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Abstract: COVID-19 epidemic has been suppressed in Hungary due to timely non-pharmaceutical
interventions, prompting a huge reduction in the number of contacts and transmission of the virus.
This strategy was effective in preventing epidemic growth and reducing the incidence of COVID-19 to
low levels. In this report, we present the first epidemiological and statistical analysis of the early phase
of the COVID-19 outbreak in Hungary. Then, we establish an age-structured compartmental model
to explore alternative post-lockdown scenarios. We incorporate various factors, such as age-specific
measures, seasonal effects, and spatial heterogeneity to project the possible peak size and disease
burden of a COVID-19 epidemic wave after the current measures are relaxed.
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1. Introduction

A cluster of pneumonia cases of unknown origin was detected in Wuhan city, the capital of
Hubei Province, China, with a population of 11 million in December 2019. On December 31, 2019
China alerted the World Health Organization (WHO) China Country Office [1]. Epidemiological
investigation to find common exposure implicated that many early cases of pneumonia of unknown
aetiology were associated with the Huanan Seafood Wholesale Market that was subsequently closed
for environmental sanitation and disinfection. As part of the epidemiological investigation, active case
finding was initiated [2,3]. On January 7, 2020 the causative pathogen of the pneumonia outbreak was
identified as a novel coronavirus (named SARS CoV-2), and on January 12, China shared the genetic
sequence with the public.

It is well known, that some coronaviruses are circulating in animals and others in humans. It was
recognized that SARS-CoV-2 apparently succeeded last year in making its transition from animals to
humans in China. Similar successful mutations in coronavirus have already happened several times
in the 21st century. So far, we have seen two other major highly pathogenic zoonotic outbreaks of
coronaviruses. The first was Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) in 2002
that infected over 8,000 people within a short time period and had a case fatality rate (CFR) close to
10% [4]. The second, Middle Eastern Respiratory Syndrome (MERS) Coronavirus in 2012, was more
difficult to transmit, but had a substantially higher CFR over 30% [5].

COVID-19 is less fatal than any of these predecessors, but, on the other hand, this new coronavirus
has a great potential for transmission. When the first devastating outbreak in Wuhan happened, the
world watched the unprecedented scale of quarantine restrictions in China. However, as more and
more cases were identified outside China, it was clear that it is not feasible to suppress the epidemic at
the source, so countries started to strengthen their surveillance to be able to quickly identify potential
cases. In this early phase, case definitions, protocols for diagnosis and treatment, management of close
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contacts were being developed, and effort was made to increase alert to ascertain cases and determine
if it was of imported origin or resulted from a within country transmission.

Coronaviruses affect mainly the respiratory tract. Based on Chinese data, about 80% of
laboratory confirmed patients reported until February 20, 2020 had mild to moderate disease including
non-pneumonia and pneumonia cases. Mild symptoms are like the common cold, including sudden
onset feverishness, fatigue, runny nose and cough. 13.8% of cases were severe and 6.1% were critical
(defined as respiratory failure requiring mechanical ventilation, shock or other organ failure that
requires intensive care). The WHO-China Joint Mission reports that 75% of initially asymptomatic
cases progressed to clinical disease in China, hence, true asymptomatic infection was estimated to be
rare (1–3%) [6]. Severe illness and death were more likely to affect people aged over 60 years or those
with underlying conditions. Disease in children appeared to be relatively rare and mild [3].

The first three cases in Europe, with a recent stay in Wuhan, were confirmed on January 24, 2020
in France (where, later in April, COVID-19 was retrospectively confirmed for a patient hospitalised in
late December 2019) [7,8]. Within a few days, two Chinese tourists were confirmed with COVID-19 in
Italy on January 31.

The first epidemic in Europe started in the Lombardy region of Italy with the first detection
on February 20, 2020. During the last week of the same month, the number of cases increased
rapidly within a few days, half of which required hospitalisation. The rapid intensification of regional
surveillance, by tracing and testing all known patients’ contacts, revealed that the epidemic had already
spread in the southern part of the region and found the earliest transmission in January 2020 [9]. On
March 8, the Italian government introduced containment measures in Lombardy and neighbouring
provinces, then, on March 11, in the whole country.

Those measures were successful in preventing the rise of the epidemic in central and southern
Italy, while in the northern regions (Lombardy, Emilia-Romagna and Veneto) the epidemic had already
reached high levels by mid-March [10].

The WHO Director-General declared the COVID-19 outbreak a Public Health Emergency of
International Concern under International Health Regulations (2005) on January 30, 2020 [11] and
then, a pandemic on March 11, 2020 [12]. By that time more than 118,000 cases were detected in 114
countries and 4,291 people died in COVID-19.

Globally, it took about 3 months to reach 1 million confirmed cases, but then, the cumulative
incidence doubled just in two weeks and by April 28, the reported number of COVID-19 cases reached
3 million. According to the WHO, by May 10, 2020, there were over 4 million confirmed cases of
COVID-19 and over 278,000 fatalities worldwide. Both Europe and the Americas had over 1.7 million
cases and over 150,000 and 100,000 fatalities, respectively [1,13].

From March 2020, most European states implemented strict physical distancing measures
such as school and workplace closures, cancellation of public events, restrictions of gatherings,
and stay-at-home requirements as a response to the pandemic, aiming to reduce transmission of
SARS-CoV-2. These measures reflect an extraordinary effort to suppress, or at least to slow down
COVID-19, and they proved to be effective.

By May 2020, some European countries show signs of improvement as their number of the
daily new cases has begun to decline: in Italy from the end of March, in Austria from the second
week of April, and in mid May, similar decline can be observed in the UK, France, and Spain. As
a consequence of reducing the transmission of SARS-COV-2, from the second half of April several
countries (e.g. Austria, Denmark, and Germany) have started to gradually raise their mitigation
measures by, for example, re-opening primary schools, restaurants, and shops.

Mathematical models have been developed to better understand the global spread [14] and
the transmission dynamics of COVID-19 for many countries, including Australia [15], France [16],
Germany [17], UK [18], USA [19]. Such models have been used to project the evolution of the outbreak
and to estimate the impact of control measures on reducing disease burden. Here, we provide the first
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Figure 1. Epidemic curve of confirmed COVID-19 cases in Hungary by date of confirmation (reported
until May 10, 2020)

epidemiological and statistical analysis of the early phase of the COVID-19 outbreak in Hungary, then,
we employ an age stratified compartmental model to explore possible future scenarios.

2. Methods

2.1. Epidemiological report

During the last week of January 2020, the National Public Health Center (hereinafter NPHC)
issued the surveillance protocol of COVID-19 cases that included the case definitions of COVID-19
cases. Till mid May the protocol was updated four times as the relevant WHO and/or ECDC
guidance was revised. According to the Hungarian protocol, suspected cases were to be reported by
physicians to the local health authority and NPHC, followed by compulsory testing, 14-day isolation
and monitoring, case investigation, and contact tracing. A person with laboratory confirmation
(detection of SARS-CoV-2 by polymerase chain reaction), irrespective of clinical signs and symptoms,
was considered a confirmed COVID-19 case.

The first confirmed COVID-19 cases were reported during the first week of March 2020 through
the Hungarian Notifiable Disease Surveillance System operated by NPHC. The first case, a foreign
university student studying and residing in Hungary, was reported on March 4, 2020. By May 10,
2020, the cumulative number of reported confirmed COVID-19 cases were 3284 (33.1 cases per 100,000
population), including 421 deaths (crude CFR 12.8%), see Figure 1 for the daily reported numbers. Out
of the 3284 cases, 47.0 % (1542 cases) occurred in the 65+ age group, 29.1% (957 cases) in the 20–49 age
group, 21.9% (718 cases) in the 50-64 age group and 2.0% (67 cases) among people under 20-year. Age
specific morbidity was highest in the 80+ age group (163.3 cases per 100000 population) and more than
twice of the overall in the 70–79 age group (69.5 cases per 100,000 population).
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Figure 2. Crude case fatality rate of confirmed COVID-19 cases in Hungary by age groups (reported
until May 10)

Out of 421 deaths, 89.1% (375 deaths) belonged to the 65+ age group. The highest crude CFR was
observed in the 80+ age group (28.6%), followed by the 70–79 age group (22.4%) and the 65–69 age
group (17.3%). No deaths were reported under 33 years of age.

