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We propose a method to detect early-warning information in re-
lation with subtle changes occurring in the trend of evolution in
data time series of the COVID-19 epidemic spread (e.g. daily
new cases). The method is simple and easy to implement on
laptop computers. It is designed to be able to provide reliable
results even with very small amounts of data (i.e. ≈ 10 − 20).
The results are given as compact graphics easy to interpret. The
data are separated into two subsets: the old data used as control
points to statistically define a "trend" and the recent data that
are tested to evaluate their conformity with this trend. The trend
is characterised by bootstrapping in order to obtain probabil-
ity density functions of the expected misfit of each data point.
The probability densities are used to compute distance matrices
where data clusters and outliers are easily visually recognised.
In addition to be able to detect very subtle changes in trend,
the method is also able to detect outliers. A simulated case is
analysed where R0 is slowly augmented (i.e. from 1.5 to 2.0 in
20 days) to pass from a stable damped control of the epidemic
spread to an exponentially diverging situation. The method is
able to give an early warning signal as soon as the very begin-
ning of the R0 variation. Application to the data of Guadeloupe
shows that a small destabilising event occurred in the data near
April 30, 2020. This may be due to an increase of R0 ≈ 0.7
around April 13-15, 2020.
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Introduction
By mid-May 2020, the COVID-19 disease caused by SARS-
CoV2 continues its worldwide spreading with nearby 4 mil-
lions of people infected and 300,000 deceased persons (1).
Faced with this rapid and hardly controllable epidemic dis-
ease, many countries decided to close they frontiers, and to
strongly reduce their industrial and economic activities to de-
crease as much as possible the contagiousness of their pop-
ulation. Although these measures may take different forms,
many countries adopted the containment solution, i.e. the
lock down of people at home, to quickly and strongly en-
hance social distancing in order to reduce the transmission of
the virus among people (2, 3). Such is the case of France,
where the containment started on March 17, 2020 and is

scheduled to be partly released on May 11, 2020, i.e. a dura-
tion of 55 days. On the overall, the containment proved effi-
cient, with a net decrease of the number of patients in critical
situation and necessitating intensive cares. This enabled to
avoid a collapse of the sanitary facilities, particularly the in-
tensive care units. The efficiency of the containment is vari-
able from one region to another, depending on the sanitary
situation at the beginning of the containment. As shown in
our previous study (4), the case of Guadeloupe was particu-
larly favourable to a good control of the epidemic spread due
to several factors: i) the small number of infected persons
at the beginning of the containment, ii) a good and coherent
communication by the sanitary and administrative authori-
ties, iii) a good respect of the social distancing rules by a vast
majority of the population, iv) a tight control of the incoming
passengers by either airport or ship.
Depending on the number of supposed infected people at the
end of the containment period, the sanitary procedures to ap-
ply are different. Such is the case in France, where the eastern
regions, including Ile-de-France around Paris, are tagged as
"red" (i.e. with a widespread circulation of the virus among
the population) while all other regions, excepted Mayotte, are
declared "green". In Allali et al., we show that the situation in
Guadeloupe at the beginning of the post-containment period
will correspond to a pre-epidemic state with a small num-
ber of infected people and an essentially non-infected popu-
lation forming a large reservoir of "susceptible" persons (ie
who may be infected). Since no vaccine is yet available and
because of the high vulnerability of the population, the post-
containment period is particularly critical and a restart of the
epidemic spread, the so-called second wave, is inevitable if
no social distancing and no sanitary control is performed (6).
In Allali et al. (5), we tested a variety of solutions com-
bining social distancing and systematic placement of symp-
tomatic patients in quarantine. We also considered the detec-
tion and placement in quarantine of asymptomatic persons
by means of guided testing in the entourage of the detected
symptomatic people. As discussed by Allali et al. (5), the
model is mainly constrained by three key parameters: R0,Na
and δTQ. Here, R0 is the basic reproduction number which
may be decomposed into several components (see (5) for a
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Fig. 1. Solution domains (δTq,Na) obtained for R0 = 4,3,2,1.5. δTQ is the time-delay elapsed between the apparition of symptoms in a patient and the moment when
this patient is placed in quarantine. Na is the average number of asymptomatic persons detected and placed in quarantine when a symptomatic patient is detected. The
green domains represent the models for which the epidemic spread is controlled. The red domains are the set of model for which the epidemic spread is uncontrolled with an
exponential growing. The solid red lines represent the boundary between both domains and where the models are unstable with oscillations and large fluctuations.

