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Once we have identified the clusters, we infer the reproductive rate of SARS-CoV-2 over time. 
Figure 2 shows an example of this progression for counties ordered by their public transportation 
use.  

 

Figure 2: Relationship between public transit capacity and the time-dependent reproductive rate of SARS-CoV-2 for 
U.S. counties. Colors correspond to clusters as in Figure 1. In the cluster which relies less on public transport, shown 
in yellow, the reproductive rate dropped somewhat earlier, possibly indicating a difference in response to various 
NPIs. 

We observe that although the basic reproduction rate of SARS-CoV-2 starts at a similar level for 
all clusters, the speed at which counties in each cluster responds to the disease, and reduces its  
𝑅௧ differs. The dense, urban cluster, shown in purple, which tends to have higher reliance on 
public transportation decreases over the entire period. This is especially apparent going from 
March 15 to March 25. On the other hand, a cluster with little transportation use, such as cluster 
5, shown in yellow, was able to quickly reduce transmission rates. This suggests that if people 
have a higher reliance on public infrastructure, more stringent interventions are necessary to 
reduce transmission. Comparisons with more features are shown in the methods section below.  

Estimates of Initial and Current Reproductive Rates and Number of Infected 

County Cluster R0 
(std) 

Rnow
 

(std) 
# (%) infected as 
predicted  

Measured 
cases 

Fatality rate 
(measured 
death/cases) 

36061 
New York, NY 

4 2.95 
(0.16) 

0.59 
(0.03) 

2388875 (28.4) 201051 10.65% 

11001 
DC 

4 3.11 
(0.21) 

0.78 
(0.05) 

78504 (11.1) 8492 5.33% 

42079 
Luzerne, PA 

2 3.11 
(0.23) 

0.85 
(0.06) 

18675 (5.9) 2689 5.17% 
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09007 
Middlesex, CT 

2 3.16 
(0.23) 

0.82 
(0.06) 

17266 (10.6) 1082 13.31% 

22015 
Bossier, LA 

5 3.17 
(0.15) 

0.88 
(0.04) 

3771 (3.0) 406 6.40% 

53077 
Yakima, WA 

3 3.17 
(0.19) 

0.97 
(0.05) 

17829 (7.1) 3231 2.88% 

04005 
Coconino, AZ 

3 3.20 
(0.19) 

0.93 
(0.04) 

17516 (12.3) 1078 7.33% 

25013 
Hampden, MA 

2 3.29 
(0.17) 

0.81 
(0.04) 

72967 (15.5) 5878 9.56% 

05029 
Conway, AR 

1 3.30 
(0.25) 

0.94 
(0.06) 

141 (0.7) 14 7.14% 

13241 
Rabun, GA 

1 3.34 
(0.15) 

0.91 
(0.03) 

138 (0.8) 19 5.26% 

35031 
McKinley, NM 

3 3.44 
(0.29) 

0.81 
(0.05) 

20722 (28.7) 2291 4.36% 

37125 
Moore, NC 

5 3.44 
(0.17) 

0.99 
(0.05) 

1424 (1.4) 220 4.55% 

48291 
Liberty, TX 

5 3.58 
(0.17) 

1.03 
(0.05) 

570.45 (0.7) 81 3.79% 

06037 
Los Angeles, CA 

4 3.68 
(0.18) 

1.00 
(0.04) 

401338 (4.0) 49860 4.49% 

28157 
Wilkinson, MS 

1 3.72 
(0.19) 

1.01 
(0.05) 

1461 (16.7) 85 10.59% 

Table 1: Estimated initial and current reproductive rate, and the number of cases for select counties ordered by their . This is 
compared to the measured number of cases and fatality rates.  

