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Abstract

Understanding the effectiveness of strategies such as social distancing is a central
question in attempts to control the COVID-19 pandemic. A key unknown in social
distancing strategies is the duration of time for which such strategies are needed. An-
swering this question requires an accurate model of the transmission trajectory. A
challenge in fitting such a model is the limited COVID-19 case data available from a
given location. To overcome this challenge, we propose fitting a model of SARS-CoV-2
transmission jointly across multiple locations. We apply the model to COVID-19 case
data from Spain, UK, Germany, France, Denmark, and New York to estimate the time
needed for social distancing to end to be around October, 2020. Our method is not
specific to COVID-19, and it can also be applied to future pandemics.

Keywords: Epidemiological modeling, Machine learning, Bayesian inference.

1 Introduction

Understanding the near-future implications of the COVID-19 pandemic is one of the most
fundamental questions the scientific community is trying to answer in the past few months.
While strategies such as social distancing have been widely employed to mitigate the im-
pact of the pandemic on healthcare resources, the necessary timing, frequency, intensity,
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and effectiveness of these interventions is largely unknown. One of the key unknowns in
these strategies is the duration of time for which social distancing needs to be imposed
to flatten the pandemic curve. Answering this question requires an accurate model of the
transmission trajectory of SARS-Cov-2.

Several recent studies [1, 2, 3, 4] have attempted to understand the transmission trajectory
of SARS-CoV-2 using variants of compartmental models, such as the SEIR model [5, 6].
Prem et al. [1] fit an age-structured variant of the SEIR model to case data from Wuhan.
They used this model to investigate the effect of lifting restrictions on returning to work
and concluded that a premature and sudden lifting of interventions could lead to an early
secondary peak. Li et al. [2] fit an SEIR model to SARS-CoV-2 case data across 375
cities in China during 10-23 January 2020. The model separately considered documented
and undocumented infections. Further, they also integrated mobility data across cities.
Using their model, they concluded that ≈ 86% of the cases were undocumented and these
undocumented infections were the source of ≈ 80% of the documented cases. Kissler
et al. [3] provide an elegant analysis using a variant of the SEIR model that takes into
account various factors that modulate the transmission, including the effects of social
distancing, seasonality, immunity, and cross-immunity, resulting in a highly detailed model
that can predict, among other things, the time until social distancing is no longer required
to flatten the curve. Using their model, they conclude that even under the assumption of
full immunity as a response to infection, the time required for social distancing is at least
2022 assuming no vaccine or medication is found by then. Giordano et al. [4] consider
a model with eight stages of infection: susceptible (S), infected (I), diagnosed (D), ailing
(A), recognized (R), threatened (T), healed (H) and extinct (E). They apply their model
to data from Italy to conclude that social distancing will need to be combined with testing
and contact tracing to control the pandemic.

Unfortunately, even though the SEIR model is an established model, it is unclear to what
extent the accuracy of the prediction of the time of social distancing is affected by the
choice of the parameters. Further, the choice of parameters in these models in the context
of SARS-Cov-2, has been a subject of debate within the scientific community. One of the
key parameters that determine the transmission trajectory is the reproduction number,
R0. Published values of R0 range from 1.4 to 7.23 [7, 8]. Kissler et al. chose to set
peak R0 as ranging from 2.2 to 2.6, based on the fit of their model to historical data on
related coronavirus (HCoV-OC43 and HCoV-HKU1) cases. This choice was made since
at the time of publication, there was not enough SARS-COV-2 data to establish these
parameters. However, currently, there is an opportunity to adjust the predictions based
on SARS-COV-2 data as opposed to previous related viruses.

In this work, we fit a statistical model of transmission dynamics building upon the SEIR
model. However, instead of fitting this model to previous strains of the SARS virus, we
fit the model to data from current COVID-19 cases. A challenge with our approach arises
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from the limited case data available in a given location. Particularly, we demonstrate
that the key epidemiological parameters that determine the end of social distancing (the
reproduction number R0 and the average time spent in the infectious state τ) have large
uncertainties associated with them which, in turn, lead to substantial uncertainties in
estimates of the end of social distancing.

