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Figure C.21: Predictions on excluded countries. Vertical lines show the activation (or inactivation) dates
of NPIs. Shaded areas are 95% credible intervals. Blue and red dots show the observed confirmed cases
and deaths, while blue and red lines show the median model estimates of cases (Ct ) and deaths (Dt ).
Empty dots are not observed by the model. For each country, we show the full window of analysis (from
the start of the epidemic until the first NPI was lifted, or the 30th of May 2020, whichever was earlier;
see Methods).
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Appendix C.5. Posterior predictive distributions

The posterior predictive distribution (Figure C.22) shows the predicted number of cases and
deaths after observing the data. Although these curves can be called ‘fits’, the degree of fit
to the data must be interpreted with great care. The fit is generally tight, but this is partly
due to the inferred latent noise variables ε(C )

t and ε(D)
t . Inferring this latent noise allows

the posterior predictive distribution to closely match the data without overfitting the effec-
tiveness parameters to the data. Such behavior is common in Bayesian models, which often
perfectly interpolate the data without overfitting33. The noise terms can account for peri-
ods where infections grew faster or slower than predicted based solely on the active NPIs.
In such periods, the noise may account for changes in testing, reporting, and unobserved
interventions.
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Figure C.22: Left: Posterior predictive distributions for two exemplary countries. See text. Right: In-
ferred Rt over time.
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Appendix C.6. Calibration without countries used for hyperparameter selec-
tion
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Figure C.23: Calibration in held-out countries with leave-one-out cross-validation. Here we include only
those 35 countries that were not used to select the hyperparameter. We show the first 14 days of cases
and deaths in each country and then extrapolate to future days within the period of analysis. The plot
shows the percentage of observed daily case and death counts that lie within the X% credible interval,
across all countries and days.
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Appendix C.7. MCMC stability results
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Figure C.24: MCMC stability results. Left: R-hat statistic. Values are close to 1, indicating convergence.
Right: Relative effective sample size. A value of 1 indicates perfect decorrelation between samples.
Values above (below) 1 indicate that the effective number of samples is higher (lower) than the actual
number of samples due to negative (positive) correlation, respectively.
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Appendix D. Additional results

Appendix D.1. Estimated R0 by country

Table D.5: Estimated values for R0 by country. The parenthesis give the 95% credible interval which is
often wide. The mean R0 across countries is 3.3.

Country Estimated R0 Country Estimated R0

Albania 3.48 (2.75;4.31) Lithuania 3.23 (2.48;4.03)
Andorra 2.75 (2.14;3.4) Malaysia 2.96 (2.36;3.61)
Austria 3.1 (2.5;3.77) Malta 3.27 (2.48;4.14)
Belgium 3.6 (3.02;4.27) Mexico 3.99 (3.27;4.8)
Bosnia and Herzegovina 3.31 (2.59;4.06) Morocco 3.59 (2.99;4.27)
Bulgaria 3.75 (3.04;4.57) Netherlands 3.16 (2.6;3.75)
Croatia 3.42 (2.7;4.18) New Zealand 2.41 (1.77;3.1)
Czech Republic 3.46 (2.76;4.25) Norway 2.73 (2.15;3.38)
Denmark 2.8 (2.2;3.47) Poland 3.97 (3.2;4.82)
Estonia 2.91 (2.29;3.61) Portugal 3.55 (2.92;4.25)
Finland 2.79 (2.21;3.43) Romania 4.01 (3.35;4.75)
France 3.31 (2.8;3.89) Serbia 3.8 (3.08;4.61)
Georgia 3.56 (2.81;4.39) Singapore 2.95 (2.38;3.56)
Germany 2.85 (2.31;3.46) Slovakia 3.53 (2.71;4.45)
Greece 3.21 (2.61;3.88) Slovenia 2.99 (2.3;3.73)
Hungary 4.03 (3.32;4.82) South Africa 4.47 (3.77;5.27)
Iceland 1.71 (1.13;2.42) Spain 3.6 (3.06;4.23)
Ireland 3.68 (3.09;4.33) Sweden 2.29 (1.76;2.88)
Israel 3.79 (3.09;4.59) Switzerland 2.89 (2.34;3.51)
Italy 3.36 (2.88;3.91) United Kingdom 3.2 (2.67;3.78)
Latvia 3.01 (2.33;3.76)
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Appendix D.2. Collinearity