Out of the 3284 cases, 58.0% (1906 cases) were female and 41.9% (1376 cases) male (gender not
reported for two cases). The morbidity among women was higher (37.1 vs. 28.8 cases per 100,000
population), so men were 0.8 (95% CI 0.72–0.83) less likely to become ill. However, men aged 33 years
and older had a 1.2 (95% CI 0.96–1.41) higher risk to die than women aged 33 years and older (7.1
cases vs. 6.0 cases per 100,000 population). Out of 3284 cases, at the stage of data consolidation as of
May 10, 2020, we have information about the symptoms of 63.2% (2076 cases). Out of 2076 cases, 29.5%
(613 cases) had no symptoms, 52.3% (1086 cases) had mild symptoms, 18.2% (377 cases) had severe
disease (including 149 cases required intensive care and/or ventilation).

Most of the cases were reported from the central part of Hungary, from the capital (1587 cases),
Pest county (438 cases) and Fejér county (333 cases). The morbidity (per 100,000 population) was the
highest in Budapest (94.7), followed by Fejér county (80.1) in central Hungary and Zala county (60.8)
in western Hungary.

Between March 4 and April 8, there was a slow increasing trend in the daily reported number
of new cases (varying between 1 and 85 cases) peaked on April 9 (209 cases). After a period from
April 10 till April 22 with fluctuating number of daily reported new cases (between 47 and 120 cases),
starting from April 23 the number of daily new cases decreased from 100 to 21 cases per day. The
14-day cumulative number of new cases steadily increased until its peak on April 22 (13.1 per 100,000
population) before it started to decrease and was just over 10.0 cases per 100,000 population between
April 11 and May 3, 2020.

The epidemic curve reflects a propagated source epidemic especially when we consider only
those cases that cannot be connected to outbreaks in closed communities (like long-term care facilities
or hospitals) or to health care associated infections. Out of 3284 cases, 31.4% (1031 cases) were
associated with health care and/or outbreaks in hospitals, contributing to the daily reported new
cases since mid-March. Health care workers had 10.0 times (95% CI 9.02–10.99) higher risk to become
a confirmed COVID-19 case in comparison to the general population (288.8 cases vs. 29.0 cases per
100,000 population). Out of 3284 cases, 27.8% (913 cases) were reported from long-term care facilities
(nursing homes and other closed communities like homeless shelters) contributing to the daily reported
new cases since early April. At the peak of the epidemic curve, 62.2% (130 cases) of cases on April 9
were reported from the same retirement and assisted living facility.

2.2. Statistical analysis

Statistical analysis of the available surveillance data – such as case counts and death counts – is
an indispensable tool during outbreak response. It can reveal the current situation objectively, shed
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light on the effect of past interventions, uncover non-obvious aspects of the outbreak and produce
forecasts. It can also provide important input information to disease dynamics models.

This section summarizes the statistical analyses carried out during the early phase of the
COVID-19 outbreak in Hungary, pointing out the most important tasks and results.

All methods were implemented under the R statistical environment version 4.0.0 [20] using
packages ggplot2 version 3.3.0 [21] for visualization, data.table version 1.12.8 [22] for data
manipulation and shiny version 1.4.0.2 [23] for creating an interactive dashboard to carry out
epidemiological analyses online (available in Hungarian [24]).

The full source code of of this dashboard and every analysis presented in this section is available
at [25].

2.2.1. Temporal variation of the effective reproduction number

Effective reproduction number (Rt), the average number of secondary cases per primary case for
those primary cases who turn infectious on day t, was tracked real-time based on the daily number of
reported new cases using the methods of Cori et al. [26] and that of Wallinga and Teunis [27], inter alia.
In brief, the method of Cori et al. is based on calculating the ratio of the actual number of infections
on a day to the total infectiousness of all past cases on that day. Thus, it measures Rt by assuming
that infected individuals will infect in the future as if conditions remain unchanged. The method of
Wallinga and Teunis uses a likelihood-based inference on the possible infection networks underlying
the epidemic curve.

The fundamental difference is that method of Cori et al. solely uses past information (“backward
looking approach”), the reason for the result being sometimes called instantaneous reproduction
number, while the Wallinga–Teunis method more closely corresponds to the concept of the usual
definition of effective reproduction number, however, it requires future information in exchange
(“forward looking approach”). For a discussion on the relative merits of these two approaches
see [28,29].

Figure 3. shows the results. The reproduction number showed a steady decline – apart from an
outlying effect in early April – and became close to, or even below 1 by mid-April, and remained at
that level since then. This conclusion is robust to the chosen methodology.
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Figure 3. Real-time estimation of the reproduction number during the early phase of the COVID-19
outbreak in Hungary using two different methods (shaded area depicts 95% confidence interval).
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Both methods require – in addition to incidence data – information on the serial interval.
Depending on the used dataset, different estimations of the serial interval have been published:
a mean of 3.96 days was found in [30], and 6.6 days in [31]. Here we assume an intermediate value
following [32], where the mean and standard deviation (SD) of the serial interval were estimated at 4.7
days (95% CrI: 3.7, 6.0) and 2.9 days (95% CrI: 1.9, 4.9), respectively. (The serial interval is assumed
to follow gamma distribution.) They also concluded that the serial interval of COVID-19 is close to
or shorter than its median incubation period, which is coherent with our choice of parameters in the
transmission dynamics model.

The estimation was carried out using R packages R0 version 1.2-6 [33,34] and EpiEstim version
2.2-2 [26,35].

2.2.2. Adjusted case fatality ratio

Case fatality rate (CFR) is defined as the (conditional) probability of death from a disease for those
contracting the disease (for diseases where asymptomatic state also exists, infection fatality rate, IFR, is
defined analogously) and is estimated as the ratio of cumulative deaths and cumulative cases. This
definition, i.e.,

nCFRt =
∑t

i=1 di

∑t
i=1 ci

=
Dt

Ct
,

where ct and dt are the daily, Ct and Dt are cumulative number of cases and deaths, respectively, on
day t is however biased when used during the epidemic (thus the name naive CFR or nCFR). The
reason for this is that a proportion of cases counted in the denominator will die (in the future), thus
they should have been counted in the numerator as well, but as they’re not, the ratio underestimates
the true value [36,37].

Fortunately, it is relatively easy to correct for this bias using information on the distribution of the
diagnosis-to-death time [38,39]. Denoting by fi the (conditional) probability that death happens on
day i after the onset for those who die, the likelihood that the cumulative number of deaths on day t is
Dt is (

∑t
i=1 ∑i−1

j=0 ci−j f j

Dt

)
πDt (1− π)∑t

i=1 ∑i−1
j=0 ci−j f j−Dt ,

where π denotes the true value of the CFR. This observation allows both maximum likelihood and
Bayesian estimation for π using the observed series of ci and di, the latter of which was employed in
the present study, using a Beta(1,1) (i.e., uniform) prior. It was assumed that diagnosis-to-death time
follows lognormal distribution with a mean of 13 days and a standard deviation of 12.7 days, as found
by Linton et al. [40].

Results are shown on Figure 4. Note that – as the outbreak is coming to its end – the naive method
converges to the final value that was readily well estimated almost a month earlier by the corrected
technique. This case fatality rate is about 16%.