From Table 1, we observe that most counties exhibited an initial reproductive rate 𝑅 above 3. 
As of May 28th, however, most have successfully reduced the reproductive rate to 𝑅௧ ൎ 1 
through NPIs. It is estimated that 18.4 to 42.7% of the population (95% confidence interval) has 
been infected in New York, NY, which has the most advanced spread. Based on the initial 
reproductive rates between 2 and 4, herd immunity is reached only after 50 – 70% of the 
population has recovered,8,9 suggesting that all United States counties are far from resilience. 
Consequently, easing restrictions is likely to result in subsequent waves of the epidemic. We 
state these findings for 15 heterogeneous counties in Table 1 and provide the same metrics for all 
1,417 counties in supplementary materials (https://github.com/JieYingWu/npi-model). 
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Learned Effects of NPIs 

Using a cluster-specialized model, we quantify the effectiveness of NPIs, as shown below in 
Table 2.  

Intervention Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
I1: Stay at home  0.018 (0.040) 0.141 (0.095) 0.036 (0.098) 0.963 (0.165) 0.041 (0.061)
I2: >50 gathering 0.192 (0.229) 0.010 (0.037) 0.096 (0.202) 0.046 (0.089) 0.057 (0.113)
I3: >500 gathering 0.072 (0.124) 0.332 (0.156) 0.184 (0.286) 0.020 (0.048) 0.039 (0.085)
I4: Public schools 0.081 (0.167) 0.060 (0.137) 0.112 (0.206) 0.098 (0.149) 0.038 (0.088)
I5: Restaurant dine-in 0.068 (0.139) 0.002 (0.024) 0.148 (0.272) 0.035 (0.082) 0.021 (0.065)
I6: Entertainment/gym 0.131 (0.175) 0.005 (0.032) 0.148 (0.255) 0.033 (0.066) 0.027 (0.066)
I7: Federal guidelines 0.516 (0.394) 0.522 (0.283) 0.187 (0.305) 0.060 (0.109) 0.068 (0.147)
I8: Foreign travel ban 0.181 (0.242) 0.161 (0.182) 0.192 (0.292) 0.011 (0.037) 0.939 (0.200)

Table 2: The learned weights of the interventions for each cluster-specialized model, showing mean with standard deviation in 
parentheses. Note how the weights have different effects for the different clusters. 

Intervention Baseline 
I1: Stay at home 0.127 (0.050)
I2: >50 gathering 0.020 (0.054)
I3: >500 gathering 0.210 (0.127)
I4: Public schools 0.047 (0.084)
I5: Restaurant dine-in 0.000 (0.016)
I6: Entertainment/gym 0.001 (0.021)
I7: Federal guidelines 0.804 (0.156)
I8: Foreign travel ban 0.021 (0.045)

Table 3: Without a cluster-specialized model, information about the effectiveness of local interventions is not as clear. When 
trained at the national level, it makes sense that the model emphasizes national guidelines much more strongly.  

We note that our model estimates different behavior across counties. While all counties have 
implemented a similar set of interventions, their estimated effects are substantially different in 
each respective cluster. For example, metropolitan counties (cluster 4) were estimated to have a 
strong response to stay-at-home orders, while rural and suburban areas (clusters 1, 2, 3, and 5) 
responded more to national-level interventions according to our model.  

One caveat is that the effects of interventions that were implemented close together are difficult 
to disentangle. Many local governments implemented formal NPIs in response to these 
guidelines, leading a quick succession of NPIs coming into effect. Disentanglement of the effects 
of NPIs is explored more in the methods section. 

Another limitation of our model is that the federal level interventions may have come before 
some counties have seen any cases. Therefore, it is impossible to discern what the 𝑅 would have 
been without any intervention. This may lead to higher weights in federal guidelines and travel 
ban since other interventions are not generally implemented before a county has seen cases. 
Additionally, since our model is mechanistic, it only allows for decreases of the transmission rate 
due to interventions or decrease in the susceptible pool. Other events, such as high-profile cases 
and cancellations of prominent festivals, increased awareness of the disease and may also have 
effects on individual behavior, and therefore the 𝑅௧. These effects may falsely increase the 
weights of interventions that come into effect at around the same time.  
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4 Methods 
 

Method Overview 

Figure 3 shows an overview of the proposed method. We train a Bayesian hierarchical inference 
(BHI) model in a cluster-specialized manner and compare with the baseline model trained on all 
counties. We show the stability of our model in two ways, first by withholding random days 
during training and second by withholding given counties. We compare the predictions based on 
incomplete data with those based on complete data. 