Appendix D.2.1. The individual effects of school and university closures

The dates of school and university closures coincide nearly perfectly for every country ex-
cept Iceland and Sweden, which closed universities but not schools (Figure 1). As a con-
sequence, the inferred individual effects depend strongly on the inclusion or exclusion of
these countries in the dataset (Figure D.25). If we included all countries, we would con-
clude that university closures were more effective than school closures (black markers in
Figure D.25). However, if we excluded Iceland or Sweden, we would conclude that they
were roughly equally effective. As there is no strong justification for including or excluding
one particular country, we cannot meaningfully disentangle the effects of school and uni-
versity closures. However, there is much more data to determine the joint effect, and it is
indeed much more stable (Figure D.25).









-25% 0% 25% 50% 75% 100%
Average reduction in Rt,
in the context of our data

Schools closed

Universities closed

Schools and univerisities closed

Schools and Universities Sensitivity
Iceland Excluded
Sweden Excluded
Default

Figure D.25: The individual effectiveness of closing schools and of closing universities, as well as the
joint effect of closings school and universities, estimated on all countries (default), all countries except
Sweden, and all countries except Iceland. Median, 50% and 95% credible intervals are shown.

Appendix D.2.2. Co-occurrence of NPIs

Table D.6 shows the total number of days across all countries available to distinguish NPI
effects. For every pair of NPIs (row - column), the entry shows the number of country-
days on which only one of the NPIs was implemented (but not both or neither). Note that
we do not show the traditional collinearity statistics (variance inflation factors and data
correlations) since their applicability to time series data is limited. In particular, the value
of these statistics in our data increases as data for a longer time period becomes available,
which would misleadingly suggest that we could address problems from collinearity by
using less data.
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Table D.6: Total number of days across all countries available to distinguish NPI effects. For every pair of
NPIs (row - column), the entry shows the number of country-days on which exactly one of the NPIs was
implemented. Abbreviations: G.: Gatherings; SBC: Some businesses closed; MBC: Most nonessential
businesses closed; SaUC: Schools and universities closed; SaHO: Stay-at-home order.

G. <1000 G. <100 G. <10 SBC MBC SaUC SaHO
Mask-wearing 1829 1686 1472 1554 1315 1588 1038
Gatherings <1000 143 501 299 620 325 1173
Gatherings <100 358 240 515 284 1030
Gatherings <10 262 403 308 696
Some businesses closed 331 176 898
Most businesses closed 393 569
Schools and universities closed 940

Appendix D.2.3. Correlations between effectiveness estimates

The effectiveness parameters αi are typically negatively correlated with each other for NPIs
which are often used together, reflecting uncertainty about which NPI is reducing R. Ex-
cessive collinearity in the data would result in wide posterior credible intervals with strong
correlations24, but we find weak posterior correlations between effectiveness estimates.
The strongest correlation between any pair of NPIs is −0.42, between "closing schools and
universities" and "closing some businesses" (Figure D.26). The weak correlations are one
indicator that collinearity is manageable with our dataset.

Effect on NPI combinations. To better understand posterior correlations, we visualize
their effect in hosted video files. As we condition on different values for one NPI, we can
see that the estimates of other NPIs change only slightly, always staying well within the
credible intervals in Figure 3. The significance of posterior correlations is small enough that
it is possible to calculate a reasonable approximation to the mean effect of a set of NPIs by
simply combining the mean percentage reductions for each individual NPI (e.g. two 50%
reductions lead to a 75% reduction). For example, this approximation leads to a joint effect
of 75% for all NPIs together, which closely matches the exact mean joint effect of 77%.

Videos are available online here.
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Figure D.26: Posterior correlations between effectiveness parameters αi .