detailed discussion). Na is the average number of asymp-
tomatic persons that are supposed to be detected and placed
in quarantine each time one symptomatic patient is identi-
fied. δTQ is the time delay necessary to isolate a new symp-
tomatic patient together with the asymptomatic identified in
her/his entourage. A main result of our study (5) is that, de-
pending on the values assigned to the R0, Na and δTQ pa-
rameters, the spread control may be either stable or unstable.
This allowed us to identify sub-domains in the 3D solution
space with coordinates (R0,Na, δTQ (Fig. 1). In the case
where a stable solution is obtained, the exponential epidemic
spread is rapidly stopped and followed by a sharp damping
with a small number of patients needing intensive cares. An
example of such a damping is shown in Figure 2B for the
Turkish data. In the case of an unstable solution, the ini-
tial exponential increase is not damped and the dreaded sec-
ond wave occurs. We also show that the stable and unstable
solution domains are separated by a narrow critical bound-
ary where the effective basic reproduction number R0 ≈ 1
(1). On this boundary, both the exponential divergence and
the sharp damping are absent, and they are replaced by os-
cillating characteristics (i.e. number of new infected, criti-
cal cases and deceased persons) with a period of one or two
weeks. Interestingly, this seems to be case of the situation
both in the United States of America (Fig. 2A) and in Swe-
den (Fig. 2B) where strong oscillations are observed in the
time series of the number of daily new deaths. The reader
can compare these time-series with the synthetic curves of
Figure 6A-D in Allali et al. (5). The oscillations visible in
the curves for United States of America and for Sweden may
not be attributed to seasonal effects (7) but could be due to
stochastic resonance (8). Such a critical situation should be
avoided because the absence of damping produces an ever-
growing number of deceased persons. Ultimately, the entire
population will have been contaminated.

In the present study, we address the problem of the real-
time monitoring of the epidemic situation during the post-
containment period. The aim of this monitoring is to control
that the situation remains in the domain of stable solutions as
described by Allali et al. (5) and that it does not evolves dan-
gerously toward the critical boundary. In the next Section,
we present some simulations performed with the stochas-
tic model developed in Allali et al. (4). These simulations

are performed with a time-varying R0 in order to cross the
critical boundary from a stable solution to an unstable one.
Then, we propose a detection method able to detect subtle
changes in the data time-series and susceptible to constitute
early-warning signals indicating that the sanitary situation is
evolving toward an unstable configuration. We develop this
method by keeping in mind that it must be as simple as pos-
sible and easy to implement.

Method

This Section presents the method used hereafter and designed
to help detecting early-warning signals of possible desta-
bilisation of the COVID-19 spread control during the post-
containment period.
The aim of the method is to help to detect as early as possible
subtle changes in the time-series of available data (i.e. daily
or cumulative number of new infected, new deaths, etc.).
There exist a huge amount of methods able to detect sub-
tle changes, invisible for the human eyes, in time series (see
e.g. (10, 11) for synthetic and real data examples). How-
ever, most of these methods are not suitable for our purpose,
mainly because we have to deal with a very small number of
data points (see e.g. Royall (12) for a discussed on the pitfalls
of small-sample statistics). This is the main reason why we
developed a purposely designed method able to tackle with
this particularity. The method discussed hereafter may con-
stitute the algorithmic core of change-point detection, outlier
signalling and clustering of data sets.
The problem we address is explained in Figure 3. Suppose
that we have a small number of data points {d1,d2, · · · ,dN}
forming a short time-series corresponding, for instance, to
the number of new infected people. Using these points, we
want to check if the most recent data points, hereafter called
the "test" points (red dots Fig. 3), significantly depart from
the trend (purple line Fig. 3) defined by the older data points,
called the "control" points (black dots Fig. 3). We admit that
the older data used to determine what we call the trend may
contain some outliers that we also want to identify.
As stated above, we want to design an as simple method as
possible in order to give the user the maximum allowance of
adaptation to the data at hand depending on her/his exper-
tise. As illustrated in Figure 3, the control points are scat-
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Fig. 2. Daily number of new deaths recorded in USA (A), and in Turkey and Sweden (B). The conspicuous oscillations in the USA and Sweden curves are typical of a critical
equilibrium near a tipping point (i.e. somewhere on a critical boundary in Fig. 1. The bell-shaped curve of Turkey is typical of a stable damping of the epidemic spread (i.e.
somewhere in a green domain in Fig. 1). Data are from (9).