 

Figure 3: (a) The fitting process for our model. We compare the performance of the baseline model, which is fit to 
all eligible counties, with cluster-specialized models BHI 1-5. (b) Two validation methods for our model. Validation 
A tests the stability of the model by withholding 3 random days and comparing the outputs. Validation B withholds 
a set of counties for comparison rather than days.  

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2020. .https://doi.org/10.1101/2020.05.31.20118687doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118687
http://creativecommons.org/licenses/by/4.0/


9 

County-level Clustering 

 

Table 4: Average values for each of the 16 variables considered in our clustering, capturing demographic and 
socioeconomic information as well as transit and health care capacity.  

 

Quantifying changes in COVID-19’s reproductive rate is complicated when considering 
differences at the county – rather than the national – level. Parametric epidemiological models 
are optimized to describe fatality counts, the volume and reliability of which decreases outside of 
highly populated regions. To make up for this scarcity, we leverage a balanced clustering of U.S. 
counties to aggregate data from similar counties in the same state, treating them as a single 
“super-county,” if they have identical NPI implementation dates. This has the advantage of 
considering counties that would otherwise be excluded without assuming that the spread of the 
disease in those counties follows the same trend of more advanced regions in the same state or 
country. Figure 4 shows how for a given state- in this case Texas, and a given cluster, the counties 
with 1-49 cumulative deaths from COVID-19 are treated as a single entity. In addition to this 
data aggregation strategy, we fit a cluster-specialized model to each set of counties, quantifying 
the possibly disparate effects of the NPIs in each type of county, as detailed below. 

Variable Cluster 1 
Avg. Value

Cluster 2 
Avg. Value

Cluster 3 
Avg. Value 

Cluster 4 
Avg. Value

Cluster 5 
Avg. Value

Population 23,522.1 45,0789.2 52,425.3 759,468.1 84,594.5
Fraction of Population Male, age 0-17 0.114 0.116 0.113 0.105 0.110
Fraction of Population Female, age 0-17 0.108 0.111 0.108 0.101 0.105
Fraction of Population Male, age 18-64 0.297 0.304 0.298 0.320 0.300
Fraction of Population Female, age 18-64 0.2803 0.309 0.282 0.325 0.296
Fraction of Population Male, age 65+ 0.093 0.071 0.097 0.064 0.085
Fraction of Population Female, age 65+ 0.1075 0.088 0.102 0.085 0.103
Fraction of Population Number with Some 
College or Associate’s Degree 0.213 0.198 0.238 0.167 0.213
Fraction of Population in Poverty 0.153 0.109 0.146 0.140 0.135
Fraction of Population Unemployed 0.018 0.018 0.023 0.018 0.019
Median Household Income 49,085.13 69,118.17 53,606.34 68,624.46 5,4430.48
Population Density (persons per sq. mile) 42.3 626.6 18.9 3789.1 132.6
Number of Housing Units (per capita) 0.498 0.389 0.539 0.415 0.454
Land Area (sq. miles) 1,120.42 993.03 3,409.26 355.80 650.96
Population-weighted Transit Score 0 2.70e+07 1.18e+07 2.86e+07 1.13e+07
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Figure 4: (a) The total confirmed deaths caused by COVID-19 for counties in Texas, as of May 15. (b) Cluster 
labels for each Texas county, based on demographics, education, density, and other factors. (c) Texas counties in 
cluster 1 having 1-49 cumulative deaths as of May 18, 2020. To enable robust epidemiological models, these 
counties are treated as a single “super-county.” 