The Bayesian estimation was manually coded using the R package rstan version 2.19.3 [41].
Markov chain Monte Carlo approach was used to carry out the estimation with No-U-Turn sampler,
using 4 chains, 1000 warmup iterations and 2000 iterations for each chain.

2.2.3. Estimation of ascertainment rate

The 16% case fatality rate mentioned in the previous subsection is still not the true value, as there
is another source of bias, but this time leading to overestimation: the underdetection of cases. This is
a substantial issue now as a – precisely not yet known, but epidemiologically significant – fraction
of the COVID-19 cases are asymptomatic or mild symptomatic. Since in many countries testing was
extended to contacts (and in a few instances, even random sampling was carried out), the confirmed
cases include some asymptomatic cases as well.
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Figure 4. Real-time estimation of case fatality rate during the early phase of the COVID-19 outbreak in
Hungary (shaded area depicts 95% confidence interval).

However, the value of the estimated (corrected) infection fatality rate can also be used to estimate
the ascertainment rate: by assuming that the IFR in reality takes a benchmark value (one derived from
large-sample, well-designed studies accounting for underdetection or sero-epidemiological surveys)
and – crucially – assuming that the difference of the actual estimated IFR from that value is purely due
to underdetection, the ascertainment rate can be obtained by simply dividing the assumed true value
of the IFR with the actual estimated CFR [42]. Note that this might be a strong assumption, as it rules
out that there is a real difference in the country’s IFR from the benchmark value, in particular, it rules
out different virulence of the pathogen, different age- and comorbidity-composition in the country and
different effect of the healthcare system on survival.

Various IFR estimations have been published, for example 0.66% for China [43], 0.9% for UK [18].
Recent serological studies found IFR values spanning from 0.36% in a German town [44], to 1.19% in
Milan [45]. Here we explore a reasonable range of IFRs from 0.3% to 1.2%, and the results are shown in
Table 1. Note that earlier estimates based on [43] and [18] are consistent with the preliminary results of
a large-scale Hungarian sero-epidemiological study [46].

Table 1. Underdetection (ratio of all infections to reported cases) and corrected number of
cumulative cases based on the estimated underdetection.

IFR 0.3% 0.6% 0.9% 1.2%

Underdetection (true/reported) 54.0 27.0 18.0 13.5

Corrected cumulative number of infections by May 10 177,242 88,621 59,081 44,310

2.3. Description of the transmission model

We establish a compartmental population model, adjusted to the specific characteristics of
COVID-19. Several studies [15–17,19,47] have proposed similar models for the transmission dynamics
of COVID-19. We consider the following compartments. We denote by S the susceptibles, i.e. those
who can be infected by the disease. Latent (L) are those who have already contracted the disease
but do not show symptoms and are not infectious yet. In accordance with studies indicating that
viral shedding peaks before the onset of symptoms [48], in our model, we have introduced the
presymptomatic infected compartment Ip for those who do not have symptoms, but who already are
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capable to transmit the disease to susceptibles. We divided the latent period into two compartments
L1 and L2, thus together with Ip, the incubation period follows a hypoexponential distribution, having
a shape matching empirical observations [49]. Since a large fraction of infected show only mild
or no symptoms, after the incubation period, we differentiate these individuals from those with
symptoms. We assume a gamma-distributed infectious period with Erlang parameter m = 3, following
[50], hence, we have three classes for both asymptomatic and symptomatic infectious individuals
(Ia,1, Ia,2, Ia,3 and Is,1, Is,2, Is,3, respectively). Individuals from the Ia,3 compartment will all recover and
hence proceed to the recovered class R. Immunity is assumed for those who have recovered from the
disease, at least for the time scale of this modelling. Individuals from Is,3 may either recover without
requiring hospital treatment (and thus move to R) or become hospitalized. It is of crucial importance
to project the number of hospital beds and ICU beds needed, thus in the model we further differentiate
symptomatically infected individuals who need hospital care and critical care, denoted by Ih and Ic,
respectively. We operate with the assumption that the healthcare system will not be overwhelmed,
and thus disease-induced death is only considered from critical care, hence, individuals from Ih will
proceed to R after recovery. Those from Ic with fatal outcome transit to the D compartment. Those
who are out of ICU and on the path to recovery are collected into the Icr, from where they eventually
recover and move to the R class.

To take into account the different characteristics of the disease in various age groups, we stratified
the Hungarian population into seven groups, corresponding to the eligible age groups in the Hungarian
online questionnaire for the assessment of changes in the number of contacts following the lockdown
[51]. The compartments listed above corresponding to the different age groups are denoted by an
upper index i ∈ 1, . . . , 7. Accordingly, all of our parameters can be calibrated age-specifically.

The transmission rates from age group k to age group i are denoted by β
(k,i)
j , with j ∈ {p, a, s},

where the three subscripts p, a, s stand for presymptomatic, asymptomatic, and symptomatic infected,
respectively. The parameters described in the following all have an upper index i which stands
for the corresponding age group. A fraction pi of exposed people will not show symptoms during
his/her infection, while (1 − pi) will develop symptoms. The average length of the incubation
period is (αi

L,1)
−1 + (αi

L,2)
−1 + (αi

p)
−1 days, with the transition rates αi

L,1, αi
L,2, αi

p, respectively.
Similarly, the average infectious period of asymptomatic and symptomatic infected individuals are
(γi

a,1)
−1 + (γi

a,2)
−1 + (γi

a,3)
−1, and (γi

s,1)
−1 + (γi

s,2)
−1 + (γi

s,3)
−1, with the corresponding transition

rates, respectively. A fraction hi of the infectious compartment Ii
s,3 will be hospitalized, the remaining

fraction 1− hi will recover without hospital care. Out of those who need hospitalization, a fraction ξ i

need intensive care. For the hospitalized classes Ii
h, Ii

c, Ii
cr, the average time spent in these compartments

is given as (γi
h)
−1, (γi

c)
−1 and (γi

cr)
−1, respectively. A fraction µi of those leaving the Ii

c compartment
will die due to the disease, while the remaining fraction will proceed to the Ii

cr class.
The transmission dynamics of our model for one age group is illustrated in Figure 5, while

the governing system of differential equations (A1) of our model can be found in Appendix A. The
model parameters with references are detailed in Appendix B. A further important component of our
model is the contact matrix, describing social mixing between the age groups, which can be found in
Appendix C. The elements of the contact matrix are included via the different transmission terms β

(k,i)
j .

Reproduction numbers are calculated using the next generation matrix method in Appendix D.

2.4. Post-lockdown scenarios

2.4.1. The worst case scenario and theR ≈ 1 scenario

Most studies concerning the early growth-rate of the epidemic in Wuhan estimated the value of
the basic reproduction number to be around 2.0–3.0 (see e.g. [49,52]), also later studies regarding the
spread in other countries [18,19] used similar values. Our estimations given in Section 2.2 shows that in
Hungary the highest value of the time-varying reproduction number was 2.2, by the Wallinga–Teunis
method. Hence, we choose R = 2.2 for the baseline reproduction number. Modelling studies
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Figure 5. Transmission diagram

[15,16,18,19] highlighted that the worst case, i.e. “do nothing” scenarios lead to an outbreak when
the healthcare demand hugely exceeds the capacities at the peak, and the overall mortality can be
devastating. Given the current level of preparedness, we do not consider a “do nothing” scenario, and
our most pessimistic case assumes that even in the absence of any control measures, a 25% reduction
in transmission is realized due to population awareness and behaviour.

On the other hand, the best case is the continuation of the current suppression scenario with
R ≈ 1, resulting in very small case numbers. However, it is questionable whether it can be sustained
until a vaccine is developed and deployed. Below we consider three scenarios illustrating the loss of
control for suppressing the outbreak, and assuming a wide community spread of the disease. The
efficacy of the mitigation efforts is expressed by a percentage in the reduction of transmission. The
primary tool for this is the decrease of contact numbers, but other preventive measures such as hand
hygiene or mask wearing may also have an effect in the reduction of transmission.