Fig. 3. Principle of the method proposed in the present study. A small data set is separated into two subsets. The subset of "control" points (black dots) is used to define a
trend (solid straight line in purple). The trend is continued (dashed purple line) toward the subset of "test" points (red dots) in order to test whether or not these "test" points
remain coherent with the trend of the "control" points. The method should be able to distinguish coherent "test" points (in the elliptic solid line) from incoherent "test" points
(elliptic dashed line). The method should also be able to determine the change-point (marked with a red ?) as precisely as possible.

tered and, depending on the importance (the weight) given to
each control point, the definition of the trend is fuzzy. The
idea at the root of the method is to explore the set of all ac-
ceptable trends by using a bootstrap technique where a very
large number of trends are determined by assigning different
weights 0≤ wi ≤ 1 to the control points (Fig. 4A). The mis-
fits δi between the trends and the data points di (Fig. 4B)
are stored and subsequently used to compute the normalised
"discrepancy histograms" hereafter called "probability den-
sity functions" (pdf’s) fi. The pdf’s are used to statistically
identify clusters of coherent and incoherent data points (Fig.
4C).
Figure 5 shows the results for the different stages of the com-
putational procedure. In this example, the experimental re-
covery of the probability density functions is achieved by fit-
ting a trend model to the subset of control data points (here

points number 1 to 9) including the outlier d6. Bootstrap is
done by fitting the trend model a very large number of times
(≈ 1000 times) with real random weights assigned to the data
points (i.e. stage A of Fig. 4). The choice of the trend model
is free and depends on the particular data set to analyse. In
the present example, we use polynomials of degree one (i.e.
straight lines) and a least-squares fit. This choice may be
changed according to the data at hand. Figure 5B,C shows
two such fits. Because of the different values given to the
weights, the best-fit lines differ from one fit to the other (blue
solid lines). It is the same for the misfits represented by the
vertical dashed segments connecting each data point to the
best-fit line.
The collection of misfits obtained during the bootstrap itera-
tions (i.e. stage B of Fig. 4) are subsequently used to con-
struct normalised histograms (i.e. stage C of Fig. 4) which
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Fig. 4. Principle of the bootstrap implemented in the method. A) The trend model is fitted to the control points a great number of times with different random weights
0≤ wi ≤ 1 assigned to the control points. B) The bootstrapped misfits (i.e. the discrepancies between the data points and the trend) are stored. C) The misfits are used to
construct a normalised histogram (i.e. a probability density function) for each data point.

approximate the probability density functions f1,f2, · · · ,f12
(Fig. 5D). At this stage of the processing chain, some inter-
pretation is already made possible. For instance, it can be
observed that the pdf of data 6 (blue curve on the right part of
the plot) seems to depart from the set of pdf corresponding to
the other points used to perform the fits (black curves grouped
toward the centre of the graph). A quantitative assessment of
the discrepancies between pdf fi and fj may be obtained with
measures like, for instance, the Kullback-Leibler information
(see e.g. Section A1-4 of Martinez et al. (13)),

KL(fi,fj) =
∫
fi(ξ) log

[
fi(ξ)
fj(ξ)

]
dξ, (1)

the Jenssen-Shannon divergence (14), also called the infor-
mation radius,

JS(fi,fj) = KL(fi,
fi+fj

2 ) + KL(fj ,
fi+fj

2 ), (2)

and the L1 norm,

L1(fi,fj) =
∫
|fi(ξ)−fj(ξ)|dξ, (3)

which is twice the total variation distance.

