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Abstract 

SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting 

enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID-

19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory 

insufficiency, acute cardiovascular failure, and coagulopathy. Physiologically, ACE2 

plays a role in the regulation of three systems that could potentially be involved in the 

pathogenesis of severe COVID-19: the kinin-kallikrein system, resulting in acute lung 

inflammatory edema; the renin-angiotensin system, promoting cardiovascular instability; 

and the coagulation system, leading to thromboembolism. Here we analyzed ~130,000 

human lung single-cell transcriptomes and show that key elements of the kinin-kallikrein, 

renin-angiotensin and coagulation systems are co-expressed with ACE2 in alveolar cells, 

which could explain how changes in ACE2 promoted by SARS-CoV-2 cell entry result in 

the development of the three most severe clinical components of COVID-19. 
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Introduction 

COVID-19, the disease caused by SARS-CoV-2 infection, frequently opens with cough, 

fever, fatigue, and myalgia 1, progressing to a severe illness in up to 20% of infected 

patients 2. Severe COVID-19 is characterized by progressive dyspnea, which results 

from acute lung inflammatory edema leading to hypoxia 3. In patients surviving the initial 

lung inflammatory burst, a number of other complications can sum to promote a rapid 

and frequently lethal deterioration of health 3-5. Acute cardiovascular failure and 

coagulopathy are among the most frequent complications and could be placed alongside 

with acute respiratory failure 3-7 as components of a triad that leads to the highest death 

rates in COVID-19 (Fig. 1A).  

Angiotensin converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2 8. Binding 

occurs through viral spike protein 9 and depends on the serine protease TMPRSS2 for 

priming 8. Physiologically, ACE2 is involved in the control of three independent but highly 

integrated systems, the kinin-kallikrein (KKS), renin-angiotensin (RAS), and coagulation 

(CS) systems (Fig. 1B). Bradykinin is a potent inflammatory substance produced from 

high-molecular weight kininogen (HMWK) in a reaction catalyzed by the serine protease 

kallikrein 10. Bradykinin can directly deliver its vasoactive and inflammatory actions 

through bradykinin receptor 2 or be further processed by carboxypeptidase N to form 

DR9-bradykinin that activates bradykinin receptor 1 to deliver inflammatory and pain 

signals 11. ACE2 degrades DR9-bradykinin into inactive peptides and, together with 

angiotensin converting enzyme (ACE), which inactivates bradykinin, shuts down the KKS 

12. Angiotensin II (Ang II) is a pleotropic hormone involved in the regulation of blood 

pressure, blood volume, cardiac function, and electrolyte balance 13,14. It is produced 

from angiotensin I (Ang I) through the catalytic action of ACE, whereas ACE2 catalyzes 

its degradation into the inactive peptide angiotensin 1-7, thereby inactivating the RAS 15. 

The interaction of ACE2 with the CS is indirect and occurs via two mechanisms: 1) 

catalyzing the production of angiotensin 1-9, which reduces plasminogen activator and 

increases PAI-1, thus inhibiting fibrinolysis 16 and 2) modulating the activity of kallikrein, 

which in turn catalyzes the conversion of plasminogen into plasmin 17.   

Upon SARS-CoV-2 binding, ACE2 is internalized to endosomes, leading to a subcellular 

location shift that could alter its capacity to physiologically regulate the KKS, RAS and 

CS 18-22. This could simultaneously impact the highly lethal COVID-19 triad: lung 

inflammation, cardiovascular failure, and coagulopathy. Despite the fact that ACE2 is 

expressed in several organs and tissues, both clinical and experimental evidence shows 

that SARS-CoV-2 promotes most of its pathological actions by initially infecting cells of 

the upper respiratory tract and, subsequently, alveolar cells in the lung 23-25. It is currently 
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unknown if lung cells expressing ACE2 are equipped with proteins that belong to the 

KKS, RAS and CS, which could potentially explain a cell-autonomous system that is 

disturbed by SARS-CoV-2 infection, leading to abnormal regulation of all three systems. 

Here, we evaluated the transcripts of 129,079 human lung cells previously submitted to 

single-cell RNA sequencing. We show that transcripts encoding for key elements of all 

three systems are highly co-expressed with ACE2 in alveolar cells. 

 

Results 

ACE2 interacts with proteins belonging to the kinin-kallikrein, renin-angiotensin, 

and coagulation systems. A protein-protein interaction network (Fig. 1C) revealed that 

ACE2 interacts closely with proteins that belong to the KKS; kininogen (KNG1), the 

substrate for bradykinin synthesis, and kallikrein (KLKB1), the enzyme that catalyzes this 

conversion. ACE2 also interacts with proteins of the RAS; ACE, that converts Ang I into 

Ang II, renin (REN), the enzyme that converts angiotensinogen (AGT) into Ang I, AGT 

itself and angiotensin receptor 1 (AGTR1). The interface of ACE2 with CS occurs mostly 

though KLKB1 that controls fibrinolysis; in addition, Factor II (F2, thrombin), was 

identified in the interactome.   

Integrated analysis of 129,079 human single lung cells leads to the identification 

of cell types expressing ACE2. To investigate the lung cell types that are potentially 

targeted by SARS-Cov-2 due to ACE2 expression, we leveraged public single-cell RNA 

sequencing (scRNAseq) from three previously published datasets and a pre-print report 

26-28 (https://doi.org/10.1101/742320). Despite active investigation of the cellular 

landscape of the human lung, the field lacks an integrated atlas in which a consensus 

can be established between various datasets. We addressed this issue by individually 

filtering and integrating each study control sample into a batch-corrected study-wise 

reference with Seurat v3 anchor-based integration (Fig. 2A, Suppl. Fig. 1, Suppl. Fig. 