2.4.2. Weak control: 25% reduction of transmission

Here we consider a weak control of the epidemic assuming there is no centralized control measure
introduced, but the number of transmissions is reduced by 25% following a level of behavioural
response due to social awareness. Such a reduction decreases the reproduction number toR = 1.65.
The first column of Figure 6 shows the hospitalization and ICU demand on the top row and the daily
incidences on the bottom row as a function of time with the application of this weak control. According
to the simulations, in this case, there would be approximately 5.6 million infections with about 22,000
deaths by the end of the outbreak. This suggests that we can expect 57% of the population to gain
immunity against the virus and this number is slightly larger than the threshold of herd immunity. At
the peak, more than 600,000 people would be infected and there would be a need for more than 7,000
ICU beds and for 21,200 hospital beds at the same time. In this case we would reach the peak in 13
weeks after reopening with such a weak measure. We remark that there is a 20-days window when the
daily incidences exceed 100,000, and during this period more than 2.25 million people get infected. In
other words, 40% of all the infections occur during these three weeks. For further details see Table 2.

2.4.3. Moderate control: 40% reduction of transmission

We perform similar simulations for the case of a moderate control, assuming that the reproduction
number is decreased toR = 1.32 as a result of the control measures. The simulations (third column
of Figure 6) show that the number of hospital beds and ICU beds needed is significantly reduced to
7,600 and 2,500 at the peak, respectively. Meanwhile, the daily incidence at the peak is around 40,000.
We expect almost 36% percent of the population to be infected throughout the epidemic and gain
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Transmission
reduction

Reproduction
number

Hospital bed
need at peak

ICU need
at peak

Time to reach
1000 ICU beds

Mortality
(pers.)

Recovered
(of tot. pop.)

25% 1.65 21,200 7,330 7 weeks 22,200 57%
40% 1.32 7,600 2,500 12 weeks 12,700 36.5%
50% 1.1 1,100 350 - 4,500 14%
60% 0.9 - - - - -

Table 2. Indicative values of the epidemics in case of the applied control measures
Hospital and ICU bed need at the peak, mortality and the number of recovered people with the expected
time it takes to reach 1000 ICU beds is shown in case our control scenarios. See the corresponding time
series on Figure 6.

immunity upon recovery. This is less than required to reach herd immunity. For further information
we refer to Table 2.
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Figure 6. Hospitalization, ICU demand and incidence curves
The figures show the required number of hospital beds (classes Ih + Icr, yellow) and ICU beds (class
Ic, red) need in the first row forR ∈ {1.65, 1.32, 1.1} respectively. The second row illustrates the daily
incidence (transition from compartment S to L1 in our model, orange) combining all age groups. Note
that the incidence curves peak earlier than the hospitalization curves. The legend at the bottom applies
for all figures. Note that the scalings of the figures are different.

2.4.4. Strong control: 50% reduction of transmission

In this section, we consider a stronger control achieving a 50% reduction of transmission. This
results a decrease of the reproduction number toR = 1.1. The outcome of this strong control is shown
in the third column of Figure 6. A control of such strength significantly reduces the number of all
infected and hospitalized cases and of those needing intensive care treatment. The number of required
intensive care beds (around 350) is far below the available capacity even at the peak of the epidemic
and also the number of hospital beds needed is reduced to a rather low level – around 1100 at the
peak. The total number of fatalities in this scenario is about 4500. Meanwhile the epidemic would last
for more than a year and the cumulative number of all infected remain far below the level of herd
immunity threshold, so we can expect further outbreaks when the measures are relaxed.
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2.5. Age-specific issues

Several key parameters of the model are highly dependent on age. Intervention strategies and
the relaxation of various measures have to take into account the fact that different age groups have
different risks and different roles in the transmission.

Although the number of children infected with COVID-19 has been reported worldwide relatively
small in comparison with other age groups [53], some evidence shows that children and adolescents
may become infected and spread the disease as other age groups [54]. Moreover, children and
adolescents usually have a high number of contacts. Thus, school closures can be expected to be an
efficient tool to reduce the contacts and transmissions. Besides school closures, it is important for
younger individuals to avoid meeting older and other high risk people.

Elderly people have a higher chance of developing symptoms, and a higher percentage of them
needs hospitalization and intensive care, hence these groups need more protection. Age-specific
interventions include avoiding contacts with elderly by providing special time slots for shopping, in
post offices etc., or closing/reopening schools.

Introduction of various age groups in our model enables us to study such age-specific
interventions and analyse their direct and indirect effects on all groups. On the stacked diagrams of
Figure 7 we present the contributions of the age groups to the mortality and the number of recovered
individuals. Columns of this figure show the effect of the weak, moderate and strong control that we
previously discussed in details in Section 2.4 and Table 2. Here we would like to emphasise that in
case of each control measure the most vulnerable age groups are the groups of elderly (60–69, 70–79,
80+) people as they suffer most of the fatalities, meanwhile they are predicted to produce only a small
fraction of the cases in the population.
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Figure 7. Age-specific mortality and recovery
The figure shows the effect of the weak, moderate and strong control (25%, 40% and 50% general contact
reduction respectively). Every age group covers at most one decade except the group of “middle aged”
that contains three decades. According to our model elderly people (60+) are predicted to produce
most of the fatality cases in each scenario. The legend on the bottom applies for all figures.
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2.5.1. School closures

School closure is taken into account by omitting the school component of the contact matrix and
halve the other contacts [55] of children and young adults (between age 0–29), which provides a new
global contact matrix for this intervention. We also incorporate the weak control (25% general decrease
in transmission, cf. Section 2.4.2) to this scenario.

Figure 8 shows that this measure decreases the hospital bed and ICU needs to approximately 50%
compared to the case when we only apply weak control. Moreover, closing schools postpones the peak
of the epidemic (by about one month in case of the above setting), suggesting that children may play a
significant role in transmission due to their large number of contacts, even though they give negligible
contribution to the overall mortality, cf. top row of Figure 7).

The effect of school closure combined with the 25% general reduction in transmission is
comparable with the effect of the moderate control (40% reduction in transmission, cf. Section 2.4.3)
regarding the hospital bed and ICU need, but not as significant as the moderate control in decreasing
the mortality (Figure 7 middle column). However, to achieve this, schools need to be closed for an
extended period of time, which may not be feasible. We also point out that a stand alone closure of
preschools and primary schools is not sustainable without a certain amount of home office of the
parents, but this opens up sociological and economical questions that we do not address here.
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Figure 8. Effect of school closure
Simulations suggest that school closures – if maintained for a long period – effectively decrease hospital
bed and ICU needs and significantly postpone the peak of the epidemic.

2.5.2. Elderly protection

The elderly being the most vulnerable group of the population, when it comes to relaxation
of measures introduced against the spread of COVID-19. Most countries handle these age groups
separately from the rest of the population, e.g. separate time slots for shopping continue to exist and
elderly are encouraged to keep the same level of social distancing. To include these effects in our
model, we manipulate the entries of the contact matrix involving older age groups separately from the
remaining parts.

Figure 9 illustrates that in addition to the weak control, if 50% and 100% reduction of the outside
household connections of elderly people is applied, then we can expect about 25% and 50% reduction
in the hospital, ICU bed needs and mortality. The epidemic curves only slightly shift to the right
suggesting that elderly people do not play important role in the transmission of the disease due to
their low number of contacts. 100% reduction of contacts outside the household is again not feasible,
as this would mean the complete isolation a large sub-population. We plotted this scenario only to
show the theoretical limits of this approach.
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Figure 9. Elderly protection
Figures show the effect of an additional contact reduction of elderly people in case of a weak control.
The figures suggest that the selective protection of elderly people can successfully reduce the peak ICU
need and the overall mortality, yet it has a theoretical limit.

