3 million users from one of the 757 

largest telecommunication companies in Israel. The data specifies movement patterns within and 758 

between 2,630 zones covering Israel, on an hourly basis, from February 1, 2020, and until May 759 
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16, 2020. To ensure privacy, if in a given hour less than 50 individuals are identified in the zone, 760 

the number of reported individuals is set to zero. We determined the location of individuals based 761 

on the triangulation of cell towers, which was found accurate to 300 meters in most cases but 762 

varied to 1 km in less populated areas. We defined users as residents of a zone based on location 763 

in which they had the highest number of signals on most nights during February 2020.  764 

 765 

We used this data to develop aggregated origin-destination (OD) matrices between and within 766 

zones. To refrain from signal noises and identify stay points, we track only locations where users 767 

stayed for at least 15 minutes within a distance threshold of 1.7 km. The OD matrices serve as a 768 

proxy to the flow from each region to another.  769 

 770 

Next, we integrated data from the Central Bureau of Statistics (CBS) that specifies for each zone 771 

several socioeconomic characteristics, including population size, household size, age distribution, 772 

socioeconomic score, and dominant religion. Each zone includes ~3,500 residents. For each zone, 773 

we scaled the number of resident users of the telecommunication company to match with the actual 774 

number of residents in the zone, as recorded by the Israeli CBS. Grouping the zones by SES, and 775 

scaling for each zone the daily number of travels to one, we created an origin-destination traveling 776 

probability matrix. We found that the population is clustered, such that people of specific SES are 777 

more likely to travel to zones of the same SES during routine and even more likely during 778 

movement restrictions. These findings remain consistent when partitioning the population into 779 

resolution of 10 socioeconomic clusters, comprising the different SESs. Additionally, a similar 780 

phenomenon is observed when partitioning the population by Religious Affiliations to Arab, 781 

orthodox and non-orthodox Jewish, and also for the combination of both religious affiliation and 782 

socioeconomic clusters (Figures S1 and S2).  783 

 784 
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 785 
Figure S1. Traveling patterns during routine. Traveling patterns during February 2-29 based on (A) religious 786 
affiliation, (B) socioeconomic status, and (C) religious affiliation and socioeconomic status 787 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


32 
 

 788 
Figure S2. Traveling patterns during COVID-19 outbreak. Traveling patterns during March 26-April 18 based 789 
on (A) religious affiliation, (B) socioeconomic status, and (C) religious affiliation and socioeconomic status 790 

 791 

We used this data to develop two aggregated origin-destination (OD) matrices between and within 792 

regions from during work time 08:01-17:00 and leisure time 17:01-23:00. To incorporate the time 793 

depended travels following restrictions periods and routine we developed the two OD for the 794 

following periods: February 21 – March 13, March 14 – March 16, March 17 – March 25, March 795 

26 – April 2, April 3 – April 6, April 7 – April 16, April 17 – May 4, May 5 – May 11. 796 

 797 

To integrate the age-specific contact matrices and the OD matrices we multiplied the number of 798 

contacts for each age-group by the travel distribution for each region in the OD matrices. We 799 

assumed that at work, children at the age of 0-9 years old, remains at their home region. We also 800 

assumed that at leisure time children at the age of 0-9 years old movement patterns are like their 801 

parents. 802 

 803 

 804 

 805 

 806 
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2.2. Relative reduction in travels 807 

For each region, we computed the relative reduction in travels >1.5 km 𝑀𝑗,𝑘,𝑞. This measure was 808 

done scaling the daily proportion of travels more than 1.5 km out-of-home. 809 

 𝑀𝑗,𝑘,𝑞 =
𝑀𝐼𝑞(𝑡) − min

t
(𝑀𝐼𝑞(𝑡))

max
t

(𝑀𝐼𝑞(𝑡)) − min
t

(𝑀𝐼𝑞(𝑡))
 

 

(5) 

 810 

To compute this minimal and maximal values and refrain from outliers, we averaged the three 811 

minimal and three maximal values. This measure was found to be highly correlative with disease 812 

growth factor ranging between 79.2-82.8% (p value<0.001) for a shift of 12-14 days (Figure S3). 813 

Thus, we incorporated for each region this measure in the model. 814 

 815 

 816 
Figure S3: Mobility ahead of transmission. Percentage relative reduction in travels from home between March 8 817 
and April 22 (red) and new cases per active cases between March 22 and May 8 (blue). Both plots show the weekly 818 
average. The correlation between the two is 97.0% (inserted graph).  819 

 820 

  821 
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2.3. Epidemiological parameters  822 