2A-B, Suppl. Table 1). These batch-corrected data were used for integration of peer-

reviewed studies. Preprint data was used for cell-type annotation by anchor transferring 

learning (https://doi.org/10.1101/742320). Corrected data were dimensionality reduced 

with diffusion-based Manifold Approximation and Projection (dbMAP) 

(http://dx.doi.org/10.2139/ssrn.3582067), a dimensionality reduction method tailored for 

the analysis of large-scale single-cell data and clustered by its diffusion graph structure 

(Fig. 2B). In this embedding, each point represents a single-cell, and the position in the 

embedding represents its relative transcriptional identity when compared with other cells. 

Grouping cells by study of origin shows that this approach is successful in removing 
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experimental noise from data (Suppl. Fig. 2B). Cells were clustered by applying the 

Louvain algorithm to the graph of each cell diffusion structure scoring. After removal of 

singletons and doublets, 47 cell clusters were identified, comprising eight major groups: 

alveolar cells, endothelial and lymphatic cells, monocytes/macrophages, T cells, B cells, 

fibroblasts, smooth muscle cells, and mast cells (Fig. 2B). These clusters were annotated 

based on learned annotations published elsewhere (https://doi.org/10.1101/742320) 

(Suppl. Fig. 2C) and on cluster marker gene expression (Suppl. Fig. 3). The clusters 

effectively correspond to biologically comprehensive cellular states that can be explored 

as a resource to COVID-19 studies. This potential is leveraged by dbMAP for the 

identification of rare cell types and cellular-state transitions in comparison against UMAP 

(Suppl. Fig. 2D). An illustrative example is shown by B cell differentiation into plasma 

cells. In the dbMAP embedding, B and plasma cells form discrete populations connected 

directly by intermediate cells (Fig. 2B), whereas UMAP represents these clusters as 

completely separated populations (Suppl. Fig. 2D). We briefly explored cluster marker 

genes (Suppl. Figs.  4 and 5), albeit the exploration of this atlas exceeds the scope of 

this manuscript. An interactive browser with our data is available at 

https://humanlung.iqm.unicamp.br, allowing non-bioinformaticians to produce 

publication-level plots and tables in a community effort to further explore the human lung 

cellular landscape.  We next investigated the expression of ACE2 We then investigated 

the expression of ACE2 and show that it is restricted to alveolar cells and fibroblasts, 

being practically absent from other cell clusters (Fig. 1C). 

TMPRSS2 is co-expressed with ACE2 in alveolar cells. The serine protease 

TMPRSS2 is required for SARS-CoV-2 spike protein priming and subsequent binding to 

ACE2 8 (Fig. 3A). Following receptor binding, SARS-CoV-2 is internalized through 

endocytosis in a process that depends on the activity of phosphatidylinositol 3-phosphate 

5-kinase (PIKFYVE) and its downstream effector, two-pore channel subtype 2 (TPCN2) 

18 (Fig. 3A). Moreover, the inhibition of cathepsin L (CTSL) dramatically reduces virus 

entry, suggesting a role for this lysosome protein in the process 18 (Fig. 3A). Out of the 

four proteins currently described as players in SARS-CoV-2 cell entry, only TMPRSS2 

gene expression selectively overlapped with ACE2 expression (Fig. 3B, 3C, and 3G). 

TMPRSS2 transcripts are expressed in virtually all alveolar cell clusters in addition to 

ciliated and alveolar/ciliated clusters. As expected for a phosphatidylinositol 3-phosphate 

kinase, PIKFYVE is ubiquitously expressed throughout all lung-cell clusters, with some 

predominance in clusters of alveolar type 2 cells, B-lymphocytes, and mast cells (Fig. 

3D and 3G). Likewise, TPCN2 is ubiquitously expressed in lung-cell clusters, albeit in 

fewer cells than PIKFYVE and some predominance in T-lymphocytes and NK cells (Fig. 
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3E and 3G). CTSL is also expressed in virtually all lung-cell clusters. However, here 

there is a large predominance in macrophage clusters (Fig. 3F and 3G). 

Kininogen is co-expressed with ACE2 in alveolar cells. Kininogen (KNG1), the 

precursor for bradykinin synthesis, is expressed in a large number of cells that also 

express ACE2 (Fig. 4A1, 4A6, and 4B). KNG1 expression is restricted to alveolar type 

1.1, type 1/2, and type 2.4, in addition to alveolar 2.2. and 2.3 clusters. Kallikrein (KLKB1) 

is a serine protease that catalyzes the conversion of kininogen into bradykinin. It is 

expressed predominantly in endothelial and lymph vessels cells (Fig. 4A2 and 4B). 

KLKB1 is also expressed in scattered alveolar cells and in some T-lymphocytes and 

macrophages (Fig. 4A2). Bradykinin acts through the type 2 cognate receptor (BDRK2), 

which is expressed predominantly in endothelial vessel cells and in some alveolar cells, 

particularly types 1.2 and 2.3 (Fig. 4A3 and 4B). BDRK2 is also expressed in a 

considerable number of fibroblasts and plasma/B-lymphocytes (Fig. 4A3 and 4B). 

Bradykinin can either be converted into inactive kinins by the catalytic action of ACE or 

be converted into the active DR9-bradykinin. ACE is expressed predominantly in 

macrophages, monocytes, and endothelial cells (Fig. 4A4 and 4B). It is also expressed 

in scattered alveolar cells, T-lymphocytes, and fibroblasts (Fig. 4A4 and 4B). DR9-

bradykinin acts through bradykinin receptor 1 (BDRK1), which is predominantly 

expressed in fibroblasts, endothelial cells, and alveolar type 2.1, 2.2, and 2.3 cells (Fig. 

4A5 and 4B).  

Renin and angiotensin receptor 1 are co-expressed with ACE2 in alveolar cells. 