The KL measure is non-symmetrical and may take infinite
values. It is not a metric and does not satisfy the triangle in-
equality. Such is not the case of JS which is symmetrical and
is a metric such that JS = 0 for identical distributions and
JS = 2log2 for maximally different distributions. The L1
norm is well-defined for arbitrary probability density func-
tions and is such that 0≤ L1(fi,fj)≤ 2, the minimum value
corresponds to fi = fj and the maximum value is obtained
when the supports of fi and fj are disjoint.

The distance measures defined in equations 1-3 may be used
to compute a symmetric distance matrix D filled with the
distances of all pairs (fi,fj) that can be formed with the set
of experimental pdf like those shown in Figure 5D. In the
present example, the matrix D is computed with the L1 norm
and counts 122 entries, including the diagonal self-distances
(i.e. L1(fi,fi) = 0 for i= 1, · · · ,12).

Figure 5E shows the D matrix represented in its natural time
ordering, i.e. with the lines and columns ordered according
to the time index. The distance matrix only contains a part of
the information brought by the pdf’s of Figure 5D, however
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Fig. 5. Implementation of the method proposed in the present study. A) A small set of data points is separated into two subsets: the "control" points (black dots) and the "test"
points (red dots). In the case of on-line change-point detection, the "test" points are the more recent data and the "control" points are the oldest data. B) The "control" points
are used to define a trend model, here a straight line (blue line) adjusted by least-squares fit. The adjustment of the trend is done by giving a random weight 0 ≤ w ≤ 1 to
each "control" point (e.g. a data point with w = 0 is not considered in the adjustment). The discrepancies between the fitted line and the data points (vertical dashed lines)
are stored to subsequently construct the probability density functions (pdf’s) shown in (D). C) Another example of trend adjustment obtained with different weights assigned
to the data points: the discrepancies are different from those obtained for case (B) and they are stored to compute the pdf’s. D) Experimental probability density functions
fi obtained by normalising the histograms of the discrepancies obtained for each data point. E) Matrix D filled with the distance between each pairs of pdf’s. Pixel (i, j)
corresponds to the distance L1(fi,fj) (eq. 3) between pdf fi and pdf fj . The diagonal is filled with zeros because L1(fi,fi) = 0. For example, column 9 and line 9 of
the matrix give the distances between pdf f9 and all pdf f1,f2, · · · ,f12. The colour bar goes from 0 (blue) to 2 (yellow). F) Reorganised matrix D∗ obtained by permuting
the lines and the columns of D so that the entropy (i.e. complexity) of D∗ is minimum. This reorganisation may (but not systematically) be useful to enhance particular
patterns that are not apparent in the original D matrix. Graphs B and C correspond to stage A in Figure 4, and graph D corresponds to stage C in Figure 4.

this representation allows to easily identify clusters of coher-
ent data points that are grouped in a time interval. A quick
look at Figure 5E reveals the existence of a small cluster of
short distances that appears as a blue square in the upper-right
part of the matrix. This cluster corresponds to the data points
{d10,d11,d12} which are statistically coherent and grouped
on the time axis. The remaining parts of the matrix are less
structured, with pixels of small to high distances (blue to yel-
low).