 823 

Unreported cases 824 

Under reporting arises from asymptomatic cases or mild cases of individuals that do not seek for 825 

care. The severity of SARS-Cov-2 infection is associated with age- and risk- group 18.  In addition, 826 

underreporting is affected by testing policy and testing-capabilities for each country, as well as the 827 

tendency of individuals to seek for care once clinical symptoms appear. PCR or serological 828 

screenings have yet to be conducted in Israel. Thus, we evaluated unreported cases based on PCR 829 

and serological screenings from the Czech Republic, Denmark, and Santa Clara, California, and 830 

Iceland. Similarly, to Israel, as to May 14th, 2020 these countries are characterized with high rates 831 

of testing and low number of severe cases.  In addition, hospitals were not overwhelmed.  832 

Serological screenings from the Czech Republic suggested that each reported case corresponds to 833 

~5.5 unreported cases 43,50, whereas estimates from Santa Clara suggested at least 14 unreported 834 

cases for each single reported case 14. Taken together we chose to present estimates of unreported 835 

ratios 1:5.5 (Scenario A), 1:9 (Scenario B), and 1:14 (Scenario C). It is not clear how much 836 

reutilizing antibodies are sufficient to ensure protection, and thus it is possible serological 837 

screenings serve as over estimation to determine exposure. Thus, to determine the robustness of 838 

our findings, we also considered an extreme scenario of 1:2 (Scenario D).  839 

We estimated the proportion of under reporting for each age-group by scaling the estimates from 840 

Santa-Clara Study to the age reported cases in this region 55. This analysis suggested that younger 841 

age-groups are more likely to be unreported. Conservatively, we assumed that all cases among 842 

individuals at high-risk are reported. Using these estimates and based on the reported cases in 843 

Israel between February 20th - May 14th ,2020, we obtained that overall proportion of unreported 844 

cases is 85% for scenario A, 89% for scenario B, 93% for scenario C and 69% for scenario D.  845 

Table S1: proportion of unreported cases. proportion of unreported cases among individuals at high risk and low 846 

risk stratified by age and overall reported cases based on the reported cases observed in Israel between February 20 847 

and May 14, 2020.  848 

Scenario  Risk \ Age 0-19 20-64 ≥65 

A  Low  0.97 0.85 0.68 

High  0.97 0.85 0.68 

Total   0.85 

B  Low  0.95 0.89 0.80 

High  0.95 0.89 0.80 

Total   0.89 

C  Low  0.99 0.93 0.84 

High  0.99 0.93 0.84 

Total   0.93 

D Low  0.92 0.67 0.43 

High  0.92 0.67 0.43 

Total   0.69 

 849 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


35 
 

Case fatality  850 

The probability of death for each age-and risk-group given a reported case was evaluated based on 851 

the Israeli Ministry of Health case report data (Table S2).   852 

Table S2: Probability of death for each age-and risk-group given a reported case. 853 

Age-

group 

Risk-

group 

Base-case 

value 

Distribution 

0-19 High 0  

20-59 High 0.89% 𝐵𝑒𝑡𝑎(4,410) 

60-69 High 1.48% 𝐵𝑒𝑡𝑎(5,312) 

≥ 𝟕𝟎 High 12.03% 𝐵𝑒𝑡𝑎(52,378) 

0-19 Low 0  

20-59 Low 0.06% 𝐵𝑒𝑡𝑎(5,7759) 

60-69 Low 1.06% 𝐵𝑒𝑡𝑎(11,995) 

≥ 𝟕𝟎 Low 11.33% 𝐵𝑒𝑡𝑎(95,741) 

 854 

Initial morbidity(aboard) 855 

The initial morbidity in Israel was imported by 491 citizens who returned from overseas. The first 856 

infected traveler identified on February 20, and by March 9th ,2020 a self-quarantine was 857 

mandatory for all returning. Most of the flights to Israel arrive from the developed countries. Thus, 858 

we distributed the these cases in each day of the 18 days proportionally to the daily new cases in 859 

Italy, which had the hardest hit among developed countries 56. To account for under reporting, we 860 

multiplied the number of cases in each day according to the unreported scenarios we considered 861 

(Table S1). We entered these initial spreaders, 휀𝑗,𝑘,𝑟,𝑖(𝑡), to the exposed compartment. 862 

 863 

Susceptibility at-home 864 

 We distinguish between in-home versus out-of-home transmission. Consistent with a previous 865 

study 11. We specifically distinguish between the susceptibility of those settings. We estimated the 866 

in-home susceptibility rate, 𝛽ℎ𝑜𝑚𝑒 , based on a previous study that showed a secondary attack rate 867 

of 16.3% throughout the entire infectious period 19.  868 

 869 

  870 
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Table S3: Fixed parameters used in the transmission model.  871 

Parameter Description Value Reference 

𝑵𝒋,𝒌,𝒓,𝒒 Population size of risk-group r age-group j in 

region k 

Varies 

between 

regions 

26 

 

𝟏

𝝈
 

Mean duration of exposed period 4.1 𝑑𝑎𝑦𝑠 28 

29 

31 

30 

𝟏

𝜹
  

Mean duration of early infectious period 2.3 𝑑𝑎𝑦𝑠 28 

29 

31 

30 

𝒇𝒋,𝒓 Unreported probabilities Table S1 18 

14 

49 

𝝋 Seasonal phase December 21 

(𝜑 = 60), 

January 21 

(𝜑 = 29), 

February 21 

(𝜑 = 0). 