Angiotensinogen (AGT) is the precursor for Ang I; we show that most cells expressing 

AGT are fibroblasts and smooth muscle cells; however, a considerable number of type 

2.4, 2.3, and 2.1 alveolar cells that express ACE2 also express AGT (Fig. 5A1, 5A2, and 

5B). Renin is the enzyme that converts AGT into Ang I; here, we show that in the lung it 

is predominantly expressed in alveolar cells and largely co-expressed with ACE2, 

particularly in alveolar cell types 1.2, 2.2, 2.3, 2.4, and NA 2 (Fig. 5A1, 5A3, and 5B). 

Some macrophages and mast cells also express renin (Fig. 5A3 and 5B), which is 

virtually absent in the remaining clusters. Ang I is converted into active Ang II by ACE 

(Fig. 5A4 and 5B), which is largely expressed in macrophages and endothelial cells. Ang 

II exerts most of its cardiovascular effects by acting through angiotensin II receptor 1 

(AGTR1). We show that most cells expressing AGTR1 are fibroblasts and muscle cells 

(Fig. 5A5 and 5B); in addition, a considerable number of alveolar type 1.1 and NA 2 cells 

that express ACE2 also express AGTR1 (Fig. 5A1, 5A5, and 5B).  

Fibrinogen gamma is co-expressed with ACE2 in alveolar cells. In addition to its 

action on the KKS, kallikrein (KLKB1) acts in the CS by converting plasminogen into the 
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fibrinolytic substance plasmin; KLKB1 is expressed predominantly in endothelial and 

lymph vessel cells and in alveolar type 1.1, type 1/2, and type 2.4 cells (Fig. 6A1 and 

6B). Another catalyst of plasmin production is tissue plasminogen activator (PLAT), 

which is inhibited by PAI-1 (SERPINE1). SERPINE1 is expressed predominantly by 

endothelial cells and secondarily by fibroblasts and muscle cells (Fig. 6A2 and 6B), 

whereas PLAT is expressed in endothelial and lymph vessel cells (Fig. 6A3 and 6B). 

Fibrinogen gamma chain (FGG) is the substrate for production of fibrin, the main 

component of clot formation; it is expressed in virtually all alveolar cell types except for 

types 1.1 and 1.2, thus largely coinciding with the expression of ACE2 (Fig. 6A4, 6A5, 

and 6B).  

 

Discussion 

Here, we present the largest single-cell analysis of the human lung cellular transcriptional 

landscape to date. This was achieved by assembling datasets provided by previous 

independent studies into an integrated human lung cell atlas containing 129,079 cells 26-

28. We further leveraged the power of this data by analyzing it with dbMAP, a novel 

dimensional reduction method that, together with the integrated dataset, are publicly 

available at https://github.com/davisidarta/humanlung and at 

https://github.com/davisidarta/dbMAP. An user-friendly interactive web-based platform 

is also available at https://humanlung.iqm.unicamp.br, in a powerful data exploration 

environment that holds potential to accelerate lung research. This data can also be used 

by future studies performing scRNAseq and data analysis of the human lung, so that 

others may have the option to add their study into this integrated atlas. Using this 

approach, we confirmed previous data that identified alveolar cells as those expressing 

highest levels of the SARS-CoV-2 receptor, ACE2, in the lung 23. In addition, we identified 

cell types that express transcripts encoding for proteins potentially involved in SARS-

CoV-2 cell entry. We demonstrated that expression of TMPRSS2, a serine protease that 

primes SARS-CoV-2 spike protein, largely overlaps with ACE2 expression in alveolar 

cells 23, reinforcing the hypothesis of TMPRSS2 as a promising pharmacological target 

of COVID-19 29. Moreover, we showed that transcripts encoding for PIKFYVE, TPCN2, 

and CTSL 18 are ubiquitously expressed in the lung and, even though they are expressed 

in alveolar cells with some degree of overlap with ACE2, their potential as therapeutic 

targets could be challenged due to lack of cell specificity.     

Next, we determined the identities of lung cells expressing key components of the KKS, 

RAS, and CS pathways. Currently, there is neither experimental nor clinical evidence 
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suggesting that SARS-CoV-2 infection could lead to bradykinin-dependent lung 

inflammation and edema. However, in a rodent model of lung LPS-induced inflammation, 

the inhibition of ACE2 resulted in a significant increase lung inflammatory edema, and 

the simultaneous inhibition of bradykinin in this model dramatically reduced inflammatory 

damage 12. In addition, in humans, severe lung edema can develop in a rare genetic 

disorder, hereditary angioedema, that results from bradykinin accumulation due to 

mutations of the C1 esterase/kallikrein inhibitor 30. Clinical studies have shown that 

inhibitors of bradykinin can efficiently treat lung edema in these circumstances 31. 

Furthermore, the use of ACE inhibitors provides yet another line of clinical evidence for 

disturbed lung accumulation of bradykinin that can, on rare occasions, lead to severe 

outcomes 32,33. Here, we showed that kininogen, the precursor of bradykinin, presents 

considerable cellular expression overlap with ACE2 and that transcripts encoding for 

other components of the KKS are also expressed in lesser amounts in ACE2-expressing 

cells.  

In contrast to KKS, abnormalities in the RAS have been widely reported in COVID-19 

patients 34-36. Obesity, hypertension, diabetes, and coronary insufficiency represent the 

greatest risk factors for severe COVID-19 5,6, and in all these diseases, there is an 

increased risk for abnormal regulation of the RAS 13,37,38.  In one of the largest series 

reporting COVID-19 patients published so far, the use of ACE inhibitors before infection 

was shown to reduce mortality by 33%, representing the most effective independent 

factor, among those analyzed, that could protect patients from a lethal outcome 6. Here 

we showed that angiotensinogen, the precursor of Ang 1, and particularly renin, the 

enzyme catalyzing this conversion, are expressed in alveolar cells and that their 

expression overlaps that of ACE2. In addition, other key components of the RAS, ACE, 

and angiotensin receptor 1, are also co-expressed with ACE2 in a considerable number 

of cells.  