To obtain more precise parameter estimates, we formulate a hierarchical Bayesian model
that allows the sharing of statistical strength across the location-specific models. Specif-
ically, while each location is allowed to have its own values of the two parameters, these
location-specific parameters are assumed to be drawn from a distribution centered around
global parameter values. We estimate these global parameters using a marginal likeli-
hood maximization framework. We then use these global parameter estimates, integrating
over their uncertainty, to estimate the range of times till the end of social distancing in
a new location. The resulting approach not only gives us point estimates (for parameters
such as R0 and for the time to end social distancing) but also provides formal confidence
intervals.

We apply our framework to COVID-19 cases from six locations (New York, Spain, Ger-
many, France, Denmark, and the UK) to estimate global and location-specific parameter
estimates. We show that these parameters provide a good fit to the data from each of the
locations. Finally, we use the global parameter estimates to estimate that the time to end
social distancing will be in October 2020 (assuming permanent immunity, no seasonality,
and that social distancing reduces the effectiveness of transmission by 60%). We provide
open-source software that can be applied to diverse locations to estimate transmission pa-
rameters and predict the required duration of social distancing. Although our analysis and
motivation stems from the current COVID-19 pandemic, our method is general, and can
be applied to other future pandemics.

2 Methods

2.1 The SEIR Model

We consider the extended SEIR model that have formed the basis of a number of recent
studies of SARS-CoV-2 transmission dynamics[3]. This model partitions the population
into susceptible, exposed but not yet infectious, infectious (mild), infectious (but not yet
hospitalized), infectious (but not yet critical), hospitalized, critical (in the ICU), and re-
moved. Given the state of the population at time t, i.e., the number of individuals in each
of the partitions, the model describes the state of the population at the next time point by
a set of ordinary differential equations which are governed by a number of parameters, such
as the rate at which a susceptible individual is infected and rates at which an individual
who is exposed becomes infectious, an infectious individual goes to the hospital, and so on
(see Figure 1). Given the parameters and the state of the population at some initial time
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Figure 1: SEIR model schema. Each individual in the population begins at susceptible
state S, and will enter into the exposure state E with transition rate βI in each time unit,
where β = R0γ. In exposure state E, an individual will go into infectious state I with
transition rate ν. Of all the people who arrive at state I, pM of them will recover (state
R), pH will be hospitalized but will never reach critical care (state HH), and pC will be
hospitalized to later be in critical care (state HC). All transitions from the I state will
occur with transition rate γ. People in HH will enter into R with a transition rate δH ;
people in HC state will enter into critical state CC with a transition rate δC , and then
enter into R state with a transition rate εC . We set parameters pM = 0.956, pH = 0.0308,
pC = 0.0132, ν = 1/4.6, δC = 1/6, δH = 1/8, εC = 1/10 as were estimated by Kissler et al.
All states are normalized with respect to population size N .

t0, this model allows us to compute the state of the population at subsequent times which,
in turn, provides a trajectory of cases in the population.

Given the trajectory of SARS-CoV-2 cases from this model, a possible social distancing
strategy involves imposing social distancing when the number of critical or hospitalized
cases reaches the capacity of the health system and then relaxing social distancing when
these numbers are sufficiently small. Depending on the transmission trajectory of SARS-
CoV-2, social distancing may need to be imposed multiple times till a sufficiently large
number of individuals in the population are immune (assuming that immunity to the
virus is permanent). Social distancing is assumed to affect the transmission trajectory by
changing the reproduction number R0.

The key parameters in this model that determine the time till the end of social distancing
(tend) are the reproduction number (R0) and the average time during which an individual
is infectious (τ). The parameter τ is related to the rate at which an individual transitions
out of the infectious state typically used in the SEIR model (γ) as τ = 1

γ .