Appendix D.3. Posterior Epidemiological Parameter Distributions

Figure D.27 shows the posterior distributions for variables describing the key delay distribu-
tions in our model: the generation interval, the delay between infection and case confirma-
tion, and the delay between infection and death. We find that the posterior distributions of
these parameters are somewhat tighter than their priors, but they still explore a wide range
of values. This suggests that the data provides evidence, albeit weak, about these delay
distributions (for example, from visual inspection, the data would show that the delay is
longer for deaths than for cases). An exception is the dispersion of the infection to death
delay distribution, which has a very wide prior.
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Figure D.27: Posterior distributions over key epidemiological parameters describing the generation in-
terval and the delays between infection and case confirmation/death.
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Appendix E. Additional discussion of assumptions and limitations

Appendix E.1. Limitations of the data

We only record NPIs if they are implemented in most of a country (if they affect more
than three-quarters of the population). We thus miss NPIs which were only implemented
regionally. For example, a few regions in Germany implemented stay-at-home orders, but
most did not. Thus, Germany is listed as "no stay-at-home order" in our data. Additionally,
our NPI definitions were not perfectly granular. For example, a gathering ban on gatherings
of >15 people and a ban on gatherings of >60 people would both fall under the NPI
"Gatherings limited to 100 people or less", despite likely having different effects on Rt .
Finally, while we included more NPIs than previous work (Table F.7), there are many NPIs
for which we were not able to collect enough high-quality data for our modeling, such as
public cleaning or changes to public transportation.

Of the 41 countries in our dataset, 33 are in Europe. As a result, the NPI effectiveness
estimates may be biased towards effects in Europe, and NPI effectiveness may have been
different in other parts of the world.

Appendix E.2. Model limitations

Independence of country and time. We assume that the effect of NPIs on Rt is constant
across countries and time. However, the exact implementation and adherence of each NPI
is likely to vary. Our uncertainty estimates in Figure 3 account for these problems only to
a limited degree. Additionally, different countries have different cultural norms and age
profiles, affecting the degree to which a particular intervention is effective. For example, a
country where a higher proportion of the population is in education will likely experience a
larger effect from a government order to close schools and universities. Our estimates thus
should be adjusted to local circumstances. To address differences between countries, our
structural sensitivity analysis includes a model where each NPI can have a different effect
per country (Appendix B.2). The average effectiveness estimates across countries in this
model match the conclusions from our default model.

Testing, reporting, and the IFR. Our model can account for differences in testing (and
IFR/reporting) between countries and over time, as discussed in Appendix A. However,
we have not used additional data on testing to validate if it does so reliably. Our model may
struggle to account for changes in the testing regime—for instance, when a country reaches
its testing capacity so that the ascertainment rate declines exponentially. An exponential de-
cline would have the same effect on observations as an unobserved NPI. Consequently, we
cannot quantify its effect on our results (though the sensitivity analyses look reassuring).
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Interaction between NPIs. As discussed in the Results section, our model reports the aver-
age additional effect each NPI had in the contexts where it was active in our data (in the
sense mathematically shown by Sharma et al.9). Figure 3 (bottom left) summarises these
contexts, aiding interpretation. The effectiveness of an NPI can only be extrapolated to
other contexts if its effect does not depend on the context. For example, we may expect
that closing schools has a similar effectiveness whether or not businesses are also closed.
But wearing masks in public may be less effective when a stay-at-home order limits public
interactions.

Growth rates. The functional form of the relationship between the daily growth rate of the
number of infections g t and the reproductive number Rt holds exactly when the epidemic
is in its exponential growth phase, but becomes less accurate as the number of susceptible
people in a population decreases and/or control measures are implemented. However, we
also report results from a renewal process model8 that does not depend on this assumption,
and we find similar effectiveness estimates.

Signalling effect of NPIs. As we explained in the Discussion for school closures, we do not
distinguish between the direct effect of an NPI and its indirect effect as it signals the gravity
of the situation to the public. Conversely, lifting interventions may also have a signalling
effect.