More patterns can sometimes be seen in the matrix after re-
ordering the columns and the lines in order to minimise the
entropy of the image. This is simply achieved by permut-
ing the lines and the columns in the same way in order to
keep the matrix structure. The rearranged matrix D∗ is rep-
resented in Figure 5F. We recognise the cluster of data points
{d10,d11,d12} in the lower-left corner of the matrix (this
particular position is not mandatory). However, other fea-
tures now appear, with a diagonal band of low-distance pix-
els showing that the "control" data points {d1, · · · ,d9} used
to fit the trend model during the bootstrap are statistically
coherent. A noticeable exception is point d6 which locates
in the upper right corner of D∗ and shares no low-distance
pixel with any other data point (i.e. both the line 6 and the
column 6 of the matrix do not contain blue pixels). We may
then conclude that data point d6 is an outlier. The fact that

the cluster of blue pixels {d10,d11,d12} is not clearly dis-
joint from the blue diagonal band indicates that some data
points in {d10,d11,d12} are not all statistically disjoint from
some points in {d1,d2,d3,d4,d5,d7,d8,d9}. Indeed, a care-
ful examination of the lower-left part of D∗ reveals that data
{d10,d11} share blue/green pixels with data {d4,d7}. Such
is not the case of point d12 which only shares blue pixels with
its companions of cluster, i.e. the data points {d10,d11}.
To conclude this methodological section, we may claim that
our detection method is able to reliably identify both outliers
and data points marking a change with respect to a trend de-
fined by older data. This identification relies on an exami-
nation of distance matrix represented in its natural ordering
(Fig. 5E) and in its low-entropy reordered configuration (Fig.
5F). Thanks to the bootstrap, it is possible to process very
small data sets, a characteristic mandatory to perform an on-
line analysis of the data.

Analysis of a simulated destabilisation of
spread control
We now address the main question of the present study,
namely the online analysis of a simulated destabilisation of
the COVID-19 spread control. We use the stochastic com-
puter code developed in (4, 5) to simulate a situation where
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Fig. 6. Analysis of a data corresponding to a slow destabilisation of spread control. A) Time series of the daily number of new infected people. Filled black dots = control
points used to fit the trend model, filled green and red dots = data points to be tested. B) Probability density functions obtained by bootstrap. Thin dashed curves = pdf’s of
data used to fit the trend model, coloured curves = pdf’s of data to be tested. C) Distance matrix D (see text for explanations of marked areas). Colour bar range from 0 to 2.

Fig. 7. Strategy of on-line monitoring with a sliding procedure where the sets of control and test points are moved along the time axis at each iteration. A1) First iteration
with control points {d6, · · · ,d20} (filled black dots) and test points {d21, · · · ,d25} (red dots). B1) Corresponding pdf’s for a linear trend model. C1) Distance matrix D
where the set of test points does appears coherent with the control points. A2-C2) Second iteration of the procedure with control points {d11, · · · ,d25} and test points
{d26, · · · ,d30}. A3-C3) Third iteration with control points {d16, · · · ,d30} and test points {d31, · · · ,d35}. The set of test points appears as an isolated blue square in the
upper-right part of the distance matrix (C3), indicating that a change-point occurred at day 31.
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we start from a stable convergent solution to cross the criti-
cal boundary in the solution domain (Fig. 1. As recalled in
the Introduction, and discussed in details by Allali et al. (5),
the critical boundary may be crossed by varying a single or
several of the R0, Na and δTQ parameters. In the simulation
discussed in the present study, we chose to vary R0 while
keeping both Na and δTQ constant. The choice to vary only
R0 is motivated by the desire to simulate a likely situation
where social distancing is gradually deteriorates inside the
population of Guadeloupe. That may be due to some over-
estimate of the safety of the situation which incites people to
be less vigilant. Such an amplification of the epidemic risk is
comparable to the well-known fact that accidents and catas-
trophes often occur at the end of a dangerous period, when
people abusively consider they are now safe.
We define a trajectory starting at point PS = (R0 = 1.5,Na =
1, δTQ = 3) corresponding to a stable and damped control of
the epidemic spread. Point PS is located in the green domain
of the R0 = 1.5 graph of Figure 1. The end point of the
trajectory PE = (R0 = 2.0,Na = 1, δTQ = 3) is located in
the unstable red domain in the R0 = 2.0 graph of Figure 1.
In order to simulate a situation where an insidious and subtle
change of stability conditions occur, we linearly change R0
from 1.5 to 2.0 between day 31 and day 50 of the simulation.
The values of the other parameters are given in Table 1.
Without loss of generality, we analyse the simulated number
of daily new infected people shown in Figure 6 A. The first
half of the curve regularly decreases, indicating that the epi-
demic spread control is efficient. A conspicuous change of
slope occurs at time 35 where a clear change of trend is vis-
ible. However, this change of slope is seen with a delay of 5
days since we started to increase R0 at time 30. In order to
test whether our method is able to detect the change of R0 at
time 30, we use a set of control points {d10, · · · ,d25} to fit
the trend model in the bootstrap procedure (black dots in Fig.
6 A). These control points belong to a period where the situ-
ation is stable with a good damping of the epidemic spread.
The points to be tested go from day 26 to day 40. The points
{d26, . . . ,d30} shown as green dots in Fig. 6 A) belong to
the stable period like the control points, and the data points
{d31, . . . ,d40} belong to the beginning of the destabilisation
period when R0 start to increase slowly (red dots in Fig. 6
A).
The bootstrapped probability density functions are shown in
Figure 6B where the dashed black curves represent the pdf’s
of the control points and the coloured curves represent the
pdf’s of the test points. The distance matrix is displayed in
Figure 6C in its natural order form D. In the present example,
the rearranged distance matrix D∗ is not particularly infor-
mative and is not shown. The distance matrix contains sev-
eral interesting features, some of them are emphasised with
coloured rectangles in Figure 6C.
The principal features visible in the distance matrix are: i) a
large square, with a coherent texture, going from day 10 to
day 30; ii) a small square area of coherent texture, enclosed
in red, going from day 31 to day 35; iii) a small square area
with a more heterogeneous texture, enclosed in violet, going