39 

48 

41 

52 

57 

𝟏

𝜸
 

Mean duration of late infectious period (in 

reported and unreported cases) 

7 𝑑𝑎𝑦𝑠 31 

 𝑪(𝒍,𝒊),(𝒓,𝒋)
𝝉 (𝒕) Contact rate between an infected individual in 

age-group 𝑖, region-group 𝑙 and each of their 

contacts with susceptible in age-group 𝑗,region-

group 𝑘, for different location 𝜏, for each day 𝑡. 

 38 

44 

53 

54 

 

𝜶𝒌 Fertility rate for each region k relative to the 

nation’s mean. 

 58 

54 
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𝝆𝒋,𝒓 Probability of death for each age-and risk-group given a 

reported case 

Table S2 59 

𝜷𝒉𝒐𝒎𝒆 In-home susceptibility rate 0.018 19 

 872 

3. Calibrated parameters  873 

  874 

To estimate empirically unknown epidemiological parameters, we calibrated our model to daily 875 

age-stratified cases of COVID-19 confirmed by PCR tests in 30 subdistricts covering Israel 876 

between March 1 until May 10. We shifted the data 11 days backward, to compensate for the lag 877 

between the date of infection and the date of first positive SARS-CoV2 test result, which was 878 

found to be 10.5 days on average according to MOH’s epidemiological investigations. We applied 879 

a central moving average with window of three days before and after the data point, on the data to 880 

reduce noise caused by weekly patterns. 881 

The calibration was conducted on a 30-subdistrict level rather than 250 regions to ensure there are 882 

sufficient time-series data points in each location for each age group. The stratification is based on 883 

the 16 formal districts, which we further stratified such that the sub districts will be homogenous 884 

in terms of their SES and religious affiliation (Table S4). To calibrate the model to the incidence data, 885 

we maximized the likelihood assuming a normal distribution of the error between model predictions and 886 

incidence data. This was achieved by using the truncated Newton (TNC) algorithm. We calibrated the 887 

model for 16 different scenarios of unreported cases and seasonal forcing. The final transmission model 888 

included five parameters without constraints imposed from previous data: reduced susceptibility 889 

due to physical distancing 𝜅𝑝, and susceptibility rate based on age-groups j: 0-19, 20-39, 40-59, 890 

and >60  (Table S5).  891 

We used an F-test of equality of variances to compare between models 1) with vs. without 892 

consideration of seasonal forcing, 2) with and without consideration of human mobility, 3) with 893 

and without consideration of regional fertility. We denote that in all three comparisons, the number 894 

of calibrated parameters is constant and equal to five. Our tests suggested that models that do not 895 

include the mobility data (p.value<0.01), and the regional fertilities (p.value<0.01) were 896 

significantly worse. We also found that models that accounted for seasonal forcing yielded higher, 897 

but not significant (p value<0.35), likelihood than models that did not account for the seasonal 898 

forcing.    899 
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Table S4: 30 subdistricts calibrated. 900 

Sub-district number Name Population Size 
1 Jerusalem and sub. 778,503 
2 Bet Shemesh 120,164 
3 Jerusalem and sub. (Orthodox Jewish) 265,313 
4 Zefat 138,618 
5 Zefat (Israeli Arabs) 23,772 
6 Kinneret (Jewish) 98,178 
7 Jezreel Valley (Israeli Arabs) 159,112 
8 Jezreel Valley (Jewish) 351,446 
9 Akko (Israeli Arabs) 357,341 
10 Akko (Jewish) 314,607 
11 Ramat Hagolan 51,980 
12 Haifa (Israeli Arabs) 35,637 
13 Haifa (Jewish) 589,951 
14 Hadera (Israeli Arabs) 115,000 
15 Hadera (Jewish) 315,593 
16 Sharon (Israeli Arabs) 85,729 
17 Sharon (Jewish) 412,638 
18 Petah Tiqwa (Israeli Arabs) 27,455 
19 Petah Tiqwa (Orthodox Jewish) 49,549 
20 Petah Tiqwa (Secular Jewish) 680,836 
21 Ramla 323,352 
22 Rehovot 661,079 
23 Tel Aviv – Yafo 820,271 
24 Bnei Brak 211,259 
25 Tel Aviv suburbs 464,974 
26 Ashqelon 559,556 
27 Beer Sheva (Israeli Arabs) 196,311 
28 Beer Sheva (Jewish) 504,831 
29 Judea and Samaria 267,832 
30 Judea and Samaria (Orthodox Jewish) 155,095 

