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Abstract

A simplified model applied to COVID-19 cases detected and officially

published by the italian government [1], seems to fit quite well the time evo-

lution of the disease in Italy during the period feb-24th - may-19th 2020.

The hypothesis behind the model is based on the fact that in the lockdown

period the infection cannot be transmitted due to social isolation and, more

generally, due to the strong protection measures in place during the observa-

tion period. In this case a compartment model is used and the interactions

between the different compartments are simplified. The sample of cases de-

tected is intended as a set of individuals susceptible to infection which, after

being exposed and undergoing the infection, were isolated (’treated’) in such

a way they can no longer spread the infection.

The values obtained are to be considered indicative.

The same model has been applied both to the data relating to Italy and

to some regions of Italy (Lombardia, Piemonte, Lazio, Campania, Calabria,

Sicilia, Sardegna), generally finding a good response and indicatively inter-

esting values (see chap. 5).

The only tuning parameter is the ’incubation period’ τ that, together

with the calculated growth rate κ of the exponential curve used to approxi-

mate the early stage data.

Conclusions

A simplified compartmental model that uses only the incubation period and

the exponential growth rate as parameters is applied to the COVID-19 data

for Italy in the lockdown period finding a good fitting.
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Revision History

This section summarize the history of revisions.

Revision # 1

• Errata corrige in section 1 (Introduction): the equations that summarize the relationship

between the parameters were wrong. This revised version contains the correct equations at

page 2.

• The synchronization criteria is updated. No need to use a threshold different to the one used

to determine the growth coefficient. The results are now updated with the synchronization

point near to the 20% of the maximum value of the cases detected per day:

Ṫmodel(tsync) . 0.2 ∗ Ṫdata(t)

• Modifications in section 4 (Model results for Italy). It is appropriate to use an exponential

function instead of a logistic function to find the growth rate in the initial phase. Section 4

and the results are now updated.

• Some non-substantial corrections in the descriptive part.

Revision # 2

• Errata corrige in the system differential equation 6: in the the derivative of S were reported

a wrong additional term N. Now the equation 6 is correct.

Revision # 3

• New approach to detect the exponential rate and new concept for the transfer coefficients.
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• Exponential rate:

The old criteria was oriented to the growth of the cases: y∆t = y0 ∗ ek∆t thus: y0 + ∆y =

y0 ∗ ek∆t. The exponential growth rate was then : k = log(1 + ∆y/y0)/∆t.

The new criteria is oriented to the growth of the differences ∆y = ek∆t − 1 obtaining :

k = log(1 + ∆y)/∆t.

• Transfer coefficients: The new approach is based on the following assumptions:

αSE = kekδ [day−1] : this coefficent is supposed to be the variation of the exponential

growth per unit of time (δ = 1 day).

αEI = 1/τ [day−1] where τ is the incubation period (this assumption is not changed).

αIT = kδ/τ [day−1] this coefficent is supposed to be proportional to the ratio kδ/τ .

The constant δ = 1 [day] represent the unit variation in time.

• Basic reproduction number:

With the above assumptions, the basic reproduction number become:

R0 = αSE/αIT = ekδτ/δ [adimensional] (δ = 1 day)

• Revision summary:

The old approach, although adapting well to the data, presented several inconsistencies in

the parameters, and in particular on the relationship between R0 and k.

In this revision the new approach still shows a good fit to the data and shows congruent

relationships between the parameters.
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1 Introduction

After the so-called ’phase 1’, characterized by social distancing and a general halt of all ’non-

essential’ activities, the curve of the new COVID-19 cases detected daily dropped sharply. This

period, also called ’lockdown’ started with the decree of the Italian government of March 9th and

lasted until May 4th 2020.

The data of the daily detections of infected cases are available to everyone, starting from

February 24th, 2020, on the website [1]. This allowed a comparison of the growth curve of the

cases detected with a compartmental model of the Susceptible-Exposed-Infected-Recovered type

(see [2], [4], [3], ) which provides the temporal evolution of the number of individuals belonging

to the different compartments. The model has been suitably simplified to take into account the

lockdown situation.

The period under consideration (from Feb 24th to May 19th 2020) is sufficiently limited to

allow us to exclude the effects of births and deaths on the population, therefore in this context

we consider a constant population of N individuals, with N = S + E + I +R.