from day 36 to day 40.
The large square going from day 10 to day 30 contains all
control data points including the test points {d26, · · · ,d30}
enclosed by a green square. This indicates that these test
points do not significantly depart from the trend constrained
by the control points. This is normal since these points be-
long to the stable period where R0 = 1.5. As can be checked
in Figure 6B, the pdf’s of these test points largely overlap the
pdf’s of the control points.
The area enclosed in red square corresponds to the test points
{d31, · · · ,d35} belonging to the very beginning of the desta-
bilisation period. The distances between these points and the
control points are contained in the two red dashed rectangles
that are mainly filled with yellow pixels, i.e. corresponding
to large distances. This clearly indicates that the set of test
points {d31, · · · ,d35} significantly departs from the trend de-
fined by the control points. Consequently, we may safely
conclude that "something happened" at day 31. The fact that
the corresponding pdf’s are located on the right side with re-
spect to the pdf’s of the control points indicates that there is
a positive bias in the misfits. Such a positive bias is typical of
a decrease of the slope of the trend, indicative of a route to a
possible destabilisation.
The area enclosed by a violet square corresponds to the test
points {d36, · · · ,d40}, i.e. during a period where R0 contin-
ues to increase, making the situation en route toward the ex-
ponential divergence after passing the critical boundary at the
tipping point which occurs at day 35 with R0 = 1.625. For
these test points, the disagreement with the trend model is
even more important, and the distances of these points with
all other points are large (i.e. yellow pixels in the hatched
rectangles). These test points thus firmly confirm the occur-
rence of the change announced with the analysis of the test
points {d31, · · · ,d35}.
A last thing that can be found in the distance matrix of Figure
6C are the presence of outliers. Such is the case of data point
d12 which appears isolated from the other control points in
the sense that line 12 and column 12 are principally filled
with yellow pixels corresponding to the largest distances.
The same is observed to a lesser extent for data point d18.
A strategy of on-line monitoring is shown in Figure 7 where
a sliding procedure is applied to the data. In the top row
of the Figure, the procedure starts with given sets of con-
trol points {d6, · · · ,d20} and test points {d21, · · · ,d25} (Fig.
7A1). The corresponding pdf’s and the distance matrix show
that both sets of control and test points are mutually coher-
ent and that no clear change point appears (Fig. 7B1-C1).
In the next iteration of the sliding procedure, the test points
of the preceding iteration are included in the set of control
points {d11, · · · ,d25} and new test points {d26, · · · ,d30} are
considered (Fig. 7A2). Again, no clear change point is vis-
ible, and we proceed with the next iteration of the proce-
dure where control points {d16, · · · ,d30} and new test points
{d31, · · · ,d35} (Fig. 7A3). Now, the set of test points appears
as an isolated self-coherent blue square in the upper-right cor-
ner of the distance matrix (Fig. 7C3). This indicates that the
test points are incoherent with respect to the control points as