To generate this clustering, we partition 3,059 U.S. counties into five clusters based on variables 
which directly affect disease spread, using a Gaussian mixture model.10 Table 4 summarizes these 
variables, which include demographic, economic, and public transit capacities gathered in a 
publicly available dataset.11 Sources include the United States Census Bureau, the United States 
Department of Agriculture Economic Research Service and the Center for Neighborhood 
Technology. A full list of sources can be found at the corresponding website.12 To incorporate 
potential exposure, we consider county population.11 To incorporate potential exposure, we 
consider county population density, housing density, and land area. Additionally, we consider 
portions of the population for age- and gender-based demographic categories, due to COVID-
19’s disparate effects on these groups.13–17  

Our clustering is also based on socioeconomic variables, which may indicate behavioral traits 
relevant to the spread of COVID-19. For instance, workers with tertiary education are more 
likely to hold office-type jobs which can be done from home.18 At the same time, many 
secondary-education jobs have been deemed essential, requiring a high contact rate, which in 
turn increases the likelihood of infection. Thus, our clustering considers college education, 
poverty, unemployment, and median household income for each county as a reflection of the 
overall job composition in the local area. Finally, we include a population-weighted transit score 
due to the likelihood of transmission in the enclosed, possibly crowded space that public 
transport entails. 

Figure 5 and Figure 6 show the 𝑅௧ plotted over median income and density for counties and super-
counties in the different clusters. Super-counties are visualized as a single point using their 
population-weighted average for that feature. The plots show the distribution of the cluster over 
the features and its correlation with how 𝑅௧ changes. 
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Figure 5: Scatterplot and density distribution plot for counties and super-counties comparing 𝑅௧ over time to median 
household income. Colors indicate which cluster the county or super-county belongs in, as indicated by Figure 3.  

 

 

Figure 6: Scatterplot and density distribution plot for counties and super-counties comparing 𝑅௧ over time to 
population density. Colors indicate which cluster the county or super-county belongs in, as indicated by Figure 3. 
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Notably, we exclude racial demographics from the variables considered during clustering. This is 
despite the possibly strong relationship between these data and the transmission or mortality 
rates of COVID-19. Minority communities are more likely to make up essential workers, who 
have greater exposure to the virus. African American communities in particular suffer from 
greater incidence of HIV as well as higher infant mortality rates.19 Thus, we do not include racial 
demographics because we believe that no relationship exists between race and incidence of 
COVID-19 directly. Rather, such a relationship would be a byproduct of existing socioeconomic 
inequality resulting from systemic racism. Racial demographic makeup may still influence our 
clustering, but only because it affects already included factors. 

 

Modelling the Effects of NPIs 

Data Processing 

We use cumulative fatality and infection counts from the JHU CSSE COVID-19 Dashboard, 
which has been tracking COVID-19 since January.1 When fitting our model, we use measured 
fatality rates, which are generally considered more reliable than confirmed infections because of 
limited testing and the prevalence of asymptomatic cases. Thus, we use population-weighted 
fatality rates to estimate the true cases count. Obtaining a reasonable estimate for this ratio is 
crucial to realistically model the numbers of total infections. However, due to asymptomatic 
cases, undertesting and biased reporting, this parameter cannot be measured directly, but has to 
be inferred from observable data.20–22 These studies all report values with substantial uncertainty 
but agree on the fact that fatality for COVID-19 depends strongly on the age of the infected 
person. Therefore, we adapt the fatality rates per age group presented in Verity et al.20 for each 
county with respect to its demographic age distribution. Based on U.S. Census data, a per-county 
weighted fatality rate is computed using the share of each age group in the overall population.  

Model 

We estimate the effective reproductive rate using a semi-mechanistic Bayesian hierarchical 
inference model proposed in Flaxman et al.5,23, that infers the impact of a predefined set of 
interventions and estimates the number of infections over time. The model estimates a county-
specific initial reproductive rate 𝑅, and intervention weights 𝛼, the effect of which is assumed 
constant for all counties included in joint optimization. These effects are assumed multiplicative, 
modeled as 

𝑅௧ ൌ 𝑅,expሼെሺ𝛼ଵ𝐼ଵ,  𝛼ଶ𝐼ଶ, … 𝛼𝐼,ሻሽ 

Equation 1 

where 𝑚 is the county index and 𝐼, is a binary indicator for intervention 𝑖 being in place at time 
𝑡. The interventions we take into account here are summarized in Table 1. 
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The model assumes a normal distribution as the prior for the 𝑅. We set the prior on 
𝑅~𝑁ሺ3.28, |𝜅|ሻ  where 𝜅 ~ 𝒩ାሺ0, 0.5ሻ. The value of 3.28 is in accordance with the analysis 
presented in Liu et al.24 