In the initial phase, the spread of the infection was not controlled, thus allowing an exponential

increase in the number of Exposed and Infected. Between March 4th and 9th drastic measures

were taken which, starting from Lombardia, were extended to all italian regions. The measures

in the blocking period aim to limit the spread of the infection as much as possible by isolating

people in homes and, where it is not possible (essential services), imposing individual protections

and disinfection of common areas.

The lockdown period, simplifying, can also be thought of as a type of treatment for infective

individuals. We can therefore imagine that infective individuals, detected daily, in general are

managed (’treated’) in such a way that they cannot infect other susceptible individuals. This

’treatment’ includes both hospitalization and isolation.

The lockdown period, characterized by strong social isolation, also allows us to neglect any

potential transfers between the various departments beyond the basic path S → E → I → T .

To avoid confusing the SEIR model with the lockdown approximation, in this context, we

will call T (Treated) the compartment of infected people who are no longer able to transmit the

pathogen.

This ’SEIT’ simplified model is based on the assumption that the transfer coefficient from S to

T is the variation of the exponential growth in the unit of time, and the transfer coefficient from

I to T is directly proportional to the growth rate and inversely proportional to the incubation

period. Finally the transfer coefficient from E to I is the reciprocal of the incubation period.

The model seems to fit well with the data relating to the Italian regions.

2 SEIR compartmental models

The mathematical models for the study of the spread of infections are based on a subdivision of the

population into ’compartments’ and on systems of differential equations to represent their tem-

poral evolution. The most common models are the SEIR models (Susceptible–Exposed-Infective-

Recovered) described in [2], [4], [3].

In the SIR and SEIR models the variables are represented by the number of individuals in the

different compartments over time (in this case on a daily basis).

3 of 20
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S (Susceptible) Number of uninfected individuals susceptible to pathogen infec-

tion.

E (Exposed) Number of individuals who have been exposed to the pathogen

but who, throughout the incubation period, are not spreading

the infection.

I (Infected) Number of individuals infected and capable of transmitting the

pathogen to others.

R (Recovered) Number of individuals who have passed the infection and are

no longer able to transmit the pathogen to others.
The evolution over time of the variables S, E, I, R can be modeled (see eq.1) considering the

interactions between the different compartments and taking into due consideration the relation-

ships that contribute to the increase the number of infected than those that only describe the

displacements between the various compartments without increasing the I variable.

[
Ẋ
]

=


Ė

İ

Ṙ

Ṡ

 =


X1(E, I, S,R)

X2(E, I, S,R)

X3(E, I, S,R)

X4(E, I, S,R)

 (1)

In the system of differential equations (1) the components Xi are functions of the variables

(E, I,R, S) and Ẋ their derivative over time.

The solution of (1) represents the evolution over time of the number of individuals in the

different sectors.

Given a situation of equilibrium (DFE: Disease Free Equilibrium) represented by a set of

values X0, the stability of the system can be studied by analyzing the contribution of infectious

components close to the DFE state.

By construction, the S and R compartments do not generate infections, therefore the variables

to be considered in the stability study near DFE are Ė and İ (2 ).

[
Ẋ
]

=

[
Ė

İ

]
=

[
X1(E, I, S,R)

X2(E, I, S,R)

]
(2)

In order to study the stability near a DFE, it’is important to distinguish the ’new infections’

from the movement between the departments, the differential equation (2) associated with each

variable is divided into two components:[
Ẋ
]

=
[
F(X)

]
−
[
V(X)

]
(3)

By construction F(X) and V(X) represent:

• Fi : new infections.

• Vi : transfers between compartments only.

From this representation, given the initial conditions S0, E0, I0, R0, and the interaction param-

eters between the various compartments that characterize F and V, solving the (1) the temporal

evolution of the number of individuals in the different compartments is obtained.

To study the stability of the system near equilibrium conditions (ref. [2]) we consider a DFE

as solution of the differential equations (1) and the perturbative impact of the two infectious

variables using the two Jacobian matrices of size 2 ∗ 2 relating to I and E (see eq. 2) .

F =
∂Fi(x)

∂xj

∣∣∣∣
x0

V =
∂Vi(x)

∂xj

∣∣∣∣
x0

(4)
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The product FV −1 is known as ’next generation matrix’ [2]. Each element FV −1
ij represents

the number of ’secondary’ infections of the i compartment due to a single infected of the j

compartment assuming that the whole population is susceptible. Each element of the matrix is a

’reproduction number’ which indicates how much an infectious person in one compartment affects

the number of infected in another compartment.