2.6. Role of seasonality

In this section, we consider the impact of seasonal effects. Seasonality of respiratory viruses can
be attributed to a combination of factors, including the survival of the virus in different environmental
conditions, changes in contact patterns (such as school holidays), less time spent in closed spaces
where the highest number of transmissive contacts are made, and potentially seasonal changes in the
health conditions of the population as well. To express this behaviour, we define a time-dependent
parameter

ω(c, t) = 0.5 · c · cos
(

2πt
366

)
+ (1− 0.5 · c)

by which we scale the transmission rate β. Parameter c denotes the magnitude of the effect of
seasonality on the number of contacts. We investigate the epidemic curves in case of the weak,
moderate and strong control with seasonality parameter c ∈ {0, 0.1, 0.2, 0.3}. During the summer,
these values of c eventuate a 10%, 20%, and 30% further decrease in transmission as that is when
the seasonality curve attains its minimum. The case c = 0 means there are no seasonal effects at all,
while c = 0.3 is a strong seasonality similar to H1N1 [56]. See the top left image of Figure 10 for the
seasonality functions ω(c, t) corresponding to the different c values.

As we have seen in Section 2.4, decreasing the reproduction number decreases and postpones the
peak of the epidemic curves. Seasonality causes a similar delay in the peak of the epidemic due to
decreased transmission rates in the summer months. Counter-intuitively, it cannot be said in general
that stronger seasonality leads to a smaller peak (cf. bottom left image of Figure 10). The reason for this
is that the impact of seasonality is not only determined by the decrease in the transmission rate but
the temporal relation between the peak of the epidemic and the minimum of the seasonality function
is also an important factor. This phenomenon is well illustrated in Figure 10 where three scenarios
(weak, moderate and strong control) are presented along with the assumed seasonality functions for
the aforementioned values of c.

In the upper right image of Figure 10, corresponding to a weak control, one can observe that
increasing the effect of seasonality first decreases the peak, but after a certain value (c = 0.3 in our
example) the epidemic is so much suppressed in the summer months that the peak shifts to the right
and even slightly increases in winter months compared to the c = 0.2 scenario.

For the case of moderate control, shown in the lower left figure, this effect is much more significant.
Note that the peak of the epidemic (without seasonality) is so far from summer (the minimum of the
seasonality curves) that increasing the effect of seasonality results in a significantly higher peak. It
can be seen that strong seasonality eventuates a long “plateau” phase when the epidemic curve does
not increase in a period of 6 months. During this time, only a small fraction of the population goes
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through the infection and a massive number of susceptibles remain in the system, only to get infected
a few months later. This phenomenon is responsible for the increased peak of c = 0.3 compared to the
c = 0.2 case.

The lower right figure shows that the reduction of transmission during the warm months together
with a strong control can decrease the number of infected in such an extent that the peak, even if
arriving in the winter months, is significantly smaller.

A general observation is that seasonality is the most beneficial if the peak of the epidemic is close
to the summer months. Of course, this is highly dependent on the starting time of the outbreak.
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Figure 10. Top left figure shows the relatively transmissibility of the virus during the year. In the
other figures, the number of infected individuals is shown with R = 1.65,R = 1.32 and R = 1.1.
Purple denotes no seasonality (c = 0), blue curves correspond to weak seasonality (c = 0.1), turquoise
curves correspond to moderate seasonality (c = 0.2) and green curves correspond to strong seasonality
(c = 0.3).

2.7. Spatial heterogeneity

Hungary is a relatively small country, however, significant differences were observed between
regions in the reported case numbers. The capital, Budapest has 1,75 million inhabitants and further
1,23 million people live in its surrounding Pest county. Budapest and Pest county are highly connected
by commuters with connections to other regions as well. The high connectivity of the capital with
other countries contributed to the earlier appearance of the disease in Budapest, and most of the cases
were reported from this central region of the country.

To address the role of spatial heterogeneity in the evolution of the epidemic curve, in addition,
we considered a metapopulation model as well, where the population is distributed among patches,
representing geographic regions of the country. For the sake of simplicity, here we only present
results from a two-patch model, separating Budapest and Pest county (patch 1, population of approx.
3,000,000) from the remaining parts of the country (patch 2, population 6,800,000).

We assumed different transmission parameter β for each patch. Based on Hungarian mobility
data, we assumed 400,000 daily travels between the two patches in case of normal circumstances and
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investigated the effect of the lockdown of Budapest and the surrounding Pest county by decreasing
the number of daily travels to 10,000. We considered the contact matrix for both patches to be the same
as in the homogeneous model described in Appendix C. The biological and medical parameters are
assumed to be the same in each patch but the local reproduction number may differ, as well as the age
structure of the population. For obvious reasons, individuals in compartments Ii

h, Ii
c, Ii

cr and Di do not
travel. Let travelp,q denote the number of travels from patch p to patch q. To derive travel rates tpatch,q
for each age group i, we divide the number of travels with the population of the appropriate patch:

ti
patch,q =

travelip,q

Ni(t)
.

The left-hand side of Figure 11 illustrates that the two-patch model reproduces the uniform model
in case we use the sameR = 1.32 for both patches as well as for the uniform model and we assume
400,000 daily travels between the patches. The middle figure shows that the uniform model slightly
overestimates the size of the epidemic as the peak of the aggregated two-patch model is smaller than
that of the uniform model in case R = 1.32 remains the same and we reduce the daily travels to
10,000 corresponding to the separation of Budapest and Pest county from other regions. Although the
epidemic curves of the patches are shifted, the aggregated result shows that this setup does not provide
significantly different dynamics. Lastly, on the right-hand side of Figure 11, we further investigate
the scenario of 10,000 daily travels, and choose the local reproduction numbers of the patches to vary
aroundR = 1.32, namely, we takeRBudapest = 1.47 andRotherregions = 1.25. These values were selected
to reflect the higher population density of the capital, proportionally to the population in the two
patches. Due to the difference in the local reproduction numbers, we may observe an increased number
of cases in Budapest with an earlier peak and fewer infections in other regions.
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Figure 11. Epidemic curves of the regions: sum of the infective compartments
(Ip, Ia,1, Ia,2, Ia,3, Is,1, Is,2, Is,3). The first figure shows that the two-patch model reproduces the
uniform model for equal R and no travel reduction. The middle figure shows the uniform model
slightly overestimating the size of the epidemic for reduced travel rates and equalR. The last figure
shows an increased number of cases and earlier peak in Budapest, while less infections in other regions,
for differentR in the two patches and large travel reduction.

2.8. The impact of implemented measures since mid-March

The most important implemented measures are summarized in Table 3. To assess their impact,
we compared the reported case numbers adjusted by the ascertainment rate 1:17 to the simulated
outbreak curve with R = 2.2 (Figure 12 on the left, logarithmic scale). Here we assumed that the
ascertainment rate did not change in time, which may not be the case. One can see that the epidemic
was on theR = 2.2 trajectory, which could have been devastating if continues. The data shows a clear
deviation from this scenario early April, two weeks after strict social distancing started. The slope of
the epidemic curve further decreased mid-April, following the stay at home measures by two weeks.
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Table 3. Measures applied in Hungary with date of introduction

Date Measure Reported number of cases
at time of introduction

March 8 Banned visits to health care institutions and long-term care facilities 9

March 9 Suspension of Northern Italy flights 12

March 11 Emergency notification 16

March 12
University closures, no entry for non-Hungarian passengers
to Hungary from Italy, China, Korea and Iran 19

March 16 School closures 50

March 17 Shortened opening time of shops, ban on events 58

March 28 Stay at home measures 408

May 4
Partial lifting of stay at home measures and
opening of restaurants in the countryside
(except Pest county where from May 14)

3065

May 18
Lifting of stay at home measures and opening of shops
and outdoor areas of restaurants in Budapest 3556
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Figure 12. Left: the impact of control measures on the epidemic trajectory. Red dots are cumulative
numbers of reported cases, blue dots are corrected data by underascertainment rate, solid curve is
simulated cumulative numbers with R = 2.2 and the absence of measures. Right: Sensitivity of the
peak ICU demand to transmissibility and severity of COVID-19. Top right corner is similar to the worst
case scenario of [18]. The white dot is our most pessimistic scenario (weak control).