Homogeneous effect of interventions. We work under the implicit assumption that NPIs af-
fect different population groups equally. This could affect results in various ways. For exam-
ple, suppose country A tests an older demographic than country B, and we are considering
the effect of an NPI that mostly affects the older demographic (for example, isolating the
elderly). Then the NPI will appear to have a greater effect on confirmed cases in country A,
breaking the assumption that effects are constant across countries. Our previous discussion
of interpreting results when this assumption is violated applies.
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Appendix F. Overview of previous work

Table F.7: Data-driven, multi-country, multi-NPI studies of the effectiveness of observed (as opposed to
hypothetical) NPIs in reducing the transmission of COVID-19.

Study NPIs studied
Regions/countries

studied
Method

Banholzer et
al., 202023

School closure,
border closure, event
ban, gathering ban,

venue closure,
lockdown, work ban

U.S., Canada, Australia,
Austria, Belgium,

Denmark, Finland,
France, Germany, Greece,

Ireland, Italy,
Luxembourg, the

Netherlands, Portugal,
Spain, Sweden, UK,
Norway, Switzerland

Semi-mechanistic
Bayesian hierarchical

model

Chen and
Qiu, 202021

Travel restriction,
mask-wearing,

lockdown, social
distancing, school

closure, centralized
quarantine

Italy, Spain, Germany,
France, UK, Singapore,

South Korea, China, U.S.

Regression with
delayed effect

Susceptible-Infectious-
Removed (SIR)

model

Flaxman et
al., 20201

School or university
closure, case-based
isolation, ban on

large public events,
social distancing,

lockdown

Austria, Belgium,
Denmark, France,

Germany, Italy, Norway,
Spain, Sweden,
Switzerland, UK

Semi-mechanistic
Bayesian hierarchical

model

Islam et al.,
202020

School closures,
workplace closures,
restrictions on mass
gatherings, public
transport closure,

lockdown

149 countries or regions
Interrupted time
series regression

Liu et al.,
202022

13 NPIs from the
OXCGRT dataset

130 countries and regions panel regression
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Table F.8: Some data-driven studies of the effectiveness of observed NPIs in reducing the transmission
of COVID-19, which study a single-country and/or a single-NPI.

Study NPIs studied
Regions/countries

studied
Method

Choma et al.,
202034

Single aggregated
NPI

22 countries and 25 states

Regression with
Susceptible-Infectious-

Removed-Deceased
(SIRD) model

Dandekar
and

Barbastathis,
202035

General quarantine
and isolation

Wuhan, Italy, South
Korea, and U.S.

A mix of a mechanistic
model and a

data-driven neural
network model

Dehning et
al., 202036

Contact ban,
restrictions on

gatherings, schools,
childcare, businesses

Germany
Bayesian inference of

transmission rate

Gatto et al.,
202037

Various restrictions to
mobility and

human-to-human
interactions

Italy

Susceptible–Exposed–
Infected–Recovered
(SEIR)-like disease
transmission model

Hsiang et al.,
202019

Restricting travel (5
subcategories),
distancing (10
subcategories),
quarantine and

lockdown (2
subcategories),

additional policies (2
subcategories)

China, South Korea, Italy,
Iran, France, U.S. (each

country modelled
individually)

Linear regression on
estimated growth

rates

Jarvis et al.,
202038

Physical (social)
distancing measures

UK
Questionnaire data
and compartmental

epidemic model
Kraemer et
al., 202039

Travel restrictions
and cordon sanitaire

China Regression

Kucharski et
al., 202040 Travel restrictions Wuhan (China)

Various, including
Susceptible-Exposed-
Infectious-Removed

(SEIR) model

Lai et al.,
202041

Case detection and
isolation, travel

restrictions, contact
reductions

China
Travel-network-based

SEIR model

Continued on next page
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Table F.8 – Continued from previous page