The dominant eigenvalue (spectral radius) of the ’next generation matrix’ FV −1 is known as

the ’basic reproduction number’R0 and represents the number of new cases generated, on average,

from a single case during its infectious period in a completely susceptible set of individuals. R0

also represents the stability threshold of the system near an equilibrium state. A value of R0 > 1

implies that the the system will move away from a state of equilibrium, with consequent spreading

of the infection (see [2], [4])

• R0 < 1 : the equilibrium (DFE) is locally stable and diffusion does not extend;

• R0 > 1 : the equilibrium is unstable allowing the spread of the infection.

3 A simplification (SEIT) to model the lockdown

As already mentioned, we will consider lockdown as a form of treatment of the infection since

all members of the I sector, also as a result of the lockdown measures and, more generally, of

social isolation, distancing and individual protection, reduce their ability to spread the pathogen.

In this case, to avoid confusion we will call T (Treated) the R (Recovered) variable of the SEIR

model.

We also will simplify the interactions between compartments by considering only the forward

ones S → E → I → T and we will consider the total number of individuals N = S + E + I + T

constant. In this context, N represents a sample of individuals, with homogeneous distribution,

susceptible to infection in an environment with constant transfer coefficients between compart-

ments.

The transfers between compartments in this case are:

αSE
I

N
= S → E

αEI = E → I

αIT = S → T

(5)

We note that:

• The transfer S → E is proportional to the product of the ratio of infected individuals (I/N)

by the daily contact coefficient αSE of the individuals in S.

• The coefficient αEI represents the daily passage of individuals from E to I. The value 1/αEI
is basically related to the incubation time of the infection.

• the value αIT basically represents the speed of ’treatment’ of the individuals in the com-

partment I, so that they can no longer transmit the pathogen, with consequent transfer to

compartment T .

Recalling that, in this context, we considerN constant over time, we have that Ṡ+Ė+İ+Ṫ = 0,

and the system of differential equations results:
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Ė = αSE
I

N
S − αEIE

İ = αEIE − αIT I

Ṫ = αIT I

Ṡ = −αSE
I

N
S

(6)

Where the total number of individuals is N = S +E + I + T and the variables are ordered so

that the first two are the ’infectious variables’ (E, I).

To study the stability we will consider Ė and İ and wh have:
Ė = αSE

I

N
S − αEIE

İ = αEIE − αIT I
(7)

in eq.(7) αSE(I/N)S it is the only element that contributes to the increase of I.

Considering the separation of variables in two groups ’infective’ and ’transfer’ (see eq. 3), the

eq. (7) in vector terms can be written as:Ė
İ

 =

αSE I

N
S

0

−
 αEIE

−αEIE + αIT I

 (8)

A trivial solution of equilibrium DFE is had for S0 = N which corresponds to the initial

vector:

X0 =


E0

I0
S0

T0

 =


0

0

N

0

 (9)

The Jacobian matrices (see eq. 4) near the equilibrium condition X0 (S = N) for the infectious

variables E and I are therefore:

F =

0 αSE

0 0

 (10)

V =

 αEI 0

−αEI αIT

 (11)

V −1 =
1

(αEIαIT )

αIT 0

αEI αEI

 =


1

αEI
0

1

αIT

1

αIT

 (12)

FV −1 =

αSEαIT

αSE
αIT

0 0

 (13)
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The eigenvalues of the next generation matrix FV −1 are:

λ1 = 0

λ2 =
αSE
αIT

= R0

(14)

The greater eigenvalue (spectral radius) λ2 represents the ’basic reproduction number’ R0.

In this simplified representation it is easy to see that, once the equilibrium condition (DFE) is

disrupted, R0 > 1 implies that the daily contacts rate αSE in S compartment, that will produces

new infected, is greater than the number of infective individuals treated per day αIT . In this

case, on average, an infected individual produce more than one new infected during his infectious

period. As consequence the system moves away from equilibrium by extending the spread of the

pathogen.