Starting from the time-varying 𝑅௧, a latent function of daily infections is modeled depending on a 
number of factors: a generation distribution g with density g(τ) that models the time between 
spread of infection from an individual to the next (approximated as the serial interval 
distribution), the number of susceptible individuals left in the population, an infection-to-death 
distribution, and the county-specific time-varying reproduction number that models the average 
number of secondary infections at any given time. The parameters for the distributions are 
chosen in accordance to Flaxman et al.5  

Model fitting is driven by the timeseries of observed daily deaths. These are linked to the 
modelled number of infections by the county specific weighted fatality rate. The sum of past 
infections, along with the weighted probability of death gives the number of deaths on a day for a 
given county. To ensure that the deaths accounted for are from locally acquired infections, we 
include observed deaths in a county only after the cumulative count has exceeded 10. The 
seeding of new infections is assumed to be a month prior to that.  

All parameters are estimated jointly using an adaptive Hamiltonian Monte Carlo (HMC) sampler 
in the probabilistic programming language Stan.25 

Validation 

We propose three validation schemes to validate our approach. First, we show that our model is 
stable, so a small change in the input produces a small change in the output. Second, we separate 
our counties and super-counties into train and test sets. We fit models for each cluster as well as 
for all counties and super-counties on either, both the train and test set or with only the train set. 
We evaluate using the parameters of the “correct” cluster model to predict fatalities for the held-
out regions. Comparing these predictions to those made when the regions are included during 
training confirms that the model is not over-reliant on each data point. Third, we evaluate how 
well our model discerns the effects of individual NPIs and discuss biases it may have to attribute 
more weight to certain NPIs.  

 

Validating the Stability of the Model 

To show stability in our model, we train the model, withholding three non-consecutive days 
chosen at random, and compare the predictions for these days to the baseline model fit on full 
data. Only days with non-zero death counts are selected as potential leave-out candidates. We set 
the threshold for data selection at counties with 50 cumulative deaths by May 28th, which results 
in 211 counties. (For model validation, we do not use super-counties.) We fit the model over 300 
total iterations, with 150 of those as warmup iterations. We compare the predictions of the two 
models for the held-out days and report our observations in Figure 7a. The clustering of points 
around the optimal fit visually confirms that the predicted values from the model with held-out 
days. In Figure 5b, we average the value of the withheld days and compare again to our baseline 
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model fitted on full data and observe a more concentrated distribution around the line of optimal 
fit. Using the Pearson-correlation coefficient, we find high similarity of 1.00 between our models 
for the held-out days and the average held-out days which suggests that the model is robust 
against small input perturbations.  

 

Figure 7: The predicted values of the validation and the baseline model. (a) Predictions for withheld days, as shown 
by the optimal fit, are remarkably close to the true values. (b) The three held-out days per county are averaged and 
compared. 

 

Validating the Advantages of Clustering 

We show the advantage of cluster-specialized models for quantifying the effects of NPIs by 
comparing their performance with models trained on different clusters or on the national level. 
While a clustering of U.S. counties may or may not be interesting, its value related to COVID-19 
comes from its ability to identify epidemiologically meaningful differences among various 
regions in the country. When fitting each model, we withhold a validation region from each 
cluster and use the remaining counties to fit Equation 1, for both cluster-specialized and baseline 
models. We then use the learned weights 𝛼 to initialize a fixed-𝛼 BHI model for each withheld 
region.  

With this scheme, we show the advantage of clustering U.S. counties in three ways. First, we 
show that within the same cluster, we obtain comparable predictions for a county whether or not 
it is included in training. Second, we observe that 𝛼 values learned from a different cluster 
produce substantially different predictions. Finally, we apply the 𝛼 values learned at the national 
level to similar effect. This demonstrates how cluster-specialized models can reveal trends in the 
spread of COVID-19 that are not apparent under the assumption that NPIs have universal effect 
at the national or state level. 
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Figure 8: The fatalities predicted by our model for seven counties in Arizona (treated as a single super-county), with 
fatalities data from Apache, Cochise, La Paz, Mohave, Navajo, Yavapai, and Yuma counties, using data up to May 
18. (a) When the super-county is included in training, the cluster-specialized BHI model incorporates outlier events 
in deaths from COVID-19 while still describing the overall trend. (b) When the super-county is withheld from 
training but uses 𝛼 values from the same cluster, the model still captures the same overall trend of increasing deaths. 
(c) On the other hand, using 𝛼 values from a different cluster makes it appear as though the curve has flattened, even 
if it hasn’t. This occurs because the same NPIs had a stronger effect in cluster 4 than they did in cluster 3. 