COVID-19-associated coagulopathy can lead to a fulminant activation of coagulation, 

resulting in widespread thrombosis. Venous thromboembolism (VTE) is one of the 

leading causes of severe complications in COVID-19 patients 3,39. It was diagnosed in 

20% of patients admitted to an intensive care unit (ICU) and its cumulative incidence 

increased progressively to 42% as patients remained in severe condition in the ICU 39. 

Developing VTE during the progression of severe COVID-19 increases the risk of death 

by 140% 39. Moreover, D-dimer, a degradation product of fibrin, has been identified as 

an important predictive marker of severe COVID-19 and was directly correlated with poor 

prognosis 40,41. Because of the association between disturbed coagulation and severe 

disease progression, the use of anticoagulant treatment has been proposed as 
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potentially beneficial in COVID-19 22,42. In one therapeutic clinical trial, the use of low-

molecular-weight heparin resulted in reduced mortality in patients with high levels of D-

dimer 43; however, in another study, preventive anticoagulation was associated with 

increased VTE 44. These results suggest that prophylactic and therapeutic 

anticoagulation approaches have distinct outcomes in COVID-19; however, further 

studies are awaited in order to direct the establishment of optimal measures that could 

lessen the severity of COVID-19 coagulation abnormalities. Here, we showed that 

particularly FGG and KLKB1 are expressed in alveolar cells that also express ACE2. 

Both FGG and KLKB1 play central roles in the control of the CS. FGG deficiency leads 

to mild or even severe bleeding 45, whereas KLKB1 deficiency is associated with an 

increased risk of thrombosis 46. 

In conclusion, alveolar cells expressing ACE2, which are primary cellular targets for 

SARS-CoV-2 in the lung, also express transcripts encoding proteins that play pivotal 

roles in the regulation of the KKS, RAS, and CS. As all these systems are potentially 

affected during the progression of severe COVID-19, we propose that abnormal function 

of ACE2 as a result of SARS-CoV-2 infection could directly and cell-autonomously 

precipitate the development of acute lung inflammation, cardiovascular failure and 

thromboembolism, which are the hallmarks of severe COVID-19 46. 

 

Methods 

Computational Environment. In silico analyses were performed on two different 

machines. Locally, a ThinkPad P52 Workstation with 128GB RAM and a six-core Intel 

Xeon processor was used for data exploration. A high-performance computing cluster 

(HPCC) was used for data integration and computation of results. Analysis was 

performed in R version 3.6.2. A docker environment with a pre-installed RStudio image 

and loaded with all required packages is available at 

https://github.com/davisidarta/humanlung.  

Protein-Protein Interaction Networks. Protein functional interaction networks were 

performed with STRING v11 47, a software toolkit which performs datamining on a large 

number of databases and on individually published high-throughput datasets. The 

default functional interaction network was queried for ACE2 in the Homo sapiens 

organism and was visualized by known molecular action. We subsequently added a 

second shell of interactors in order to explore deeper interactions through autonomous 

datamining. A permalink webpage of ACE2 Protein-Protein Interaction network is 
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accessible through https://version-11-0.string-

db.org/cgi/network.pl?networkId=KwL0Kho7pBZf . 

Single-cell RNA sequencing data acquisition, filtering, and processing. Control 

samples (healthy donors) digital expression matrices were downloaded from Gene 

Expression Omnibus for data published elsewhere 26 (GSE122960) and for Human Cell 

Landscape (HCL) data 27 (GSE132355). For other datasets 28, raw digital expression 

matrices and associated metadata were downloaded from the Human Cell Atlas web 

portal (https://data.humancellatlas.org/explore/projects/c4077b3c-5c98-4d26-a614-

246d12c2e5d7). In addition, preprint data from Travaglini and coworkers 

(https://doi.org/10.1101/742320) was obtained from synapse (Human Lung Cell Atlas – 

https://www.synapse.org/#!Synapse:syn21041850/wiki/600865). Cells were filtered by 

total number of reads (nreads), by number of detected genes (ngenes), and by 

mitochondrial percentage (mito.pc). Data filtering thresholds were defined by inflection 

points in the logarithmic curves of each cell’s number of reads (nreads) and number of 

detected genes (ngenes). Filtering was performed on each individual sample prior to 

integration, with the exception of the study by Madissoon et al., in which each sample 

corresponds to a different point in a time course of frozen storage of cells prior to 

processing (0 h–72 h), rendering extremely low batch effects. Filtering was performed 

in each individual sample prior to integration, with the exception of Madissoon et al. 

study, in which each sample corresponds to a different point in a time-course of frozen 

storage of cells prior to processing (0h – 72h), rendering extremely low batch effects. 

Supplementary Table 1 summarizes the thresholds used by each sample in each 

individual study, and Supplementary Figure 1 summarizes quality-control metrics for 

each dataset.  

Each individual sample was processed in Seurat v3.1.5 48 using the default Seurat 

workflow. For each individual sample, cell counts were log-normalized by a size factor 

of 10,000 RNA counts, and feature selection was performed by selecting the 5,000 

genes with the highest dispersion. Data were then scaled (z-core transformation to 

standardize expression values for each gene across all cells). For sample batch-

correction within each study, we performed the combination of the gene expression of 

each sample and then selected 2,000 features to be included in the integrated analysis 

prioritizing features that were identified as highly variable in multiple samples. 

Unsupervised identification of anchor correspondences between the Canonical 

Correlation Analysis (CCA) space of each sample normalized data was performed with 

the FindIntegrationAnchors function in Seurat v3 with default parameters. These 

anchors were scored and weighted, being subsequently merged into integrated assays 
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containing the balanced expression of the union of each sample’s expressed genes, 

resulting in three study-wise balanced datasets. 