On the other hand, if αSE < αIT (R0 < 1) then the number of new infected per day is less

than the neutralization rate and the infection will not spread further.
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4 Model results for Italy

The DFE equilibrium represented by the trivial solution (9) was disrupted (15) with an individual

’Exposed’ within a sample of N individuals. All S0 = N − 1 individuals are susceptibles to

infection.

N is equal to the total number of cases detected in Italy from 24 Feb to May 19th [1] :

N = 226699 individuals. 
E0

I0

S0

T0

 =


1

0

N-1

0

 (15)

In this context we consider the data [1] as detected values (Tdata) for the compartment T . In

order to smooth the effect of the variability of the number of cases between the various regions,

an initial disruption based on the percentage of cases detected should be carried out. As already

mentioned the results are indicative, then, for simplicity, the perturbation described by (15) is

used for all simulations.

In order do estimate the parameters for this model, an exponential growth rate must be

detected from the available data.

Because we are looking for a growth in terms of differences we can assume:

∆y = ek∆t − 1

k = log(∆y + 1)/∆t
(16)

where ∆y is the difference of cases detected in the period ∆t.

The first problem to be addressed, for the definition of the model, is the estimation of the

parameters αSE , αEI , αIT for the transfer rate of individuals between the compartments. The

following assumptions have been made:

• in the early phase the exponential growth can be approximated using an exponential curve.

To estimate the exponential rate k we used for ∆y (16) the difference from the total cases

detected at the day corresponding to the maximum daily difference during the early growth

and the cases detected at the first day (see fig. 1a);

• the αSE rate is is assumed to be αSE = kekδ corresponding to the derivative of ∆y (16)

and using δ = 1 day.

• the parameter αEI is the reciprocal of the incubation time τ which will be the only tuning

parameter of the model: αEI = 1/τ .

• the parameter αIT is assumed to be directly proportional to the exponential growth per

unit of time and inversely proportional to the incubation period τ , then αIT = kδ/τ .
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With the above assumptions, and recalling that δ = 1 day, the following relationships have

been identified: 

αSE = kekδ

αEI =
1

τ

αIT =
kδ

τ

(17)

In this context, for R0 we can write (ref. 14 and 17):

R0 =
αSE
αIT

=
τekδ

δ
(where : δ = 1 day) (18)

From the available data it was easy to derive k (ref. Eq. 16). The only ’tuning’ parameter

is τ which has been modified on the basis of a qualitative approximation of the model to the

data. Based on these parameters and relationships (17), the simplified SEIT model described

above has been set up. The time evolution of the Treated compartment (Tmodel) of the model has

been then compared with the values Tdata available for COVID-19 Italia (ref. [1]) finding a good

representation with a value of the tuning parameter τ = 6days (see tab. 1 and fig. 1).

The model and the data were ’synchronized’ on their normalized values at the value used to

calculate the growth rate k, obtaining an indicative estimate of the day t0 in which the diffusion

began and of the two peak values for E and for I (see fig. 2).

The graphs in fig. 3 show the trend of the variation over time of the cases detected and of the

compartment T (fig. 3a) and the difference between the model and the cases detected (fig. 3b).
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Table 1: Parameters used and results for Italy.

The average incubation period that best fit the data is: τ = 7.5 days.

The daily detected data cover a period from Feb 24th to May 19th 2020.

Parameter Value Unit

τ 7.5 days

k 0.4186 day−1

αSE 0.6363 day−1

αEI 0.1333 day−1

αIT 0.0558 day−1

Sample (detected cases) N 226699 Individuals

First case estimated at t0 2020-jan-09

max(E) 74387 individuals

tmax(E) 2020-mar-17

max(I) 101594 individuals

tmax(I) 2020-mar-26

R0 = αSE/αIT 11.4

(a) Exponential function (in red) and data. (b) Data and model

Figure 1: (a) Exponential function (red) used to approximate the data in the initial phase and daily

variations of Tdata (blue). (b) Response of the model to the perturbation eq. (15) near the

DFE. The ordinate scales indicate in (a) the ratio with respect to the maximum values and in

(b) the ratio on the total cases N of the number of individuals in the compartments E, I, S, T .

In gray (Tdata) are plotted the values of the COVID-19 cases detected in Italy until may 19th

2020: [1]).