Allali et al. | Monitoring the post-containment COVID-19 crisis medRχiv | 7



Fig. 8. Analysis of the data of Guadeloupe with a sliding procedure as in Figure 7. A1) First iteration with control points {d25, · · · ,d40} (filled black dots) and test points
{d41, · · · ,d64} (red dots). B1) Corresponding pdf’s for a linear trend model. C1) Distance matrix D where the control points enclosed by a white rectangle are coherent
with the test points {d41, · · · ,d48}. The test points {d49, · · · ,d64} constitute a disjoint blue self-coherent area in the upper-right part of D. A2-C2) Second iteration of the
procedure with control points {d28, · · · ,d43} and test points {d44, · · · ,d64}. A3-C3) Third iteration with control points {d31, · · · ,d48} and test points {d49, · · · ,d64}.
In all iterations, the test points {d49, · · · ,d64} are clustered in an isolated blue area in the upper-right part of the distance matrix, indicating that a change-point occurred
near day 49 (i.e. April 30, 2020). Colour bar range from 0 to 2.

previously seen in the discussion of Figure 6.
To conclude with this Section, we may claim that our method
is able to reliably detect subtle changes in the trend of the
time-series of daily new infected persons (Fig. 6A). This de-
tection was possible as early as day 30, i.e. precisely when
R0 begins to increase slowly and five days before a change
of trend becomes visible (i.e. at time 35).

Analysis of a Guadeloupe data set
The data used in the present study are shown in Figure 8A.
They correspond to the cumulative number of infected per-
sons with COVID-19 in Guadeloupe and presenting severe
symptoms. The time series goes from March 13, 2020 to May
15, 2020. The data are communicated every day by the Uni-
versity Hospital and sanitary services to the Regional Health
Agency (Agence Régionale de Santé in French). Data for
France are available of the web site of Santé Publique France
(15) (see also Alamo et al. (16) for a review of open data
repositories).
Three iterations of a sliding procedure in the same spirit of
the one presented in Figure 7 are shown in Figure 8. At each
iteration, the set of control points (black dots) is moved along
the time axis by a step of 3 days, and the remaining data are
all included in the set of test points (red dots). In order to ac-
count for the curvature of the time-series formed by the con-
trol points, we use a polynomial of degree 2 as trend model.
The bootstrapped pdf’s and the distance matrices are shown
in Figure 8B and C respectively.
The first iteration is performed with control points
{d25, · · · ,d40} and test points {d41, · · · ,d64} (Fig. 8A1).

The pdf’s of the control points are well-grouped (Fig. 8B1)
and the distance matrix (Fig. 8C1) shows that the set of test
points is divided in two subsets. The first one counts the
test points {d41, · · · ,d48} which are grouped in a blue do-
main that may not be considered significantly disjoint from
the set of control points. The second subset of test points
{d49, · · · ,d64} constitutes a disjoint blue self-coherent area
in the upper-right part of D. In next two iterations, the inco-
herent characteristic of the data points {d49, · · · ,d64} is con-
firmed. This indicates that a change-point is likely to have
occurred near day 49 (i.e. April 30, 2020).