Data integration and label transfer. For integration of data from different studies, we 

performed the union of the gene expression of available human lung peer-reviewed 

studies 26-28. Prior to anchoring, 3,000 features were selected by ranking top features 

identified as highly variable in multiple studies. We proceeded similarly to the individual 

study level, where anchors were built between multiple samples, and searched for 

anchor correspondences between each study’s own manifold by using Seurat v3 

Integration. As a first step, dimensional reduction with CCA is performed. CCA 

effectively captures gene modules that are correlated and shared in pair-wise dataset 

comparisons, representing signals that define a shared biological state. Afterwards, 

mutual nearest neighbors (MNN – pairs of cells, each from one dataset) that share a 

corresponding state are weighted in an ‘anchor’, which is scored so as to exclude 

spurious connections between unrelated cell types. The integration of these anchors 

into a single manifold was performed with the IntegrateData function, and the top 

20,000 genes with higher dispersion were included in the final result. The data of 

Travaglini et al. were not included in the integrated atlas due to its lack of peer review. 

However, we did use these data annotations for label transfer due to its high-quality 

cell-type annotation. This was performed by employing the FindTransferAnchor and 

TransferData functions, in which a classification matrix is transposed by multiplication 

by a weighting matrix to return prediction scores for each class for every cell in the 

atlas.  Those labels were further used as guidance in the process of cell-type 

annotation, as well as the expression of cell-type marker genes.  

Dimensionality reduction with diffusion-based Manifold Approximation and 

Projection (dbMAP). Visualizing single-cell data is a challenging task in which 

comprehensive two- or three-dimensional embedding needs to be generated from an 

exceptionally large number of samples and observations. Previous approaches mainly 

relied on performing prior dimensionality reduction with PCA to denoise data and make 

it computationally easier to compute non-linear dimensional reduction methods such as 

t-stochastic neighborhood embedding (t-SNE), UMAP, and potential of heat diffusion 

for affinity-based trajectory embedding (PHATE). We have recently proposed diffusion-

based Manifold Approximation and Projection (dbMAP), which excels at identifying rare 

cell populations and describing lineage dynamics as trajectories progress, branch, and 

cycle (http://dx.doi.org/10.2139/ssrn.3582067). Briefly, dbMAP encodes and denoises 

data by dissecting its diffusion structure, in which cell-cell similarity information is 

adaptive regarding each cell’s individual neighborhood density. This information is then 
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propagated through a series of random walks, which are scaled to normalize the 

relative progression of diffusion during each walk. This approach effectively adapts 

diffusion maps to approximate the Laplace-Beltrami operator, which represents data 

intrinsic structure. The resulting eigenvectors are diffusion components which can be 

used for downstream clustering, layout visualization and pseudotime estimation, being 

a potential substitution for PCA in single-cell processing. These diffusion components 

address UMAP’s assumptions on its input, thus optimizing its potential for visualization, 

a feature we explored with dbMAP. dbMAP is computationally scalable and robust to 

variations in parameters, uniquely allows the visualization of cyclic trajectories in which 

stem cells actively traverse the cell cycle and is well-suited for the analysis of organ- 

and organism-level data. dbMAP takes four main parameters. During diffusion, a 

number N of structure components are computed accounting for each cell K nearest 

neighbors. After automatic scaling and selection of relevant components by eigengap 

analysis, a UMAP layout is generated with M as the effective minimum distance 

between embedded points and S as the effective scale of embedded points. 

Importantly, visualization parametrization can be fine-tuned by the user for its specific 

dataset due to the fast UMAP layout computation of the structure components, 

although results overall are robust to small changes in these parameters. Parameters 

used for dbMAP embedding for individual studies and the integrated atlas, as well as 

those used for UMAP embedding of the atlas, are listed in Supplementary Table 3. 

Clustering. Clustering was performed by generating a k-nearest-neighbors graph from 

the structure components learned in dbMAP first step. For this, we applied the 

FindNeighbors function in Seurat with default parameters on the structure components. 

Clustering was then performed by a shared nearest neighbor (SNN) modularity-based 

clustering algorithm by using the FindClusters function in Seurat with default 

parameters. 

Identification of marker genes. Cluster marker genes were found with Seurat’s 

function FindAllMarkers, which finds differentially expressed genes between a cluster 

and all remaining cells with a Wilxocon rank sum test. Marker genes were then ranked 

by their log of fold change of expression in particular cell types. The two marker genes 

with the highest log of fold change for each cluster were chosen for the Dotplot and 

heatmap visualizations. A comprehensive table of all marker genes is provided as 

Supplementary Data. 

Cell-type annotation. Clusters were annotated to cell types corresponding the 

metadata of Madissoon et al. and the transferred labels from Travaglini et al. and 

accordingly to canonical marker gene expression.  
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Doublet identification and removal. We identified five clusters that presented without 

specific marker genes and in spurious trajectories as doublets and removed them. 

Three clusters scattered the white space between alveolar cells, 

monocytes/macrophages, and lymphocytes in pairwise trajectories between these 

three cell types, effectively corresponding to doublets. The two remaining doublet 

clusters were scattered between mast cells and monocytes. We provide code for the 

identification and removal of these doublet clusters. 

Visualization of gene expression. Visualization of gene expression was performed 

with dbMAP plots of gene expression and with dot plots. The Seurat functions 

FeaturePlot and DotPlot were applied to the integrated Seurat object with particular 

coloring thresholds for each gene so as to visualize expression throughout the color 

scale (Suppl. Table 4). 

Code Availability. All code used for analysis of single-cell RNA sequencing data is 

available at https://github.com/davisidarta/humanlung. dbMAP is available at 

https://github.com/davisidarta/dbMAP as a python library, which can also be easily 

used within R with the reticulate package. A docker image containing all necessary 

packages for analysis with an RStudio interface is also available. 