Study NPIs studied
Regions/countries

studied
Method

Lorch et al.,
202042

Mobility restrictions,
testing & tracing,

social distancing, and
business restrictions

Tübingen (Germany)
Authors’ own

spatiotemporal model
of epidemics

Maier and
Brockmann,

202043

General quarantine
and isolation

Mainland China
Quantitative fits to

empirical data

Orea and
Álvarez,
202044

Lockdown Spain
Spatial econometric

analysis

Quilty et al.,
202045

Intercity travel
restrictions

Beijing, Chongqing,
Hangzhou, and Shenzhen

(Mainland China)

Branching process
transmission model

Sears et al.,
202046

Mobility changes as a
proxy for

stay-at-home
mandates

U.S.
Difference-in-

differences statistical
model

Siedner et
al., 202047

General social
distancing

U.S.
Interrupted
time-series
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Appendix G. Handling edge cases in the data collection

In our data collection process, we relied on carefully worded definitions of 9 different NPIs
(Table F.7), which allowed us to systematically determine the date on which a country
imposed an NPI and, if applicable, the date the NPI was lifted.

In some cases, however, we faced ambiguities in how to interpret the start date of an NPI.
One kind of challenge arose when descriptions of policy measures were less specific than
our NPI definitions (e.g. a ban on “large gatherings” that does not specify the exact number
of people that constitutes a “large gathering”). Another difficulty was due to NPI policies
that made distinctions that we did not make in our own NPI definitions (e.g., an NPI policy
that made a distinction between the number of people able to gather indoors vs outdoors).

To resolve these ambiguities in a consistent manner, our researchers developed a set of prin-
ciples and guidelines that were followed during the data collection process. For each of the
examples below, the relevant sources are available in the data table in the supplementary
material.

Situation: Sometimes only public gatherings are banned, with no explicit ban on pri-
vate gatherings

How we deal with it: We still counted this as a ban on gatherings.

Examples:

• Sweden: In Sweden, they banned all public gatherings of more than 50 people (demon-
strations, religious meetings, theater performances, markets, and other events that
relied on the constitutional freedom of assembly), however, the ban did not have a
mandate to prohibit private gatherings (such as private parties). We counted this as a
ban on gatherings.

• Finland: In Finland, they banned all public gatherings of more than 10 people on
the 16th of March. Although formal restrictions did not apply to private gatherings,
this policy met our definition of a ban on gatherings. (Note that this inclusion seems
particularly valid in light of the fact that, according to Finnish police, the formal
restrictions on public events were widely interpreted to apply to private gatherings as
well, and there were very few reports of large private parties despite the absence of
formal restrictions.)

Situation: The size limits on gatherings sometimes differ between indoor and outdoor
gatherings.

How we deal with it: In these cases, we relied on the limitations on indoor events, as these
events entail a greater risk of transmission.

Example:
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• Spain: In Spain, a range of rules were employed as the country gradually eased re-
strictions on gatherings. In phase 1, cultural events were permitted with up to 30
people indoors and up to 200 outdoors. This was counted as “Gatherings limited to
100 people or less.”

Situation: The size limit on gatherings sometimes differs between different types of
gatherings.

How we deal with it: In this case, researchers would use their best judgment to infer whether
the restriction would apply to most gatherings of a given size.

Example:

• Spain: In Spain, phase 1 of the reopening allowed for cultural events to have up to
30 participants indoors, while social gatherings were limited to 10 people. In this
case, since “cultural events” is broad, we counted this as a case of “gatherings limited
to 100 people or less.” However, if for example all gatherings above 5 people had
been banned with an exception for funerals, we would have counted this as “gather-
ings limited to 10 people or less,” since the exemption only applied to a minority of
gatherings.

Situation: Limitations on gathering sizes are not clearly given, yet a policy stating that
“large events are banned” is in place.

How we deal with it: Our researchers used the relevant context to infer the most likely scope
of the policy.

Example:

• Albania: on March 8 “authorities had also ordered cancellations of all large public
gatherings including cultural events and were asking sporting federations to cancel
scheduled matches”. The events that are mentioned here are multi-thousand person
gatherings, and so we took March 8th to be the start date of “Gatherings limited to
1000 people or less”. However it was unclear whether gatherings of 100-1000 would
also have been banned, so we did not yet say that “Gatherings limited to 100 people
or less” was instantiated.