Overall, due to the compliance of Hungarian society with the social distancing measures, around
half million infections were averted by the end of April, compared to the "do nothing" scenario, which
could have reached 1-2 millions in May if further doublings would have been allowed.

2.9. Parameter uncertainty, sensitivity and other limitations

Our work has several limitations. Due to limited testing and the large number of asymptomatic
and mild cases, there was a huge uncertainty in the number of true cases, especially in the early weeks.
Now, with the help of [46] we will have a good estimate of the overall ascertainment rate over this
period, but it is still unclear how this rate evolved in time. The transmission model has the weaknesses
that all compartmental models have: we assume homogeneous population apart from the age structure.
We added some further heterogeneity in space (patch model) and time (seasonality). In our scenarios,
we assumed a constant reduction in transmission, while in reality the control measures and the
behaviour of the people were continuously changing. Hence, such scenarios can not be considered as
predictions, as we can not expect such unchanging circumstances for months. The role of children in
this pandemic is still not clear, in our modelling we assumed that they are equally susceptible, and
equally infectious once they develop symptoms, but we used an age-specific probability for developing
symptoms.
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The model has a large number of parameters, many of those have uncertainty. The most important
ones in regard to the burden on the healthcare system are hospitalization rates, probability of intensive
care need, mortality, all of those depending on age. We do not have too much data for this from
Hungary, hence we used parameters taken from the literature. A full sensitivity analysis is beyond
the scope of this study, but we present a sensitivity chart for a crucial output of an outbreak, which is
of concern in many countries: the peak ICU demand, including the need for mechanical ventilators,
to assure that all patients receive the necessary care, and mortality will not skyrocket because of the
overwhelmed healthcare system. This was one of the key questions in other modelling studies.

For an uncontrolled epidemic in the UK, [18] estimated a peak in ICU bed demand more than
30 times greater than the maximum capacity in these countries. In a study for the United States, [19]
projected that at the outbreak peak, 3 times more ICU beds would be needed than the total number
of ICU beds in the US, and 85% isolation of cases reduces the demand for ICU beds to the normal
capacity. In the Île-de-France region, [16] estimated that the peak number of ICU beds needed would
exceed more than 40 times the regional capacity if no strategy is implemented after lockdown, and
only efficient case-finding and isolation applied parallel with social distancing could decrease ICU
demand below the maximum capacity throughout the epidemic. For Australia, [15] studied three
capacity expansion scenarios (2, 3 and 5 times expansion, respectively), and even in mitigated scenarios,
demand is estimated to be higher than the number of available beds. Additional social distancing
measures were shown to reduce the epidemic to a level where a reasonable expansion of ICU capacity
can be sufficient.

The peak ICU demand crucially depends on two factors: the probabilities of developing sever
disease, and the shape (in particular the peak size) of the epidemic curve. We plotted a heatmap of the
peak ICU demand in Figure 12, compiled from hundreds of numerical simulations. Transmissibility
(vertical axis) is expressed by the reproduction numberR. Disease severity, for simplicity, is expressed
by the IFR. In fact, here we used a scaling factor for the probability of hospitalization, with the baseline
corresponding to the parameters in Table B.3. In our weak control scenario (Section 2.4.2), the infection
fatality rate is 0.4%, which is a bit lower than the finding of [46]. However, during the first wave in
Hungary the schools were closed and COVID-19 disproportionately affected the vulnerable population.
In our scenarios we assume a widespread community spreading, hence younger generations appear in
higher numbers, thus the infection fatality rate is expected to be smaller. In any case, by the scaling
of the hospitalization rate (while leaving the probability of intensive care and fatal outcome given
hospitalization intact), we explored a wider range of IFRs. We found that indeed the peak ICU demand
can vary across a large interval. From the shape of the level curves in the heatmap, we can conclude
that the peak ICU demand is more sensitive toR than to the IFR, hence flattening the curve is indeed
of utmost importance to avoid exceeding healthcare capacities.

3. Results

The first COVID-19 case was detected, laboratory confirmed and then reported through the
Hungarian Notifiable Disease Surveillance System on March 4, 2020. Well tailored, effective, combined
non-pharmaceutical control measures have been introduced promptly in Hungary in the very early
phase of the outbreak (see Table 3), accompanied with a high level of compliance for social distancing.
Online surveys [51] and indirect data (such as traffic data, passenger volumes on public transportation
etc.) all showed a drastic reduction in the number of contacts and mobility. Accordingly, the Hungarian
epidemic curve was strongly suppressed. As of May 10, 2020, the cumulative number of reported
confirmed COVID-19 cases were 3284 (33.1 cases per 100,000 population), including 421 deaths. The
epidemic peaked on April 9 with 209 newly reported cases. SARS-CoV-2 was not able to sustain long
transmission chains in the community, however, it was able to cause outbreaks mostly in healthcare
institutions and long-term care facilities: nearly two third of the reported cases are connected to such
institutions. The proportion of cases in health care workers gradually increased during the epidemic.
They had tenfold risk to become confirmed COVID-19 cases compared to the general population. Due
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to effective measures, the virus could not spread significantly from closed communities and health
care workers to the wider population. The age specific case fatality rate showed a similar pattern to
other countries: of the 421 deaths reported by May 10, 375 (89.1%) belonged to the 65+ age group.

We tracked the temporal variation of the effective reproduction number real time, which showed
a steadily decreasing trend, interrupted by an outlying outbreak in a long term care facility. We
identified the time intervals when the effective reproduction number was below or around the critical
threshold 1. The adjusted case fatality ratio was also estimated real-time, and well predicted the
eventual case fatality ratio in one month advance. Benchmarking the CFR to other countries, we
estimated underdetection rate to be 10-20 times, and the true cumulative number of COVID-19 cases to
be between 32,840 and 65,680. These results are consistent with data from the preliminary results of a
large scale seroepidemiological survey, carried out in Hungary in May 2020, where the seroprevalence
of SARS-CoV-2 infection was estimated to be between 22,399 and 92,624 [46]. Based on these data and
the number of reported cases, underdetection is likely to be between 6.8–28.2, and true CFR may be
lower than 1.5%, and the IFR is roughly half of that.

As control measures are being successively relaxed since May 4, we established an age-structured
compartmental model to investigate several post-lockdown scenarios, and projected the epidemic
curves and the demand for critical care beds assuming various levels of sustained reduction in
transmission. Special measures designed to reduce the contact number of the elderly population as
well as school closures can reduce the peak hospital bed demand and the overall mortality, however
these measures also have their limitations. A metapopulation version of the transmission dynamics
model has also been studied, and we reported some results for a two-patch case, where the Budapest
region is considered separately from the rest of the country. Due to the high connectedness, the
epidemic curves of the two-patch system are not much different from the spatially homogeneous case.
To achieve a noticeable reduction in the overall peak size due to spatial heterogeneity (where the local
peak times are shifted in the regions), a large reduction in the mobility rates is necessary.

Since the vast majority of the population is still susceptible, a weak or even a moderate reduction
in the transmission, compared to the baseline, could result in a large second outbreak with significant
mortality and high peak ICU demand. Therefore, high level of alertness needs to be maintained to
avoid such scenarios.