Data Availability. A downsized version of the integrated human atlas containing 

10,000 randomly sampled cells is available as a Cerebro 47 interactive webpage which 

can be easily explored by non-bioinformaticians at https://humanlung.iqm.unicamp.br . 

In Cerebro, users can readily visualize gene expression with dbMAP embeddings, 

search for each cluster differentially expressed genes, obtain functional enrichment 

scores for clusters of interest from a wide range of biomedical databases and export 

publication-level plots and tables. Fully processed data is also available as a complete 

Seurat object (.Rds) and as a Cerebro (.crb) file. All further data is available from the 

authors upon request. 

Supplementary Data. A Table with differentially expressed genes (DEG) for each cell 

type in the lung atlas is available as Lung_markers.csv. Differentially expressed genes 

(DEG) tables for each cell type in the lung atlas are available as Lung_markers.csv 

(Supplementary Data).  
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Legends for the Figures 

Figure 1. COVID-19 clinical triad and ACE2 physiological roles link COVID-19 to 

ACE2 dysfunction. (A) Schematic representation of the clinical triad that play central 

role in severe COVID-19. (B) Schematic representation of the key components of the 

kinin-kallikrein, renin-angiotensin and coagulation systems and their interfaces with 

ACE2. (C) ACE2 Protein-Protein Interaction Network. ACE2 interactome was retrieved 

with the data-mining toolkit string-db (https://version-11-0.string-

db.org/cgi/network.pl?taskId=KwL0Kho7pBZf). First shell interactors of ACE2 were set 

as colored nodes, while second shell interactors were set as white nodes. Edges 

indicate known molecular action of a protein node regarding another protein node. 

ACE2 is directly connected to components of the kinin-kallikrein (bradykinin), renin-

angiotensin and coagulation systems. 

Figure 2. Generation of an Integrated Lung Cell Atlas through integration of 

public data reveal fibroblasts and alveolar cells expressing ACE2 in the human 

lung. a. Public data from single-cell RNA sequencing (scRNAseq) studies on the 

human lung was retrieved. Reyfman et al., Madissoon et al. and Human Cell 

Landscape control datasets were individually analyzed and batch-corrected with Seurat 

v3 anchor-based integration after filtering and normalization. Batch-corrected data 

representing each study was used to assemble an integrated dataset. This integrated 

dataset was annotated with the assistance of label transferred from Travaglini et al. 

data. b. The Human Lung Integrated Cell Atlas represented in two-dimensional 

diffusion-based Manifold Approximation Embedding (dbMAP). dbMAP organizes the 

visualization to preserve as much of the original data structure as possible in a 

comprehensive way. In this representation, each cell is a point mapped to an 

embedding so that its x, y coordinates represent its relative transcriptional identity, i.e. 

its phenotypic signal. Cells are colored by their assigned cluster.  c. Visualization of 

ACE2 expression on the human lung dbMAP embedding. ACE2 is consistently 

expressed in alveolar cells and scattered in fibroblasts, being practically absent from 

other cell types. NK = Natural Killer cell; DC = Dendritic Cell; NA = Not Assigned. 

Figure 3. Lung expression of genes involved in SARS-Cov-2 cell entry is 

selective to alveolar cells. a. Schematic representing SARS-Cov-2 cell entry 

mechanism. TMPRSS2 cleaves SARS-Cov-2 spike protein, allowing it to bind to ACE2, 

its functional receptor. It is known that other genes such as PIKFYVE, TPCN2 and 

CTSL also play a role in SARS-Cov-2 endocytosis and cellular contamination b-f. 

Visualization of gene expression in dbMAP embeddings of the lung atlas. b. TMPRSS2 
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expression is restricted to alveolar cells. c. ACE2 expression is selective to alveolar 

cells and fibroblasts. d-f. PIKFYVE, TPCN2 and CTSL are expressed consistently 

throughout the majority of lung cell types. CTSL expression in macrophages g. Dot plot 

visualization of expression of genes involved in SARS-Cov-2 cell entry in human lung 

cell types. ACE2 expression is selective to alveolar clusters, similarly to TMPRSS2, but 

with the particularity of being lowly expressed in a large portion of endothelial cells. 

PIKFYVE, CTSL and TPCN2 are expressed by all clusters, but CTSL expression is 

much higher in macrophages, while TPCN2 expression is higher in NK and T CD4/CD8 

clusters.  

Figure 4. Gene expression of components of the kinin-kallikrein system point to 

alveolar cells role. a. Schematic representing the main players and steps of the 

bradykinin system, also known as the kinin-kallikrein system. High molecular weight 

kininogen (HMWK) conversion into bradykinin is catalyzed by kallikrein. Bradykinin 

binds to the bradykinin receptor 2 (BDKRB2), but it can be converted into DR9-

bradykinin, which activates the bradykinin receptor 1 (BDKRB1) until it is degraded by 

ACE2 into inactive degradation products. Bradykinin can also be directly converted into 

inactive degradation products by ACE. 1-6. Visualization of gene expression in dbMAP 

embeddings of the lung atlas. 1. KNG1 is selectively expressed in alveolar cells. 2. 

KLKB1 is expressed in endothelial and lymph vessel cells, and sparsely expressed in 

alveolar cells. 3. BDKRB2 expression is selective to endothelial cells. 4. ACE 

expression is selective to endothelial cells and macrophages. 5. BDKRB1 expression is 

selective to endothelial cells and fibroblasts, but also detected in low levels in alveolar 

cells. 6. ACE2 expression is restricted to alveolar cells. b. Dot plot visualization of 

expression of genes involved in the bradykinin system in the lung atlas cell types. 