2.2 A Bayesian hierarchical model for parameter estimation across mul-
tiple locations

Since it is unclear whether the parameters that fit HCoV-OC43 and HCoV-HKU1 are also
applicable to SARS-Cov-2, we propose an alternate approach, in which we estimate the key
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Figure 2: Parameter estimation diagram: We assume that the parameters R
(k)
0 , σ2k, τ

(k)

are drawn from a distribution which is defined by the parameters R
(0)
0 , σ2R, τ

(0), and σ2τ .
We then assume that the cumulative case number curve yk(t) is generated by the process

defined by these parameters. We estimate the most likely values of R
(0)
0 , σ2R, τ

(0), and σ2τ
using maximum marginal likelihood approach.

parameter values by fitting the SEIR model to contemporary COVID-19 cases from specific
locations. The challenge in such an approach is that the limited data in a given location
leads to large uncertainty in the parameter estimates and is very sensitive to outliers.

Our approach to improving the precision of parameter estimates involves fitting SEIR
models to all the locations jointly. One possible approach to do so involves setting the
parameters to the same value across each location. However, this assumption is unlikely to
be realistic. Instead, we endow each location-specific model with its own parameters but
assume that the parameters are drawn from a distribution with global parameter values.
The SEIR model has a number of parameters that control the transmission trajectory.
Our model can jointly estimate all of these parameters. In our analysis, we fix all the
parameters to values used in [3] but estimate the values of R0 and τ .

We assume that we have data on the observed number of COVID-19 cases from K locations:
{yk(t)}, t ∈ {1, . . . , Tk}, k ∈ {1, . . . ,K}. Let f(t; (R0, τ)) denote the number of infections
at time t predicted by the SEIR model with parameters (R0, τ). The parameters for each

region are denoted (R
(k)
0 , τ (k)) and the global parameters: (R

(0)
0 , τ (0)).

R
(k)
0 ∼ N (R

(0)
0 , σ2R)

τ (k) ∼ N
(
τ (0), σ2τ

)
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yk(t)|(R
(k)
0 , τ (k), σ2k) ∼ N (f(t; (R

(k)
0 , τ (k))), σ2k)

Each of the region-specific parameters is drawn from a normal distribution with a mean
given by the global parameters. The observed cases in region k at time t are drawn
from a normal distribution with mean given by the prediction from the SEIR model

f(t; (R
(k)
0 , τ (k))) with a region-specific noise variance σ2k. Further, we impose an unin-

formative prior on the noise variance: P (σ2k) ∝
1
σ2
k
. The parameter selection schema is

shown as Figure 2

We then have:

P (yk(1 : Tk) | R
(k)
0 , τ (k), σ2k) =

nk∏
i=1

(
1

2πσ2k

) 1
2

e

−(yk(ti)−f(ti;R
(k)
0 ,τ(k)))2

2σ2
k

=

(
1

2πσ2k

)nk
2

e

−
∑

(yk(ti)−f(ti;R
(k)
0 ,τ(k)))2

2σ2
k (1)

P (yk(1 : Tk) | R
(k)
0 , τ (k)) = P (yk(1 : Tk) | f(t;R

(k)
0 , τ (k)))

=

∫ ∞
0

P (yk(1 : Tk) | f(t;R
(k)
0 , τ (k)), σ2k)P (σ2k)dσ

2
k

=

∫ ∞
0

(
1

2πσ2k

)nk
2

e

−
∑

(yk(ti)−f(ti;R
(k)
0 ,τ(k)))2

2σ2
k

1

σ2k
dσ2k

=

(
1

2π

)nk
2
∫ ∞
0

(
1

σ2k

)nk
2
+1

e

−
∑

(yk(ti)−f(ti;R
(k)
0 ,τ(k)))2

2σ2
k dσ2k (2)

Using the fact that the integrand in Equation 2 is a Gamma function, we have:

P (yk(1 : Tk) | R
(k)
0 , τ (k)) ∝ Γ

(nk
2

) 2∑nk
i=1

(
yk(ti)− f(ti;R

(k)
0 , τ (k))

)2


nk
2

(3)

We then compute the maximum marginal likelihood estimates of the global parameters
using a grid search:

(R̂
(0)
0 , σ̂2R,

ˆτ (0), σ̂2τ ) = arg max(
R

(0)
0 ,τ (0),σ2

R,σ
2
τ

) l(R(0)
0 , σ2R, τ

(0), σ2τ )