Situation: Only some schools were closed, or schools reopened gradually.

How we deal with it: Since our definition of the NPI is that “Most schools are closed”, we did
not count the closure of just a few schools or school years sufficient to meet this criteria.
Similarly, if schools reopened for only a very limited number of year groups, for example
for final year students sitting exams, we did not count this as a lifting of the “most schools
closed” NPI.
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Examples:

• Sweden: Sweden kept all schools through 9th grade open, but closed high schools
(>16 year olds). In this case, we did not count this as “Most schools closed”, since
more than 75% of students are below 9th grade.

• Czech Republic: After closing all schools on March 13, the Czech Republic allowed
schools to reopen for teaching in some contexts from May 11 (specifically for students
in their final year of primary school or high school preparing for exams). However,
we still counted this as “Most schools closed” since the majority of students were not
in school. We recorded the end date for school closure to be June 8, when all schools
reopened.

Situation: In a country where most non-essential businesses were closed, the lifting
of business closures is gradual, and businesses in different sectors are successively
allowed to open.

How we deal with it: Countries reopen sectors in different, idiosyncratic ways and succes-
sions. Given the available data, it is not feasible to create a principle that can be applied
unambiguously to every single case without some involvement of researcher judgment. The
general guideline we used was: If only a few, low-risk businesses (e.g., bike stores, hard-
ware stores, etc.) are additionally allowed to reopen, then we still counted this as “Most
nonessential businesses closed.” However if any one of the following criteria are met, then
we counted “Most nonessential businesses closed” as having lifted, but the “Some businesses
closed” NPI was still in place:

• All regular retail stores, with only a few exceptions e.g. size limitations, are open
• Contact-based services, such as hairdressers and tattoo parlors, are open
• Restaurants and bars are open and serving indoors

We decided that meeting any one of these criteria is a sufficient condition for taking a coun-
try from “Most nonessential businesses closed” to “Some businesses closed.” This heuristic
was partly based on the fact that the status of these categories appeared to be consistently
correlated, meaning that, even in the absence of complete specifications as to what had
reopened or not, it was typically possible to infer the overall level of reopening based on
either of these categories. Meeting at least one of these criteria was considered a necessary
condition for ending the “Most nonessential businesses closed” NPI.

Examples:

• Slovakia: On April 22, retail operations and services up to 300 m2 opened. Since this
meets one of the sufficient conditions, we counted April 22 as the end date for “Most
nonessential businesses closed”

• Ireland: On May 18, the following reopened: hardware stores, builders, merchants
and those providing essential supplies, retailers involved in the sale and repair of
vehicles, certain office supply stores. Because this white list does not meet any of the
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three criteria, Ireland’s end date for “Most nonessential businesses closed” was not
counted as May 18.

• Czech Republic: On April 20, several businesses reopened, including farmer’s mar-
kets, marketplaces, locksmiths, bike shops, car dealers, electronics stores. At this
point, none of the criteria were met, so we recorded the Czech Republic as still hav-
ing “Most nonessential businesses closed”. On May 11, a long list of businesses re-
opened, including barbers, hairdressers, museums, all establishments in sufficiently
large shopping centers, shows with up to 100 participants, and restaurants with a
window facing the street. Since contact-based services (hairdressers) and all retail
establishments in sufficiently large spaces were allowed to reopen, we counted May
11 as the end date for the “Most nonessential businesses closed” NPI.

• Croatia: On April 27, all “trade activities” (except within shopping malls), service jobs
that don’t involve physical contact, museums, libraries, and galleries opened. Since
the criteria regarding “all retail stores being open” was met, we counted April 27 as
the end date for “Most nonessential businesses closed”.

63

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


Appendix H. All model equations

This section will mainly be of interest to readers that wish to re-implement the model.

Variables are indexed by NPI i , country c, and day t . All prior distributions are independent.

