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Abstract 
Background. Emerging evidence indicates a potential role for monocyte in 

COVID-19 immunopathology. We investigated two soluble markers of monocyte 

activation, sCD14 and sCD163, in covid19 patients with the aim of characterizing 

their potential role in monocyte-macrophage disease immunopathology. To the 

best of our knowledge, this is the first study of its kind. 

Methods. Fifty-nine SARS-Cov-2 positive hospitalized patients, classified 

according to ICU or non-ICU admission requirement, were prospectively recruited 

and analyzed by ELISA for levels of sCD14 and sCD163, along with other 

laboratory parameters, and compared to a healthy control group. 

Results. sCD14 and sCD163 levels were significantly higher among COVID-19 

patients, independently of ICU admission requirement, compared to the control 

group. We found a significant correlation between sCD14 levels and other 

inflammatory markers, particularly Interleukin-6, in the non-ICU patients’ group. 

sCD163 showed a moderate positive correlation with the time at sampling from 

admission, increasing its value over time, independently of severity group. 

Conclusions. Monocyte-macrophage activation markers are increased and 

correlate with other inflammatory markers in SARS-Cov-2 infection, in 

association to hospital admission. These data suggest a potentially preponderant 

role for monocyte-macrophage activation in the development of 

immunopathology of covid19 patients. 
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Introduction 

Emerging evidence from SARS-Cov-2 infected patients suggests a key role for 

monocyte-macrophage in the immunopathology of COVID-19 infection, with a 

predominant monocyte-derived macrophage infiltration observed in severely 

damaged lungs [1], and morphological and inflammation-related changes in 

peripheral blood monocytes that correlate with the patients’ outcome [2] An 

overexuberant inflammatory immune response with production of a cytokine 

storm and T-cell immunosuppression are the main hallmarks of severity in these 

patients [3]. This clinical course resembles viral-associated hemophagocytic 

syndrome (VASH),  a rare severe complication of various viral infections 

mediated by proinflammatory cytokines, resulting in multiorgan failure and death 

[4]. A chronic expansion of inflammatory monocytes and over-activation of 

macrophages have been extensively described in this syndrome [5; 6; 7]. VAHS 

has been identifies as a major contributor to death of patients in past pandemics 

outbreaks [8] including previous SARS and MERS outbreaks [9] and is currently 

suggested for SARS-Cov-2 outbreak. [10] 

CD14 and CD163 are both myeloid differentiation markers found primarily 

on monocytes and macrophages, and detection of soluble release of both in 

plasma is considered a good biomarker of monocyte-macrophage activation [11; 

12]. Elevated plasma levels of soluble CD14 (sCD14) are associated to poor 

prognosis in VIH-infected patients, are a strong predictor of morbidity and 

mortality [13; 14], and associated with diminished CD4+-T cell restoration [15]. In 

addition, soluble CD163 (sCD163) plasma levels are a good proxy for monocyte 

expansion and disease progression during HIV infection [16]. In measles 

infection, a leading cause of death associated with increased susceptibility to 

secondary infections and immunosuppression, sCD14 and sCD163 levels were 

found to be significantly higher, indicating an important and persistent monocyte-

macrophage activation [17]. 

We hypothesized that monocytes/macrophages may be an important 

component of immunopathology associated to SARS-Cov-2 infection. In this 

paper, we analyze plasma levels of soluble monocyte activation markers in 

COVID-19 patients and their correlation with severity and other inflammatory 

markers. 
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Methods 

Subjects 

We recruited 59 patients with confirmed PCR-positive diagnostic for SARS-Cov-

2 infection, classified according ICU admission requirement (n=22 patients), or 

non-ICU requirement (n=37), and age-matched healthy individuals (n=20) as 

control group. Demographic data, main medication treatment and routine lab 

clinical parameters including inflammatory biomarkers were collected for all 

infected patients. Leftover sera samples from routine analytical control were 

employed for the research analysis, after obtaining corresponding informed 

consent. Time elapsed from hospital admission to sample extraction was also 

recorded. 

Measurement of sCD14 and sCD163 serum levels 

To determine levels of soluble monocyte activation markers in serum specimens, 

appropriate sandwich ELISA (Quantikine, R&D systems, United Kingdom) were 

used following manufacturer indications. Briefly, diluted sera samples were 

incubated for 3 hours at room temperature in the corresponding microplate strips 

coated with capture antibody. After incubation, strips were properly washed and 

incubated with the corresponding Human Antibody conjugate for 1 hour. After 

washing, reactions were revealed and optical density at 450 nm was determined 

in a microplate reader. Concentration levels were interpolated from the standard 

curve using a four-parameter logistic (4-PL) curve-fit in Prism8 GraphPad 

software. Final values were corrected applying the corresponding dilution factor 

employed.  

Statistical analysis 

Data are expressed as median and interquartile range. All statistical analyses 

were performed using the statistical package R. Mann-Whitney tests were used 

for comparison between ICU and non-ICU groups versus healthy controls. 

Pearson’s correlation coefficients were used to quantify the association between 

sCD14 and sCD163 concentration and other lab parameters in non-ICU patients.  