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.30.20117796doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20117796
http://creativecommons.org/licenses/by/4.0/


l(R
(0)
0 , σ2R, τ

(0), σ2τ ) = logP ({yk(1 : Tk)}k=1,...,K | (R
(0)
0 , σ2R, τ

(0), σ2τ ))

= log
K∏
k=1

P (yk(1 : Tk) | (R
(0)
0 , σ2R, τ

(0), σ2τ ))

=

K∑
k=1

logP (yk(1 : Tk) | (R
(0)
0 , σ2R, τ

(0), σ2τ ))

We evaluate each term in the log likelihood as:

P (yk(1 : Tk) | (R
(0)
0 , σ2R, τ

(0), σ2τ ))

=

∫
P (yk(1 : Tk) | R

(k)
0 , τ (k))P (R

(k)
0 | R(0)

0 , σ2R)P (τ (k) | τ (0), σ2τ )dR
(k)
0 dτ (k) (4)

The integral in Equation 4 does not have an analytical solution so we evaluate the integral

numerically over a grid of values for (R
(k)
0 , τ (k)).

The grid search of the parameters in the likelihood searches for values of R
(0)
0 between 1

and 8, τ (0) between 2 to 55, σR from 1 to 8, and στ from 1 to 30.

2.3 Application to predict the end of social distancing

We estimate tend, the time when social distancing can be ended, in the following way.
First, using a maximum marginal likelihood approach, we find the most likely parameters

(R
(0)
0 , σ2R, τ

(0), σ2τ ). Then, we sample R0, τ from the distribution R0 ∼ N (R
(0)
0 , σ2R), τ ∼

N (τ (0), σ2τ ) and for each such sample we compute the estimated value of tend as follows.
We follow the parameter choices used in [3]: assuming that immunity to SARS-CoV-2 is
permanent (which provides the minimum time of social distancing), that social distancing
is imposed when the number of cases exceeds 35 per 10, 000 individuals and is relaxed when
the number of cases drops below 5 per 10, 000 individuals (these thresholds were chosen
so that the number of hospital cases is below the capacity in the United States), and that
each period of social distancing reduces R0 by 60%. We then simulate the SEIR scenario
based on the above parameters, including R0 and τ . This result in a distribution of values
tend. Additionally, we performed a sensitivity analysis where we demonstrate the effect of
the choice of each of the above parameters.

3 Results

3.1 Estimates of tend from region-specific parameter estimates.

We consider COVID-19 data[9, 10] from six locations: UK, Spain, Germany, France, Den-
mark, and New York. Since our goal is to estimate the parameters (R0 and τ ) in the
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Figure 3: Comparison of the observed trajectory of the number of cases in United kingdom,
New York, Spain, France, Germany, and Denmark (prior to the date where social distancing
was imposed). We provide fits based on region-specific parameters (we choose sets of
parameters that all lie within the 95% confidence set). The different sets of parameters
diverge significantly in the subsequent dates showing the under-determination of this model.

period when no social distancing was imposed, we restricted our analysis to the dates prior
to when social distancing was imposed in each of these regions.

Figure 3 shows the parameter estimates when we fit a SEIR model to each of the six
regions. While each of the models appears to fit the data in each of the regions, there
is considerable uncertainty in the parameter estimates (see Table 1 for 95% CI). We note
that the uncertainty in the key epidemiological parameters that determine the end of social
distancing (the reproduction number R0 and the average time spent in the infectious state
τ) leads to substantial uncertainties in estimates of tend: the time till the end of social
distancing (Figure 4 and Figure 5).

3.2 Estimates of tend using a Bayesian framework.

Due to the large uncertainty in the parameters estimated in each of the locations separately,
we fit our model jointly in all locations using a Bayesian framework (see Methods). The
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Figure 4: The time until social distancing ends (in months) based on the SEIR model,
using different R0 and τ values. For each of the regions (Spain, United Kingdom, New
York, France, Germany, and Denmark) we also marked the parameters that provided a
good fit as shown in Figure 3.