The seasonal behaviour of SARS-CoV-2 is not completely understood yet, thus we considered
a range of possibilities from the absence of seasonality to strong seasonality similar to H1N1. The
interplay of seasonal effects with the post-lockdown contact numbers can generate a variety of disease
dynamics, thus a confident forecast of the timing and the size of a potential second wave is not possible
at the moment.

The effectiveness of strict social distancing measures, such as school closures and stay at home
measures with good compliance is likely to be very high, however such interventions have devastating
consequences on the society and on the economy, thus not sustainable on long term. Modelling
results [57,58] suggest that combined multiple interventions, including moderate contact decrease,
high COVID-19 detection rate, effective contact tracing and good compliance with personal protective
instructions, may have substantial impact on transmission, and are able to keep the reproduction
number around one.
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Technical Appendices

The Appendices contain the governing equations of our transmission model in Appendix A. We
detail the parameters in Appendix B that we have used to tune the system. Finally, Appendices C
and D present the utilized contact matrix and the computation of transmission rates via the next
generation matrix, respectively. The codes were implemented in Wolfram Mathematica and available
at https://github.com/zsvizi/covid19hun.

Appendix A The governing equations of the transmission model

The governing equations of the transmission model described in Section 2.3 take the form

Si ′(t) = − Si(t)
Ni(t) ∑

k∈{1,...,7}

β
(k,i)
p Ik

p(t) + ∑
j∈{a,s}×{1,2,3}

β
(k,i)
j Ik

j (t)

 ,

Li
1
′
(t) =

Si(t)
Ni(t) ∑

k∈{1,...,7}

β
(k,i)
p Ik

p(t) + ∑
j∈{a,s}×{1,2,3}

β
(k,i)
j Ik

j (t)

− αi
L,1Li

1(t),

Li
2
′
(t) = αi

L,1Li
1(t)− αi

L,2Li
2(t),

Ii
p
′
(t) = αi

L,2Li
2(t)− αi

p Ii
p(t),

Ii
a,1
′
(t) = piαi

p Ii
p(t)− γi

a,1 Ii
a,1(t),

Ii
a,2
′
(t) = γi

a,1 Ii
a,1(t)− γi

a,2 Ii
a,2(t),

Ii
a,3
′
(t) = γi

a,2 Ii
a,2(t)− γi

a,3 Ii
a,3(t),

Ii
s,1
′
(t) = (1− pi)αi

p Ii
p(t)− γi

s,1 Ii
s,1(t),

Ii
s,2
′
(t) = γi

s,1 Ii
s,1(t)− γi

s,2 Ii
s,2(t),

Ii
s,3(t) = γi

s,2 Ii
s,2(t)− γi

s,3 Ii
s,3(t),

Ii
h
′
(t) = hi(1− ξ i)γi

s,3 Ii
s,3(t)− γi

h Ii
h(t),

Ii
c
′
(t) = hiξ iγi

s,3 Ii
s,3(t)− γi

c Ii
c(t),

Ii
cr
′
(t) = (1− µi)γi

c Ii
c(t)− γi

cr Ii
cr(t),

Ri ′(t) = γi
a,3 Ii

a,3(t) + (1− hi)γi
s,3 Ii

s,3(t) + γi
h Ii

h(t) + γi
cr Ii

cr(t),

Di ′(t) = µiγi
c Ii

c(t),

(A1)

where the index i ∈ {1, . . . , 7} represents the corresponding age group.
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Governing equations of the metapopulation model where p1 ∈ {1, 2, . . . , #patches} are

Si
p1

′
(t) = −

Si
p1
(t)

Ni
p1
(t) ∑

k∈{1,...,7}

β
(k,i)
p1,p Ik

p1,p(t) + ∑
j∈{a,s}×{1,2,3}

β
(k,i)
p1,j Ik

p1,j(t)


+

#patches
∑

p2=1,p2 6=p1

(
ti
p2,p1

Si
p2
− ti

p1,p2
Si

p1

)
,

Li
p1,1
′
(t) =

Si
p1
(t)

Ni
p1
(t) ∑

k∈{1,...,7}

β
(k,i)
p1,p Ik

p1,p(t) + ∑
j∈{a,s}×{1,2,3}

β
(k,i)
p1,j Ik

p1,j(t)
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∑
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,

Li
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(t) = αi
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∑
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(
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p2,p1
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p1,2

)
,

Ii
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′
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p1,p Ii
p1,p(t) +
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∑
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(
ti
p2,p1

Ii
p2,p − ti
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Ii
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)
,

Ii
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′
(t) = pi

p1
αi

p1,p Ii
p1,p(t)− γi

p1,a,1 Ii
p1,a,1(t) +
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∑
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ti
p2,p1

Ii
p2,a,1 − ti

p1,p2
Ii
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)
,

Ii
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′
(t) = γi
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ti
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)
,
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′
(t) = γi
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p1,a,3(t) +
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∑
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(
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)
,

Ii
p1,s,3(t) = γi
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p2,p1

Ii
p2,s,3 − ti

p1,p2
Ii
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)
,

Ii
p1,h
′
(t) = hi

p1
(1− ξ i

p1
)γi

p1,s,3 Ii
p1,s,3(t)− γi

p1,h Ii
p1,h(t),

Ii
p1,c
′
(t) = hi

p1
ξ i

p1
γi

p1,s,3 Ii
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)γi
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p1,cr(t),

Ri
p1
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(t) = γi
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p1,a,3(t) + (1− hi

p1
)γi

p1,s,3 Ii
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p1,h Ii
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p1,cr Ii
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(A2)
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Appendix B Model parameters

We have chosen our model parameters based on comprehensive literature review and present
them here, except the transmission rates β

(k,i)
s,_ which are left for Part D. For the incubation period we

assume hypoexponential (generalized Erlang) distribution with parameters (1.6, 1.6, 2). This way,
the average incubation period is 5.2 days: the same length and very similar shape of the probability
distribution function was estimated in [49], and this distribution has the observed concavity properties
as well (see [59]). Also, this estimate is consistent with [40], and such values have been used in
[15,16,18,19]. The first 3.2 days are the latent period [15] and the past 2 days are the presymptomatic
period [15], when transmission is already possible with similar rate as at symptom onset [48]. Therefore,
we use the same transmission rates for the presymptomatic and symptomatic infectious periods. For
the transmission rate of asymptomatic infected individuals, we use a reduction factor 0.5 [16,19,47].

For the length of infectious periods (both symptomatic and asymptomatic), we assume a gamma
distribution with Erlang parameter 3 (coherent with the SARS study [50]), and an average length 3
days of infectivity. Although full recovery and viral shedding may take much longer, the infectiousness
throughout the course of infection is mostly concentrated to this period [48,60]. The choice of 3 days
is also justified by [48] and [61], who estimated that around 40% of transmissions occur during the
presymptomatic period, and it is also within the range of infectious periods used by [16] and [19].

The average stay in hospital is assumed to be 10 days, in accordance with the seven days median
reported in [62] using over 16000 patient’s data in the UK. Similarly, the average duration of critical
care is assumed to be 10 days, in accordance with the ICNARC report [63]. Very similar numbers were
reported in the US [64], and were used in other modelling studies [15,18,19]. For those who recover
from intensive care, we assumed a 14 days hospitalized rehabilitation period.

The periods above associated to the average time an individual spends in each compartment over
the course of the infection are age-independent and summarized in Table B1.

Table B1. Age-independent epidemiological parameters of COVID-19
Assumed to be valid for all age groups i ∈ {1, . . . , 7}. References and explanations are in Appendix B.