Data outliers, falling outside the 1.5 interquartile range, were excluded from the 
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statistical analysis. The nominal significance level considered was 0.05.  

Bonferroni adjustment was used to account for multiple testing.  

Results 

Demographic and clinical laboratory parameters  

Patients in the ICU group showed significant differences in several clinical 

laboratory parameters when compared to non-ICU group: lymphocytes, ferritin, 

D-dimer, Lactate Dehydrogenase (LDH), Procalcitonin (PCT), Interleukin-6 (IL-

6). The absolute value for circulating monocytes did not show significant 

differences between groups. However, these values may have been distorted by 

the use of tocilizumab, an IL-6 blocking drug extensively employed in the ICU 

group which interferes with monocyte function. Age and time elapsed from 

admission to sample extraction did not show differences between groups. Values 

are summarized in Table 1. 

Serum levels for sCD14 and sCD163 

Median levels for sCD14 in sera from ICU patients were 2444.0 (95%CI: 1914.0-

3251.0) ng/ml, compared to 2613.0 (95%CI: 2266.0-2991.0) ng/ml in non-ICU 

patients. The healthy control group median value was 1788.0 (95%CI: 1615.0-

1917.0) ng/ml. We observed significant differences for values from infected 

patients relative to control group (P-value<0.0001), however no significant 

differences were observed between ICU and non-ICU groups. Median levels for 

sCD163 in sera from ICU patients were 911.5 (95%CI: 624.7-1167.0) ng/ml, and 

910.4 (95%CI: 733.1-1088.0) ng/ml in non-ICU patients. The healthy control 

group value was 495.6 (95%CI: 332.5-600.7) ng/ml. In the same way as with 

sCD14, we observed significant differences for values from infected patients 

compared to control group (P-value<00001), but no differences between ICU and 

non-ICU infected patients. Values are summarized in Table 2 and Figure 1. 

Correlation between sCD14 and sCD163 levels and time elapsed from hospital 

admission 

We assessed correlation between sCD14 and sCD163 levels and time elapsed 

from hospital admission to sample extraction (Figure 2). We found a significant 

positive correlation between sCD163 levels and time elapsed (r2=0.3246, P-
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value=0.0156), increasing its value over time of hospital admission. We did not 

observe a significant correlation between sCD14 levels and time elapsed from 

hospital admission to sample extraction. 

Correlation between sCD14 and sCD163 levels and clinical laboratory 

parameters 

We found significant correlation between sCD14 and sCD163 and several clinical 

laboratory parameters in infected patients (in these analysis, adjusted 

significance under Bonferrori correction is 0.01), but only in the non-ICU group, 

possibly reflecting an interference of the use of tocilizumab or corticoids in the 

ICU group. Levels of sCD14 showed a negative correlation with the absolute 

value of lymphocytes (r2=-0.5501, P-value=0.0005) and a positive correlation with 

levels of LDH (r2=0.5906, P-value=0.0001), CRP (r2=0.6275, P-value<0.0001); 

PCT (r2=0.4608, P-value=0.0091), and Ferritin (r2=0.4414, P-value=0.0090) 

(Figure 3). No other significative associations were found with other lab 

parameters. Levels of sCD163 did not show any significant correlation with 

clinical laboratory parameters (Figure 3). Particularly, IL-6 also shows a 

significant positive correlation with sCD14 (r2=0.6034, P-value=0.0003) (Figure 
4). 

Age-dependence of sCD14 and sCD163 levels 

We analyzed possible age-dependence of sCD14 and sCD163 levels. Values did 

not show association between these biomarker levels and the age of patients. 

Discussion 

Our results show, for the first time, increased levels of sCD14 and sCD163 in 

sera from SARS-Cov-2 infected patients admitted to hospital. We did not observe 

any differences between ICU or non-ICU patients, probably due to the 

interference on monocyte function produced by the use of tocilizumab and/or 

corticoid treatment in ICU patients as previously demonstrated [18; 19]. However, 

levels of sCD14 showed a strong correlation with clinical laboratory parameters, 

including acute phase reactants (ferritin, LDH, C-reactive protein, procalcitonin) 

and a strong correlation with IL- 6 levels in the non-ICU patient group, where no 

tocilizumab and/or corticoids treatments were used. Furthermore, sCD163 levels 
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showed a correlation with the time elapsed from hospital admission to sample 

extraction, increasing its value over time of hospital admission, suggesting a 

potential indicator of progression of disease. 

 

Monocytes and macrophages constitute a key component of immune 

responses against viruses, acting as bridge between innate and adaptive 

immunity [20]. Activation of macrophages has been demonstrated to be pivotal in 

the pathogenesis of the immunosuppression associated to several viral infections 

(VIH, measles), where expansion of specific subsets of monocytes and 

macrophages in peripheral blood are observed, and considered to be drivers of 

immunopathogenesis [21]. Our results support the hypothesis of a preponderant 

role for monocytes in SARS-Cov-2 immunopathology, associated to an over 

exuberant immune response. Increased levels of monocyte-macrophage 

activation markers and the correlation with other inflammatory biomarkers 

(particularly IL-6), indicate a close relationship between monocyte activation and 

immunopathology in these patients. Inflammatory markers are closely related to 

severity in COVID-19 pathology [22] and selective blockade of IL-6 has been 

demonstrated to be a good therapeutic strategy in COVID-19 pathology [23]. Our 

results thus suggest that monocyte-macrophage activation can act as driver cells 

of the cytokine storm and immunopathology associated to severe clinical course 

of COVID-19 patients. Further, monitorization of monocyte activity trough these 

soluble activation markers and/or follow-up of circulating inflammatory monocytes 

in peripheral blood, could be useful to assess disease progression in the same 

way as in other viral infections [16]. 