Figure 5: Simulating the number of cases under the social distancing regime where social
distancing is turned on when the number of cases exceeds 35 per 10, 000 and is turned off
when it drops below 5 per 10, 000. We show 3 different sets of parameters matching data
taken from France as seen in Table 2.
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Region R0 τ
[95% confidence interval] [95% confidence interval]

UK 7.6 [6.6,8.0] 27 [26,31]
New York 7.9 [4.5,8.0] 4 [2,4]

Spain 7.6 [5.6,8.0] 11 [10,11]
France 8.0 [7.1,8.0] 35 [29,35]

Germany 8.0 [6.9,8.0] 28 [23,28]
Denmark 8.0 [1.0,8.0] 5 [2,5]

Table 1: The maximum-likelihood estimates for R0 and τ for every region

Bayesian framework assumes a prior distribution (normal) on the parameters R
(0)
0 and

τ (0), and it estimates the posterior probability based on the data obtained in each of the

countries. The estimated global parameters of the model are R
(0)
0 = 7.5(6.6, 8.0), σ2R =

1(1.0, 2.3), τ (0) = 17(7, 28), σ2τ = 121(49, 529). We observe that our parameter estimates
provide an adequate fit to the data in each of the locations (Figure 6). We then sample
the parameters from the most likely distribution of the parameters (R0, τ) and for each
set of parameters we simulate the pandemic scenario, while taking into account that social
distancing reduces R0 by 60%, and under the assumption that immunity is fixed for life
once exposed. The latter assumption is a best-case scenario, i.e., if this assumption is
relaxed then the time to social distancing is expected to increase. Furthermore, we assume
no seasonality, and again, this results in a lower bound on the time for social distancing.
However, since we do not have any strong evidence for specific effects of seasonality, or
specific information about the duration of immunity, we chose to focus on this lower bound
scenario. Under this scenario, our analysis provides a distribution of possible values for tend
(Figure 7). The mode of the distribution is in September 2020, the median is in October
2020 and the variance is 16 months. Based on these results, we obtain a more optimistic
view of the time for the end of social distancing compared to previous analysis [3].

3.3 Sensitivity analysis.

We first wanted to check how our estimates of tend are affected by the choice of the spe-
cific regions. Out of the six regions (United Kingdom, New York, Spain, France, Ger-
many, and Denmark) we iteratively chose four regions and estimated the global parame-

ters (R
(0)
0 , σ2R, τ

(0), σ2τ ). For each such set of parameters, we estimated the median of the
time for social distancing by sampling 1000 samples from the distribution implied by these
parameters, resulting in 1000 estimates of the time in which the social distancing will end.
We observe that the median tend is not greatly affected by the choice of the regions, and
particularly the medians typically range from September 2020 to April 2021 (Figure 8
(a)).

10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.30.20117796doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20117796
http://creativecommons.org/licenses/by/4.0/


Figure 6: The range of trajectories for the number of cases predicted using samples from
distribution implied by the global parameters estimated on all regions.

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.30.20117796doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20117796
http://creativecommons.org/licenses/by/4.0/


Figure 7: The distribution for the time until social distancing will end implied by the global

parameters R
(0)
0 , τ (0), σ2R, σ

2
τ . The median is October 2020, the mode is September 2020

and the variance is 16 months.

We next wanted to examine the effect of the decrease in R0 as a result of social distancing
on our estimates. We therefore fixed the values of R0 and τ to the maximum marginal
likelihood estimates (R0 = 7.5 and τ = 17), and varied the effect of social distancing on R0.
Interestingly, this results in a phase transition behavior where the time for social distancing
will end within the next year if social distancing has a moderate effect (i.e., it reduces R0

by less than 60%), or it will end within many years if social distancing has a large effect
(Figure 8 (b)).