ACE2 and KNG1 gene expression is selective to alveolar clusters, despite ACE2 being 

lowly expressed in a large portion of endothelial cells and KNG1 also being lowly 

expressed in a large portion of clusters of macrophages. KLKB1 is highly expressed in 

endothelial and lymph vessel cells, but also lowly expressed in T CD4 clusters. 

BDKRB2 is highly expressed in endothelial and alveolar type 1.1 cells, and also less 

expressed by a large portion of B/plasma cells, and of macrophages clusters 7 and 8. 

ACE is selectively expressed in endothelial cells and in macrophages. BDKRB1 

expression is selective to fibroblasts, although various clusters express it in low levels. 

ACE2 expression is restricted to alveolar cells. 

Figure 5. Gene expression of components of the renin-angiotensin system point 

towards alveolar cells role. a. Schematic representing the main players and steps of 

the angiotensin system, also known as the renin-angiotensin system (RAS). ACE2 
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catalyzes the conversion of angiotensin I to angiotensin 1-9, and of angiotensin II into 

inactive angiotensin 1-7. Renin catalyzes the conversion of angiotensinogen into 

angiotensin I. ACE catalyzes the conversion of angiotensin I into angiotensin II, which 

binds to its receptor AGTR1. 1-5. Visualization of gene expression in dbMAP 

embeddings of the lung atlas. 1. ACE2 expression is restricted to alveolar cells. 2. AGT 

is expressed in fibroblasts and smooth muscle cells. 3. REN expression is restricted to 

alveolar cells. 4. ACE expression is selective to endothelial cells and macrophages. 5. 

AGTR1 expression is selective to fibroblasts and smooth muscle cells. b. Dot plot 

visualization of the expression of genes involved in the angiotensin system in the lung 

atlas cell types. ACE2 expression is restricted to alveolar cell clusters, similarly to REN, 

which is virtually absent from remaining clusters. AGT is highly expressed in fibroblasts 

and muscle, albeit being lowly expressed in a large portion of cells from other clusters. 

ACE is preferentially expressed in endothelial cells and macrophage clusters. AGTR1 

is highly expressed in smooth muscle cells and fibroblasts, and lowly expressed in 

macrophages and alveolar cells. 

Figure 6. Gene expression of components of the coagulation system. a. 

Schematic representing the final step of the coagulation system. Plasma kallikrein 

(KLKB1) catalyzes the conversion of plasminogen into plasmin. Plasminogen is 

activated by tissue plasminogen activator (PLAT), which is regulated by serpine 1 

(SERPINE1). Plasminogen conversion into plasmin promote fibrinolysis by degradation 

of fibrin networks generated from fibrinogen (FGG) into inactive fragments. ACE2 plays 

a role in this process by catalyzing the conversion of angiotensin I to angiotensin 1-9, 

which inhibits fibrinolysis. 1-5. Visualization of gene expression in dbMAP embeddings 

of the lung atlas. 1. KLKB1 is expressed in endothelial cells and sparsely in alveolar 

cells. 2. SERPINE1 is highly expressed in fibroblasts and in endothelial and smooth 

muscle cells, and present in lower levels in macrophages. 3. PLAT is mostly expressed 

in endothelial cells and fibroblasts. 4. FGG expression is restricted to alveolar cells. 5. 

ACE2 expression is restricted to alveolar cell clusters. b. Dot plot visualization of the 

expression of genes involved in the coagulation system in the lung atlas cell types. 

ACE2 expression is restricted to alveolar cell clusters. PLAT expression is higher in 

endothelial cells, lymph vessel cells and mast cells. FGG expression is restricted to 

alveolar cell clusters, being higher in alveolar type 2.1 and type 2.2, alveolar/ciliated 

and alveolar NA clusters, a poorly characterized cellular population. 
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Supplementary Figure 1. Quality control metrics for included data. Violin plots of 

quality metrics (detected genes and RNA counts for each cell) showing each of the 

original datasets used for integration. a.  Quality control metrics (QC) for Reyfman et al. 

data. b. QC for the Human Cell Landscape lung data. c. QC for Madissoon et al. data. 

 
Supplementary Figure 2. Details on integration, annotation and UMAP layout. a. 

dbMAP embeddings of each individual batch-corrected study prior to integration and 

label transfer. b. dbMAP embedding of the Human Lung Integrated Cell Atlas. Cells were 

colored by their study of origin. Cell clusters were not particularly enriched for cells from 

a particular study, and overall integration is able to account for the weighted information 

from each study.  c. Labels learned by transfer learning from Travaglini et al. annotations. 

Annotation of resulting clusters and cell-type assignment was partly guided by these 

annotations. d. UMAP layout was computed on top 50 Principal Components after 

Principal Component Analysis (PCA), the default adopted workflow. Overall cluster 

configuration is similar between UMAP and dbMAP embeddings, being clearer that 

dbMAP is advantageous for the visualization of rare populations and differentiation 

trajectories, taking as example B cells, which are mapped in its differentiation trajectory 

into plasma cells,  whereas UMAP embeds these clusters as completely apart 

populations. Clusters are annotated by cell type annotation. 

 

Supplementary Figure 3. Dotplot of clusters gene expression markers. Dot plot 

visualization of top 2 highest scoring markers per cell type. Larger circles mean a 

larger fraction of cells from a specific cell type express that gene, even though at 

exceptionally low rates. Darker circles mean the average gene expression for that gene 

in a specific cell-type is higher.  

 

Supplementary Figure 4. Panel of dbMAP embedded gene expression of 10 cell-

type markers. Visualization of gene expression in dbMAP embeddings of the lung 

atlas. SFTPC: alveolar cells. C1QA: macrophages. FCN1: monocytes. GZMH: T cells. 

CLDN5: endothelial and lymph vessels cells. MS4A1: B Cells. IGLC2: Plasma cells. 