Data

1. NPI Activations: φi ,t ,c ∈ {0,1}.
2. Observed (Daily) Cases: Ct ,c .
3. Observed (Daily) Deaths: D t ,c .

Prior Distributions

1. Country-specific R0: R0,c ∼ Normal(3.25,κ); κ∼ Half Normal(µ= 0,σ= 0.5).
2. NPI effectiveness: αi ∼ Asymmetric Laplace(m = 0,κ= 0.5,λ= 10). m is the location

parameter, κ> 0 is the asymmetry parameter, and λ> 0 is the scale parameter.
3. Infection Initial Counts:

N (C )
0,c = exp(ζ(C )

c ),

N (D)
0,c = exp(ζ(D)

c ),

ζ(C )
c ∼ Normal(µ= 0,σ= 50),

ζ(D)
c ∼ Normal(µ= 0,σ= 50).

4. Observation Noise Dispersion Parameters:

Ψcases ∼ Half Normal(µ= 0,σ= 5), (H.1)

Ψdeaths ∼ Half Normal(µ= 0,σ= 5). (H.2)

Hyperparameters

1. Growth Noise Scale, σg = 0.2.

Delay Distributions

1. Generation interval distribution13,14:

µGI ∼ Normal(µ= 5.06,σ= 0.3265),

σGI ∼ Normal(µ= 2.11,σ= 0.5).

64

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


2. Time from infection to case confirmation T (C )13,15,16:f

µinf→conf ∼ Normal(µ= 10.92,σ= 0.94),

Ψinf→conf ∼ Normal(µ= 5.41,σ= 0.27).

This distribution is converted into a forward-delay vector:

T (C )[t ] =
{

1
ZC

Negative Binomial(t ;µ=µinf→conf,α=Ψinf→conf) t < 32

0 otherwise
,

with ZC =
31∑

t ′=0
Negative Binomial(t ′;µ=µinf→conf,α=Ψinf→conf),

i.e., the delay follows a truncated and normalised negative binomial distribution.
3. Time from infection to death T (D)f13,15,17:

µinf→death ∼ Normal(µ= 21.82,σ= 1.01),

Ψinf→death ∼ Normal(µ= 14.26,σ= 5.18).

This distribution is converted into a forward-delay vector:

T (D)[t ] =
{

1
ZD

Negative Binomial(t ;µ=µinf→death,α=Ψinf→death) t < 48

0 otherwise
,

with ZD =
47∑

t ′=0
Negative Binomial(t ′;µ=µinf→death,α=Ψinf→death),

i.e., the delay follows a truncated and normalised negative binomial distribution.

Infection Model

Rt ,c = R0,c ·exp

(
−

I∑
i=1

αi φi ,t ,c

)
, where I is the number of NPIs.

αGI =
µGI

σ2
GI

,

βGI =
µ2

GI

σ2
GI

,

g t ,c = exp

(
βGI(R

1
αGI
c,t −1)

)
−1.

fα in the definition of the Negative Binomial distribution is the dispersion parameter. Larger values of α
correspond to a smaller variance, and less dispersion. With our parameterisation, the variance of the Negative

Binomial distribution is µ+ µ2

α .
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N (C )
t ,c = N (C )

0,c

t∏
τ=1

[
(gτ,c +1) ·expε(C )

τ,c

]
,

N (D)
t ,c = N (D)

0,c

t∏
τ=1

[
(gτ,c +1) ·expε(D)

τ,c )
]

,with noise

ε(C )
τ,c ∼ Normal(µ= 0,σ=σg ),

ε(D)
τ,c ∼ Normal(µ= 0,σ=σg ).

Observation Modelf

C̄t ,c =
31∑
τ=0

N (C )
t−τ,cT

(C )[τ],

D̄ t ,c =
47∑
τ=0

N (D)
t−τ,cT

(D)[τ],

Ct ,c ∼ Negative Binomial(µ= C̄t ,c ,α=Ψcases),

D t ,c ∼ Negative Binomial(µ= D̄ t ,c ,α=Ψdeaths).
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