Figure 8 shows the first and second validation strategy for cluster 3, which consists of less-
populous counties with large land area. For such regions, which necessarily have fewer cases to 
support local models, it is vital to gain accurate insight from the entire training pool and verify 
these insights through the aforementioned validation process. Thus, in this illustrative example, 
we use data up to May 18, at which point the continuing spread of cases was not immediately 
clear. Indeed, Figure 8a shows the predictions obtained for seven counties in Arizona (treated as a 
single super-county). One can readily observe the model takes into account random outliers 
while following a general upward trend. Figure 8b exhibits less awareness of outliers but still 
follows the same trend, despite using α values obtained from training on cluster 3 with these 
same counties withheld. On the other hand, Figure 8c shows the predictions made when using the 
wrong α values, from cluster 4, which consists of densely populated city centers. As can be seen, 
this results in a markedly different prediction for the trend of the disease. This is a critical 
difference, which could result in very different decisions for implementing or removing NPIs. 
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Figure 9: (a) The fatalities predicted by the baseline model, which observes all eligible counties during training. (b) The 
fatalities predicted by a cluster-specialized model, showing a very different trend in the course of the spread of COVID-19. 
Although this difference is more pronounced for the District of Columbia than for most regions, it underscores the potential for 
misleading predictions when the United States’ heterogeneity is not taken into account. 

Finally, we compare the performance of our cluster-specialized model with the baseline model, 
which uses all eligible counties for training. In many cases, this difference is slight, and both the 
baseline and cluster-specialized models exhibit similar trends for a given region. However, for 
certain areas the difference can be profound. Take, for example, the District of Columbia, which 
has become a significant hot-spot for COVID-19. The baseline model, shown in Figure 9a, has 
only recently flattened, whereas the cluster-specialized model in Figure 9b reflects the reality 
that efforts to combat the disease have had much greater effect, significantly reducing the 
number of deaths. This is because when forced to accommodate counties across the U.S., the 
baseline model emphasizes federal guidelines with a mean α value of 0.804 (see Table 3). On the 
other hand, our cluster-specialized model found that stay-at-home orders were much more 
effective for counties in cluster 4, with a mean α value of 0.963. This difference illustrates the 
advantage of specializing a BHI model based county-level characteristics; it allows the model to 
include a greater number of counties within separate clusters while not being forced to over-
generalize and, in doing so, compromise some certainty. 

 

Disentanglement 

 
Table 5: How far apart on average each intervention is implemented from each other. The interventions are in the 
order defined in  

Intervention Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

I1: Stay at home  0.018 (0.040) 0.141 (0.095) 0.036 (0.098) 0.963 (0.165) 0.041 (0.061)
I2: >50 gathering 0.192 (0.229) 0.010 (0.037) 0.096 (0.202) 0.046 (0.089) 0.057 (0.113)
I3: >500 gathering 0.072 (0.124) 0.332 (0.156) 0.184 (0.286) 0.020 (0.048) 0.039 (0.085)
I4: Public schools 0.081 (0.167) 0.060 (0.137) 0.112 (0.206) 0.098 (0.149) 0.038 (0.088)
I5: Restaurant dine-in 0.068 (0.139) 0.002 (0.024) 0.148 (0.272) 0.035 (0.082) 0.021 (0.065)
I6: Entertainment/gym 0.131 (0.175) 0.005 (0.032) 0.148 (0.255) 0.033 (0.066) 0.027 (0.066)
I7: Federal guidelines 0.516 (0.394) 0.522 (0.283) 0.187 (0.305) 0.060 (0.109) 0.068 (0.147)
I8: Foreign travel ban 0.181 (0.242) 0.161 (0.182) 0.192 (0.292) 0.011 (0.037) 0.939 (0.200)

Table 2. For example, the I3-I2 means how many days counties took between banning >500 gathering is from >50 
gathering on average. This illustrates the difficulties in disentangling the effects of interventions since we can only 
observe effects of interventions around 12 days later.  