LUM: Fibroblasts. TFF3: lymph vessel and alveolar ciliated cells. TPSB2: Mast cells. It 

is possible to generate similar plots for 20,000 genes on the atlas online database. 

 

Supplementary Figure 5. Heatmap of cell-type markers. Heatmap of top two gene 

expression markers for each cell type cluster. For visualization, the cell number was 

downsampled by a factor of 100. Top annotations represent cell types. 
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 Reyfman et al. 

Sample 1 2 3 4 

Detected reads > 500 & < 15,000 > 1,000 & < 15,000 > 500 & < 10,000 > 500 & < 10,000 

Detected genes >500 & < 3,500 >500 & < 3,500 > 300 & < 2,500 > 300 & < 3,500 

% Mitochondrial Genes  < 20  < 10  < 10  < 10 
 

    
Sample 5 6 7 8 

Detected reads > 500 & < 20,000 > 500 & < 15,000 > 500 & < 15,000 > 1,000 & < 2,000 

Detected genes > 300 & < 4,500 > 300 & < 5,000 > 300 & < 4,500 >  500 & <  1,000 

% Mitochondrial Genes  < 20  < 10  < 10  < 11 

     

 Madissoon et al. 

Detected reads  >1,800 & < 35,000  
Detected genes  > 600 & < 5,000  

% Mitochondrial Genes  < 10  

 
    

 Human Cell Landscape 

Sample 1 2 3 4 

Detected reads > 500 & < 1,800 > 500 & < 1,800 > 400 & < 2,000 > 200 & < 2,000 

Detected genes > 250 & < 1,000 > 200 & < 1,000 > 100 & < 1,000 > 100 & < 1,000 

% Mitochondrial Genes < 20 < 20 < 20 < 20 

 
    

Sample  5 6  
Detected reads  > 200 & < 1,800 > 200 & < 1,800  
Detected genes  > 100 & < 1,000 > 100 & < 1,000  

% Mitochondrial Genes  < 20 < 20  

     

 Travaglini et al. 

Detected reads  > 1,000 & < 40,000  
Detected genes  > 600 & < 5,000  

% Mitochondrial Genes  < 10  

 
 
Supplementary Table 1. Quality control inclusion criteria for cells from analyzed 
studies. Cells were filtered by a minimum and maximum threshold of detected reads 
and detected genes so as to avoid overrepresentation of doublets, scRNAseq 
experimental artifacts that lead to the recognition of multiple cells as one (i.e., two cells 
in a single droplet). Cells with high mitochondrial gene expression are associated with 
low-quality reads and were removed from analysis. Each sample from Reyfman et al. 
and Human Cell Landscape data was filtered separately, while Madissoon et al. data 
was of extreme high-quality and presented very low batch-effects, therefore being filtered 
by a jointly defined threshold. Travaglini et al. data was used for annotation purposes 
only, and also filtered to a jointly defined threshold. 
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  Integrated Atlas Reyfman et al. Madissoon et al. Human Cell Landscape 

UMAP         

n_PCs 50 

N/A N/A N/A min.dist 0.5 

spread 1 

          

dbMAP          

Computed DCs (N) 300 300 200 300 

Selected DCs (automated) 191 207 147 169 

k-nearest-neighbors (K) 50 50 15 30 

min.dist (M) 0.3 0.3 0.6 0.3 

spread (S) 2 2 1 1.5 

Learning rate 2 1.2 1 1 

 
 
Supplementary Table 2. Parameters used for dbMAP embedding for individual studies 

and the integrated atlas, as well as those used for UMAP embedding of the atlas. 
dbMAP takes four main parameters. During diffusion, a number N of structure 
components are computed accounting for each cell K nearest neighbors. After 
automatic scaling and selection of relevant components by eigengap analysis, a UMAP 
layout is generated with M as the effective minimum distance between embedded 
points and S as the effective scale of embedded points. Importantly, visualization 
parametrization can be fine-tuned by the user for its specific dataset due to the fast 
UMAP layout computation of the structure components, for example by changing the 
learning rate, although results overall are robust to small changes in these parameters. 
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Supplementary Table 3. Coloring thresholds for plots obtained for each gene showed 

in the analysis. Plots were first visualized with a high threshold, which was decreased 

as little as possible, so as to visualize gene expression throughout the color scale. The 

combined thresholds used for the dotplots from figures 3, 4, 5 and 6 are also shown. 

 
 
 
 
 
 

 
Key Resources Table.  Summary of all data and software used. 

 

Plotting colorscale thresholds ACE2 TMPRSS2 PIKFYVE TPCN2 CTSL KNG1 KLKB1 BDKRB2 ACE BDKRB1 

DimPlots < 0.1 < 3 < 1 < 0.25 < 2 
< 

0.02 
< 0.1 < 0.3 

< 
0.1 

< 0.06 

DotPlot Fig. 3 None   

DotPlot Fig. 4   < 6 

  AGT REN AGTR1 SERPINE1 PLAT FGG SFTPC 

  

DimPlots < 1 < 1 < 0.2 < 0.1 < 0.3 < 2 < 8 

DotPlot Fig. 5 < 3   

DotPlot Fig. 6    < 5 

Key Resources Table 
scRNAseq of human lung Sequencing technology Accession 

Reyfman et al. 10X Genomics v2 
GEO GSE122960 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122960  

Madissoon et al. 10X Genomics v2 
NCBI BIOPROJECT PRJEB31843 

https://www.tissuestabilitycellatlas.org/ 

Human Cell Landscape Microwell-seq 
GEO GSE134355 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134355  

Softwares and algorithms     

R 3.6.2 R Core https://www.r-project.org/  

Seurat 3.1.5 Stuart and Butler et al.  https://satijalab.org/seurat/ 

dbMAP v0.1 Sidarta-Oliveira and Velloso https://github.com/davisidarta/dbMAP 
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