Duration of Value

Incubation period (αi
L,1)
−1 + (αi

L,2)
−1 + (αi

p)
−1 5.2 days

Latent period (αi
L,1)
−1 + (αi

L,2)
−1 3.2 days

Presymptomatic (infectious) period (αi
p)
−1 2.0 days

Infectious period of Ii
a (γi

a,1)
−1 + (γi

a,2)
−1 + (γi

a,3)
−1 3.0 days

Infectious period of Ii
s (γi

p,1)
−1 + (γi

p,2)
−1 + (γi

p,3)
−1 3.0 days

Hospitalization (γi
h)
−1 10.0 days

Intensive care

until transition to R or Ii
cr (γi

c)
−1 10.0 days

Recovery in Ii
cr (γi

cr)
−1 14.0 days

Relative infectiousness

Presymptomatic vs Symptomatic β
(k,i)
p /β

(k,i)
s,_ 1.0

Asymptomatic vs Symptomatic β
(k,i)
a,_ /β

(k,i)
s,_ 0.5

Next, we discuss the age-specific parameters, which are mostly related to the outcome of infections.
We stratified the population into the following seven age groups: 0–4, 5–14, 15–29, 30–59, 60–69, 70–79,
80+ years old. Using the data from the Hungarian Central Statistical Office (KSH), we obtain the
division shown in Table B2.

According to [65], a fraction 0.8 of infected children (under 18 years old) are asymptomatic or
mild cases. This value was used in [19] as well. We set the probabilities of the infection following mild
or asymptomatic course in an individual according to Weitz et al. [47].
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Table B2. Age groups of the Hungarian population

Age group 0–4 5–14 15–29 30–59 60–69 70–79 80–

Population 453441 937024 1586315 3951300 1294108 866556 453505

The probabilities of hospitalization given infection hi and of requiring intensive care in addition ξ i

are based on the work of Moss et al. [15]. The ratios of fatal outcomes µi are derived from the ICNARC
report [63] comprising 6720 ICU case reports from UK. All these age-dependent parameters are listed
in Table B3.

Table B3. Age-dependent epidemiological parameters of COVID-19

Probability / Age group 0–4 5–14 15–29 30–59 60–69 70–79 80–

Asymptomatic course pi 0.95 0.8 0.7 0.5 0.4 0.3 0.2

Hospitalization or

intensive care (from Ii
s,3) hi 0.00045 0.00045 0.0042 0.0442 0.1162 0.2682 0.4945

Intensive care

(given hospitalization) ξ i 0.333 0.333 0.297 0.294 0.292 0.293 0.293

Fatal outcome

(from Ii
cr) µi 0.2 0.2 0.216 0.3 0.582 0.678 0.687

Appendix C Contact matrix

For creating our contact matrix Mcont we have utilized the work by Prem, Cook and Jit [55]. As
we have divided the Hungarian population into seven age groups (sixteen in Prem et al.), we have
aggregated the corresponding values into the 7× 7 contact matrix

Mcont =



2.85266 1.0168 0.968551 3.63947 0.763617 0.264658 0.16478
0.492048 5.55915 1.35048 4.59427 0.720117 0.507963 0.271234
0.276856 0.797719 6.2199 6.52206 0.611053 0.306674 0.149585
0.417656 1.0895 2.61839 5.42184 0.915967 0.434262 0.199793
0.267563 0.521415 0.749027 2.79672 1.66434 0.602776 0.170033
0.138487 0.54927 0.561396 1.98014 0.900181 0.731165 0.145589
0.164757 0.560419 0.523234 1.74075 0.4852 0.27819 0.55053


.

For more insight, we include its heatmap in Figure C1.

Appendix D Transmission rates and the next generation matrix

Recall that we have assumed presymptomatic patients, that is members of classes Ii
p, to be as

infectious as symptomatic patients. In addition, patients with no or mild symptoms (those in Ii
a)

possess a transmission coefficient half of the baseline.
Thus, our task is to give reasonable estimates for the rates β

(k,i)
s,_ corresponding to the transmission

rate of the symptomatic individuals from age group k to group i. To that end, we follow the terminology
and techniques of [66] to compute the Next Generation Matrix (NGM) and the baseline transmission
rate β0. Finally, the desired coefficients are obtained by taking into account the relative contact rates
between age groups via the contact matrix presented in Appendix C.

First, let us consider the infectious subsystem of (A1), namely, equations describing Li
1
′
(t), Li

2
′
(t),

Ii
p
′
(t), and Ii

j
′
(t) with j ∈ {a, s} × {1, 2, 3}, i ∈ {1, . . . , 7}. Linearizing this w.r.t. the disease free

equilibrium yields the linearized infectious subsystem

X′(t) = (T + Σ) · X(t),
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Figure C1. Heatmap of the contact matrix Mcont

where the matrices T and Σ are referred to as the transmission part and transitional part, respectively;
the state is described by

X(t) = transpose
( [
{Li

1(t) Li
2(t) Ii

p(t) {Ii
a,n(t)}n=1...3 {Ii

s,n(t)}n=1...3}i=1...7

] )
.

Recall that the transmission matrix T has the form

T =



T1

0 . . . (2nd row) . . . 0
...

...
...

0 . . . (8th row) . . . 0
T2

...
...

...


,

where Ti =
[
T1,i T2,i T3,i T4,i T5,i T6,i T7,i

]
with

Tk,i =
[
0 0 β

(k,i)
p β

(k,i)
a,1 β

(k,i)
a,2 β

(k,i)
a,3 β

(k,i)
s,1 β

(k,i)
s,2 β

(k,i)
s,3

]
.
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On the other hand, the transitional matrix Σ is block diagonal with blocks

Σi =



−αi
L,1 0 0 0 0 0 0 0 0

αi
L,1 −αi

L,2 0 0 0 0 0 0 0
0 αi

L,2 −αi
p 0 0 0 0 0 0

0 0 piαi
p −γi

a,1 0 0 0 0 0
0 0 0 γi

a,1 −γi
a,2 0 0 0 0

0 0 0 0 γi
a,2 −γi

a,3 0 0 0
0 0 (1− pi)αi

p 0 0 0 −γi
s,1 0 0

0 0 0 0 0 0 γi
s,1 −γi

s,2 0
0 0 0 0 0 0 0 γi

s,2 −γi
s,3


for i = 1, . . . , 7.

Then, the NGM with large domain is given by

KL = −TΣ−1

and the NGM
K = E KL transpose(E)

follows with the, again, block diagonal E with Ei = [ 1 0 0 0 0 0 0 0 0 ]. The baseline transmission
rate β0 may be factored out from K as β

(k,i)
p = β

(k,i)
s = β0 · (Mcont)k,i and β

(k,i)
a = 1

2 β
(k,i)
s . Hence,

K = β0 · K̂, where K̂ may be readily constructed and we can compute its spectral radius ρ(K̂). Then,
we obtain the baseline transmission rate using the assumed reproduction number R0 as

β0 · ρ(K̂) = R0

that is β0 ≈ 0.03465 for R0 = 1.65. Finally, the transmission rates β
(k,i)
s are computed via the contact

matrix Mcont as
[
β
(k,i)
s
]

k,i = β0 Mcont =



0.00570963 0.00939825 0.00518312 0.00692281 0.00589163 0.00504464 0.0190759
0.00917039 0.0176009 0.0106262 0.0150471 0.0208862 0.0253348 0.00963928
0.0264593 0.024952 0.0211729 0.0317382 0.0576693 0.0311912 0.0168122
0.126107 0.159191 0.225989 0.187867 0.0969063 0.0686116 0.0603171

0.0335603 0.0467941 0.215519 0.090727 0.0259538 0.0194523 0.01813
0.0352322 0.192624 0.0276409 0.0377512 0.018067 0.0190322 0.0194185
0.0988444 0.0170494 0.00959305 0.0144718 0.00927103 0.00479857 0.00570883


,

again, for R0 = 1.65. For other scenarios, the final steps are altered to align with the desired baseline
reproduction number R0, resulting in an appropriate β0 and then, the scaled transmission rates β

(k,i)
s .
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