The similarity between the Guadeloupe results (Fig. 8) and
the synthetic examples (Fig. 5 and 7) allows to suspect that
a subtle change occurred in the data around April 30, 2020.
The right-shifted position of the pdf’s after this date (Fig.
8B3) indicate that the change is in the sense of a slight accel-
eration of the number of infected people. This may be inter-
preted as a small increase of the basic reproduction number
R0. Owing to the fact that the data are the cumulative num-
ber of infected persons presenting severe symptoms (i.e. sick
enough to go see the doctor), a delay of about 2 weeks is
likely between the change of R0 and the occurrence of the
subtle change detected on April 30 ((5)). This would place
the R0 change near April 15, i.e. approximately at the date
when French President Mr Macron announced that the post-
containment period will start on May 11, 2020. This coinci-
dence may reflect the fact that the announcement of the con-
tainment end made people more confident and less strict in
their compliance with the sanitary rules. If we accept this
scenario, we find that the basic reproduction number should
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be augmented to R0 ≈ 0.7 after April 13-15.

Concluding remarks
The method proposed in the present study is easy to im-
plement and relies on simple statistical considerations. The
computing time is very short and the results are displayed in
an easily understandable form (e.g. Fig. 5).
The simulation test of Figure 6 shows that early warning sig-
nals announcing small changes in the conditions of the epi-
demic spread control may be detected several days before the
appearance of a visually clear change point (Fig. 6A). Such a
possibility may help to monitor the evolution of the epidemic
spread during the post-containment period where it is of a
primary importance to detect any disturbance of the spread
control as soon as possible.
The analysis of the Guadeloupe data allows to suspect that a
subtle disturbance occurred in the data around April 30, 2020.
The most recent data available at the time of completion of
the present article show that the disturbance of April 30 is not
due to outliers but instead seems attributable to a persistent
change in the trend. This may be due to an increase of R0 ≈
0.7 around April 13-15, 2020.
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Parameter name Symbol Value Comment
Basic reproduction number R0 1.5, · · · ,2 Time-varying parameter through the contagiousness function ξc.
Detection delay δTQ 1, 2, 3, 4 This parameter is a time difference defined as the delay (in days)

between the apparition of symptoms in a patient and the moment
when this patient is placed in quarantine. This represents the
time delay taken by the sanitary authorities to tackle stop the
contagiousness of a symptomatic patient.

Number of detected asymptomatic Na 0 to 4 Number of asymptomatic people detected in the entourage of
each detected symptomatic patient.

Number of initial asymptomatic ZI 1000
Switching function (lognormal) ζa/s µζ = 5.6

(days)
σζ = 3.9
(days)

This probability function give the switching time dependence
of the contagiousness of asymptomatic, pre-symptomatic and
symptomatic people. ζa/s is taken as a lognormal distribution
with mean and standard deviation given by Ferretti et al. (17).

Contagiousness function (gamma) ξc αξ = 5
(shape)
βξ = 1
(scale)

Represents the time dependence of the contagiousness of asymp-
tomatic, pre-symptomatic and symptomatic people. ξc is taken
as a gamma distribution (18). In the model, the mean and stan-
dard deviation are respectively equal to 5 and 2.2 days.

Fraction of asymptomatic people αa 0.20 αa represents the fraction of asymptomatic with respect to symp-
tomatic patients. αa = 0.2 corresponds to 20% of asymptomatic
and 80% of symptomatic. The value taken in this study is given
by Mizumoto et al. (19).

Recovery time of asymptomatic
and symptomatic

∆Ts 14 days Patients who remained in a given state during the
corresponding recovery time is automatically
switched to the "removed" state.Recovery time of critical ∆Tc 21 days

Recovery time of severe ∆TI 14 days
Switching period from symp-
tomatic to severe

δTs 4-10 days Time window during which a patient may switch
to the next evolution state. For example, a
"severe" patient may switch to "critical" from day
0 to day 4. After day 4, the patient is supposed
medically stabilised. The switching date is
randomly drawn in the time window.

Switching period from severe to
critical

δTc 0-4 days

Switching period from critical to
deceased

δTd 2-4 days

Switching probability from symp-
tomatic to severe

ps 0.14 Probability to switch to the newt state during the
switching period.Switching probability from severe

to critical
pc 0.25

Switching probability from critical
to deceased

pd 0.35

Table 1. Model input parameters. The three first top parameters in the Table (R0, δTQ, Na) have changing values in the different simulations. Other parameters remain
unchanged for all simulations.
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