In addition, our results identify monocyte-macrophage as a good target for 

the design of therapeutic intervention using drugs that inhibit monocyte-

macrophage activation and differentiation. In this sense, anti-GM CSF inhibitor 

drugs, currently under clinical trials for rheumatic and other auto-inflammatory 

diseases, might provide satisfactory results in COVID-19 patients. Other drugs 

targeting monocyte and/or macrophage could also be useful in COVID-19, as in 

other inflammatory diseases [24]. The strategy of inhibiting monocyte 

differentiation has proved useful in avoiding cytokine storm syndrome after CAR-

T cell immunotherapy [25], suggesting a possible therapeutic application to 

COVID-19 immunopathology [26] The present study has several limitations, 
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including the relatively low numbers of patients tested and the interference of 

tocilizumab and corticoids in ICU patients’ results. However, these preliminary 

results are strongly suggestive of an important implication of monocyte-

macrophage in COVID-19 immunopathology, as highlighted by the correlations 

found between these biomarker levels and inflammatory parameters. Further 

studies using broader series are needed to confirm our findings. 

In summary, our data underscore the preponderant role of monocyte and 

macrophage immune response in COVID-19 immunopathology and provide 

pointers for future interventions in drug strategies and monitoring plans for these 

patients. 
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Table 1. Demographic and clinical laboratory parameters of patients recruited. 
 

Parameter ICU non-ICU P-value 
Clinical laboratory parameters 
  Lymphocytes  0.54 (0.47–1.058) 1.16 (0.79–1.62) 0.0004 
  Monocytes 0.35 (0.16–0.65) 0,42 (0.35–0.58) ns 
  Platelets 264 (204.3–354.5) 272 (213–413) ns 
  D-Dimer 3676 (1198–8121) 755 (413–1033) 0.0002 
  Lactate Dehydrogenase (LDH) 677 (429–818.5) 469 (391–595) 0.0188 
  C-reactive protein (CRP) 7.37 (2.56–20.51) 4,65 (2.16–11.41) ns 
  Procalcitonin (PCT) 0.22 (0.09–0.4) 0.09 (0.05–0.21) 0.0305 
  Ferritin 1257 (837.3–3020) 467 (254.5–785) <0.0001 
  Interleukin-6 (IL-6) 83.10 (14.45–381.8) 12.70 (6.95–46) 0.0014 
  Glycosylated Hemoglobin (Hb1Ac) 5.95 (5.65–6.47) 6.1 (5.7–6.9) ns 
  Troponin-I 0.021 (0.017–0.246) 0.017 (0.017–0.019) ns 
Time elapsed from admission to sample (days) 
 5 (3.75–10) 4 (2–6) ns 
Age (years) 
 52 (48.75–61.25) 52 (44–65) ns 
Tocilizumab/Corticoids 
 19/22 (87%) 2/37 (5.4%) <0.0001 
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Table 2. Concentration (ng/ml) of serum levels of sCD14 and sCD163 in patients 

from ICU and non-ICU groups, and healthy controls. Data are represented as 

median and interquartile range. 

 

 
Concentration ICU non-ICU Healthy controls 

sCD14 2444.0 (1914.0–3251.0) 2613.0 (2266.0–2991.0) 1788.0 (1615.0–1917.0) 

sCD163 911.5 (624.7–1167) 910.4 (733.1–1088) 495.6 (332.5–600.7) 
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LEGEND FOR FIGURES 
 
Figure 1. Values of sCD14 and sCD163 in sera samples from patients in ICU, 

non-ICU groups, and healthy controls. Results are presented as median and 

interquartile range levels in ng/ml. Non-parametric Mann-Whitney tests were 

used for comparison between groups, and P-values for the different comparisons 

are displayed. 

 

 
Figure 2. Correlation between serum levels of sCD14 and sCD163 and time 

elapsed from admission to sample extraction in days for all infected patients. 

Pearson’s correlation coefficient (r2) and P-value are shown.  

 
 
Figure 3. Association between serum levels of sCD14 and sCD163, and several 

laboratory parameters including Absolute Valor Lymphocytes, LDH, CRP, PCT 

and Ferritin in the non-ICU patient group. Pearson’s correlation coefficient (r2) 

and P-value are shown. LDH: Lactate Dehydrogenase; CRP: C-reactive Protein; 

PCT: Procalcitonin 

 
 
Figure 4. Association between serum levels of sCD14 and IL-6 levels in the non-

ICU patient group. Pearson’s correlation coefficient (r2) and P-value are 

presented.  
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