I1 I2 I3 I4 I5 I6 I7 I8 
I1 6.76 8.79 10.40 9.49 7.99 12.48 17.48
I2 6.76 1.85 4.07 4.13 5.27 5.89 10.83
I3 8.79 1.85 4.86 4.57 6.01 5.33 8.86
I4 10.40 4.07 4.86 3.74 4.84 2.38 7.37
I5 9.49 4.13 4.57 3.74 1.90 3.82 8.68
I6 7.99 5.27 6.01 4.84 1.90 4.89 9.79
I7 12.48 5.89 5.33 2.38 3.82 4.89 5.00
I8 17.48 10.83 8.86 7.37 8.68 9.79 5.00
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One drawback of the model is that it cannot disentangle implementations that came into effect at 
the same time. For example, states often closed public schools at the same time as federal 
guidelines were issued so it is difficult to attribute which of them had the real effect on reducing 
𝑅௧. Additionally, in Table 5, we observe that banning gatherings of 50 or more people often 
occurs at the same time as 500 or more, and restaurants and entertainment venues are often 
closed together. This makes these pairs of interventions almost impossible to disentangle from 
each other.  

To further investigate the model’s ability to disentangle intervention weights, we create 
simulated trajectories of counties’ deaths and cases counts based on their 𝑅 and the dates on 
which the interventions came into effect. Using all counties that have more than 50 cumulative 
deaths on May 28th without super-counties, we seed each county with 200 cases in each of the 
first 6 days. To simulate county-specific trajectories, we construct two sets of generated 
timeseries. In the first set, we assign intervention weights 𝛼 to be randomly generated from a 
gamma distribution, the same distribution as our prior on the Bayesian hierarchical model 
adjusted to be in the range of our learned weights. In the second experiment, we set all of them to 
a constant value of 0.16, which was chosen so the sum of intervention is in the range of the sum 
of the learned weights. We then calculate what the 𝑅௧ on each day must have been based on the 
𝑅 and the interventions in place. Once we have the seeded infection and the 𝑅௧ trajectory for 
each county, we can calculate daily infections and thus expected fatalities. Using the simulated 
trajectories, we fit the model. Table 6 compares the weights used for generation with the weights 
that the model learned.  

 Intervention 
weights  

Learned weights Intervention 
weights 

Learned weights 

I1 0.230 0.696 (0.679) 0.16 1.402 (1.455) 

I2 0.093 0.051 (0.068) 0.16 0.192 (0.207) 

I3 0.128 0.122 (0.101) 0.16 0.317 (0.198) 

I4 0.029 0.087 (0.131) 0.16 0.740 (1.110) 

I5 0.007 0.103 (0.179) 0.16 0.171 (0.168) 

I6 0.321 0.271 (0.240) 0.16 0.350 (0.290) 

I7 0.558 0.165 (0.240) 0.16 0.311 (0.416) 

I8 0.011 0.030 (0.070) 0.16 0.106 (0.157) 

Table 6: By setting the intervention weights, we can generate simulated timeseries of cases and deaths counts and 
have the model learn the weights. The learned values differ substantially from the ground truth intervention weights, 
showing that the model does not disentangle the contribution of each intervention well.  

We observe that the effects of individual NPIs are not well disentangled in general. The model 
tends to attribute more weight to few NPIs rather than spread out the weight evenly. Specifically, 
the model tends to put more weight on shelter-in-place. This may be because interventions I2-I8 
are often implemented close together (see Table 5) and it is difficult to attribute effect to any 
single one of them on a national scale. While we can conclude that the trajectory the model 
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predicts are reliable, due to their match to measured death, and therefore the overall decrease in 
𝑅௧ is reliable, attributing decreases to an individual NPI is challenging.  
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