10 of 20

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.06.02.20119883doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20119883
http://creativecommons.org/licenses/by/4.0/


Preprint - Rev.3 R. Simeone - September 2020

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 2: (a) The curves of model (T ) and data (Tdata) have been synchronized to the point where k is

calculated (the grey point). The ordinate scale is the ratio on the total number of cases N . (b)

Detail of time evolution of E and I curves. The ordinate scale is the the number of individuals

in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 3: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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5 The simplified model applied to some regions of Italy

Table 2 summarize the application of the simplified model to some italian regions, the graphic

details are in the dedicated sections.

Table 2: Parameters and results of the model applied to some regions of Italy.

The results are qualitative and must not be understood as valid in absolute terms. The N values

are the cumulative COVID-19 cases detected from Feb 24th to May 19th in [1]. In this table t0
represents the date of the first case estimated by the model synchronized with the data detected

at the value used to estimate the exponential growth rate.

Region τ κ αSE αEI αIT N t0 Max(E) tE Max(I) tI R0

Italia 7.5 0.4186 0.6363 0.1333 0.0558 226699 2020-01-09 74387 2020-03-17 101594 2020-03-26 11.4

Lombardia 8.0 0.3900 0.576 0.1250 0.0488 85481 2020-01-05 27852 2020-03-13 39556 2020-03-23 11.8

Piemonte 6.5 0.3109 0.4242 0.1538 0.0478 29727 2020-01-13 7365 2020-03-23 13647 2020-04-02 8.9

Lazio 4.0 0.2765 0.3647 0.2500 0.0691 7505 2020-01-23 1146 2020-03-23 2820 2020-04-01 5.3

Campania 4.0 0.3084 0.4199 0.2500 0.0771 4707 2020-01-30 789 2020-03-22 1753 2020-03-30 5.4

Calabria 3.0 0.2565 0.3315 0.3333 0.0855 1153 2020-02-03 120 2020-03-24 353 2020-03-31 3.9

Sicilia 4.0 0.2353 0.2977 0.2500 0.0588 3403 2020-01-16 452 2020-03-19 1294 2020-03-29 5.1

Sardegna 4.0 0.3330 0.4646 0.2500 0.0832 1354 2020-02-08 242 2020-03-21 500 2020-03-28 5.6
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5.1 Lombardia

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 4: (a) The curve T of the model and Tdata data has been synchronized at the point where the

growth rate has been estimated. The ordinate scale is the ratio on the total number of cases

N . (b) Detail of time evolution of E and I curves. The ordinate scale is the the number of

individuals in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 5: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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5.2 Piemonte

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 6: (a) The curve T of the model and Tdata data has been synchronized at the point where the

growth rate has been estimated. The ordinate scale is the ratio on the total number of cases

N . (b) Detail of time evolution of E and I curves. The ordinate scale is the the number of

individuals in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 7: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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5.3 Lazio

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 8: (a) The curve T of the model and Tdata data has been synchronized at the point where the

growth rate has been estimated.The ordinate scale is the ratio on the total number of cases

N . (b) Detail of time evolution of E and I curves. The ordinate scale is the the number of

individuals in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 9: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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5.4 Campania

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 10: (a) The curve T of the model and Tdata data has been synchronized at the point where the

growth rate has been estimated. The ordinate scale is the ratio on the total number of cases

N . (b) Detail of time evolution of E and I curves. The ordinate scale is the the number of

individuals in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 11: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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5.5 Calabria

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 12: (a) The curve T of the model and Tdata data has been synchronized at the point where the

growth rate has been estimated. The ordinate scale is the ratio on the total number of cases

N . (b) Detail of time evolution of E and I curves. The ordinate scale is the the number of

individuals in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 13: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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5.6 Sicilia

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 14: (a) The curve T of the model and Tdata data has been synchronized at the point where the

growth rate has been estimated. The ordinate scale is the ratio on the total number of cases

N . (b) Detail of time evolution of E and I curves. The ordinate scale is the the number of

individuals in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 15: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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5.7 Sardegna

(a) Data and model synchronized. (b) E, I evolution and model parameters

Figure 16: (a) The curve T of the model and Tdata data has been synchronized at the point where the

growth rate has been estimated. The ordinate scale is the ratio on the total number of cases

N . (b) Detail of time evolution of E and I curves. The ordinate scale is the the number of

individuals in the compartments E, I.

(a) Daily variations (b) Differences between data and model

Figure 17: (a) Daily variation of Tdata and of the T model (red).

(b) Differences between Tdata and the model T .
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