4 Discussion

In this work, we fit a statistical model of transmission dynamics based on the SEIR model
to data from COVID-19 cases from multiple locations. Our approach uses a Bayesian
framework, resulting in a distribution of end dates for social distancing, as opposed to a
specific end time, incorporating the uncertainty in the parameter choices of the model.
This uncertainty is inherent to the SARS-Cov-2 pandemic, as can be viewed by the fact
that R0 has been ranging in the literature from 1.4 to 7.23 [7, 8]. We show that our
approach provides a good fit for the COVID-19 cases in these locations. Our approach
demonstrates that the end of social distancing will be around October 2020, under mild
assumptions.
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Region used for R0 τ Estimated end of
parameter estimation social distancing

United Kingdom 1.1 10 Apr, 2020
New York 7.9 4 May, 2020
Denmark 8.0 5 Jun, 2020
Denmark 5.4 5 Jul, 2020

Spain 7.6 11 Aug, 2020
New York 4.2 3 Sep, 2020
Denmark 1.6 2 Nov, 2020

United Kingdom 7.6 27 Jan, 2021
Germany 7.4 28 Feb, 2021

United Kingdom 4.6 20 Apr, 2021
France 7.6 34 Apr, 2021
Spain 3.9 7 Aug, 2021

Germany 4.0 16 Aug, 2022
Spain 3.4 7 Sep, 2022
France 4.2 26 Feb, 2023

Germany 3.0 19 Feb, 2024
France 1.8 19 Mar, 2024

Table 2: The date of the end of social distancing for different sets of parameters that fit
the data (as shown in Figures 3 and 4)

It is important to note that the assumptions made by our analysis provide a lower bound
on the time for social distancing. Particularly, we assume no seasonality; if COVID-19 is
seasonal, we expect greater spread to appear in winter relative to summer (as has been
observed for influenza). However, it is not clear whether COVID-19 is seasonal, and if so, to
what extent, and we therefore leave this aspect for future analysis, once more data will be
available. Similarly, it is currently unclear whether one acquires permanent immunity or for
a short duration after getting exposed to the disease. Thus, given the lack of information
about immunity, we chose to make the best-case scenario assumption in which immunity
is acquired for life. Other assumptions may prolong the effects of social distancing.

Critically, other interventions such as the introduction of a vaccine, the introduction of
effective medications, or the introduction of a larger number of clinical care resources
such as ventilators, will change the scenarios provided in this analysis. Specifically, the
introduction of a vaccine or effective medications will likely alter the parameters R0 and τ ,
and would therefore result in a shorter time for social distancing. Additional resources such
as ventilators will result in different thresholds set for the application of social distancing,
as social distancing will only be required when there is a risk for a surge that collapses
the health systems. In that case, again, the end of social distancing is expected to arrive
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Figure 8: (a) Different times until social distancing will end based on different choices of the
regions. Each sample was generated by choosing four regions out of the six (UK, France,
Spain, Germany, New York, and Denmark), estimating their global parameters, and then
measuring the median for the time social distancing will end implied by these parameters.
(b) End of social distancing regime as a function of the percentage of R0 during the regime.

sooner.

The above limitations need to be taken into account when interpreting our analysis. How-
ever, we note that as new data on immunity, seasonality, medications, and vaccines becomes
available, these can easily be incorporated into our framework, and a revised analysis can be
performed. We provide freely available code that allows for such an analysis by researchers
in the community (see appendix).

Finally, we would like to point out that the issue of sensitivity of the model to the parameter
choices is not specific to the SEIR model. Specifically, in our hands we have observed a
similar phenomenon for other models as well (data not shown). The limited availability
of data limits the certainty with which parameters of the model can be identified. Thus,
it is critical that estimates from the application of statistical models to such data be
accompanied by formal measures of uncertainty. We believe that the statements resulting
from our analysis should also be taken in the context of the specific locations we analyzed
and the specific model that we used. Possibly, other models or other locations may provide
different estimates.
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A SEIR Model

A.1 Ordinary differential equations

The SEIR model described by Kissler et al. is defined by the following set of ordinary
differential equations:

dS

dt
= −βSI;

dE

dt
= βSI − νE

dI

dt
= νE − γI;

dHH

dt
= γpHI − δHHH

dHC

dt
= γpCI − δCHC ;

dCC
dt

= δCHC − εCCC
dR

dt
= εCCC + δHHH + γpMI

B Code availability

The code used to generate all figures and experiments in this paper can be found here:

https://github.com/doubleBlindGit/COVID19_SocialDistance
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