  901 
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Table S5: Calibrated parameters. 902 

  903 

Model 

configuration 

Seasonal 

forcing peak  

Unreported 

[%] 

 Physical 

distancing 

Coefficient

𝜿𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍 

Susceptibil

ity among 

age-group 

0-19[y] 

𝜷𝟎−𝟏𝟗 

Susceptibil

ity among 

age-group 

20-39[y] 

𝜷𝟐𝟎−𝟑𝟗 

Susceptibil

ity among 

age-group 

40-59[y] 

𝜷𝟒𝟎−𝟓𝟗 

Susceptibilit

y among 

age-group 

60+[y] 

𝜷𝟔𝟎+ 

Likelihood 

of 

calibration 

to data 

− 𝐥𝐨𝐠(𝒍) 

Full model No-

seasonality 
69 

0.248 0.094 0.054 0.042 0.311 -25.766 

 

Full model No-

seasonality 

85 0.232 0.119 0.053 0.052 0.166 -25.743 

Full model No-

seasonality 

89 0.234 0.057 0.076 0.047 0.116 -25.494 

Full model No-

seasonality 

93 0.246 0.119 0.036 0.054 0.184 -25.876 

Full model December 

21 
69 

0.272 0.038 0.023 0.020 0.128 -25.856 

Full model December 

21 

85 0.306 0.044 0.021 0.024 0.109 -25.862 

Full model December 

21 

89 0.355 0.025 0.021 0.025 0.144 -25.998 

Full model December 

21 

93 0.274 0.058 0.015 0.023 0.083 -25.917 

Full model January 21  69 0.364 0.043 0.025 0.024 0.151 -25.835 

Full model January 21  85 0.420 0.049 0.027 0.024 0.148 -25.787 

Full model January 21 89 0.349 0.035 0.031 0.029 0.167 -25.957 

Full model January 21 93 0.295 0.059 0.020 0.030 0.112 -25.898 

Full model February 21 69 0.347 0.063 0.039 0.033 0.248 -25.822 

Full model February 21 85 0.464 0.051 0.036 0.034 0.199 -25.813 

Full model February 21 89 0.417 0.052 0.045 0.041 0.229 -25.916 

Full model February 21 93 0.411 0.100 0.030 0.034 0.157 -25.827 

Without 

mobility 

January 21 85 0.127 0.022 0.035 0.022 0.162 -25.129 

Without 

mobility 

January 21 89 0.133 0.031 0.029 

  

0.022 0.133 -25.206 

  

Without 

mobility 

January 21 93 0.098 

  

0.049 

  

0.030 

  

0.023 

  

0.121 

  

-25.139 

Without 

fertility 

January 21 85 0.633 0.056 0.027 0.018 0.013 -25.311 
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4. Further simulation results    904 

We found that a global lockdown strategy had a larger temporal effect than local lockdowns and 905 

had by greater oscillations (Figure S4). We present here a model with seasonal forcing. Our model 906 

projections suggested that global lockdowns were less efficient and effective compared to a 907 

strategy that targets locally the elderly. However, due to high variability between the 250 regions 908 

considered, some regions undergo multiple lockdowns, while others will not undergo lockdowns. 909 

Local lockdowns that specifically target children decreases the local morbidity, but in the long run 910 

increases mortality, while lockdowns of individuals at high-risk has a moderate impact on 911 

transmission but decreases mortality. 912 

These findings where robust across all settings considered (Table S3 and Table S5), when we 913 

accounted for seasonal forcing (Main text Figures 4 and 5), and without seasonal forcing (Figure 914 

S5).  915 

 916 
Figure S4. Model demonstration for a threshold of 1 per 10000 for the lockdown strategies with seasonal forcing 917 

peaking on January 21. (A – C) projected daily new reported cases for different lockdown strategies. (D – F) 918 

Projected daily percentage of population under lockdown. (A, D) for a unreported cases of 85%. (B, E) for 89%, and 919 

(C, F) for 93%. 920 

 921 
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 922 
Figure S5. Effectiveness and efficiency of temporal-local lockdowns without seasonal forcing. Median and 923 

interquartile values of model projections after implementation of strategies (A, C, E, G) after one year and (B, D, F, 924 

H) after three years. (A, B, E, F) The thresholds for lockdowns in a local region are 1/10,000 [cases/individuals] and 925 

(C, D, G, H) 5/10000 [cases/individuals]. Effectiveness (A – D), efficiency (E – G). 926 

 927 
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