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Abstract

Governments are attempting to control the COVID-19 pandemic with nonpharmaceutical
interventions (NPIs). However, it is still largely unknown how effective different NPIs are
at reducing transmission. Data-driven studies can estimate the effectiveness of NPIs while
minimising assumptions, but existing analyses lack sufficient data and validation to robustly
distinguish the effects of individual NPIs. We gather chronological data on NPIs in 41
countries between January and the end of May 2020, creating the largest public NPI dataset
collected with independent double entry. We then estimate the effectiveness of 8 NPIs with
a Bayesian hierarchical model by linking NPI implementation dates to national case and
death counts. The results are supported by extensive empirical validation, including 11
sensitivity analyses with over 200 experimental conditions. We find that closing schools and
universities was highly effective; that banning gatherings and closing high-risk businesses
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was effective, but closing most other businesses had limited further benefit; and that many
countries may have been able to reduce R below 1 without issuing a stay-at-home order.
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Introduction

Worldwide, governments have mobilised vast resources to fight the COVID-19 pandemic. A
wide range of nonpharmaceutical interventions (NPIs) has been deployed, including dras-
tic measures like stay-at-home orders and the closure of all nonessential businesses. Recent
analyses show that these large-scale NPIs were jointly effective at reducing the virus’ ef-
fective reproduction number1, but it is still largely unknown how effective individual NPIs
were. As time progresses and more data become available, we can move beyond estimating
the combined effect of a bundle of NPIs and begin to understand the effects of individual
interventions. This can help governments efficiently control the epidemic, by focusing on
the most effective NPIs to ease the burden put on the population.

A promising way to estimate NPI effectiveness is data-driven, cross-country modelling: in-
ferring effectiveness by relating the NPIs implemented in different countries to the course
of the epidemic in these countries. To disentangle the effects of individual NPIs, we need to
leverage data from multiple countries with diverse sets of interventions in place. Previous
data-driven studies (Table F.8) estimate effectiveness for individual countries2–4 or NPIs,
although some exceptions exist1,5–8 (summarised in Table F.7). In contrast, we evaluate
the impact of 8 NPIs on the epidemic’s growth in 34 European and 7 non-European coun-
tries. To isolate the effect of individual NPIs, we also require sufficiently diverse data. If
all countries implemented the same set of NPIs on the same day, the individual effect of
each NPI would be unidentifiable. However, the COVID-19 response was far less coordi-
nated: countries implemented different sets of NPIs, at different times, in different orders
(Figure 1).

Even with diverse data from many countries, estimating NPI effects remains a challenging
task. First, models are based on epidemiological parameters that are only known with un-
certainty; our NPI effectiveness study, to the best of our knowledge, is the first to include
some of this uncertainty in the model. Second, the data are retrospective and observational,
meaning that unobserved factors could confound the results. Third, NPI effectiveness es-
timates can be highly sensitive to arbitrary modelling decisions, as demonstrated by two
recent replication studies9,10. Fourth, large-scale public NPI datasets suffer from frequent
inconsistencies11 and missing data12. For these reasons, the data and the model must be
carefully validated, and insufficiently validated results should not be used to guide pol-
icy decisions. We collect the largest public dataset on NPI implementation dates that was
validated by independent double entry and perform, to our knowledge, the most extensive
validation of any COVID-19 NPI effectiveness estimates to date—a crucial but largely absent
or incomplete element of NPI effectiveness studies10.

Even with extensive validation, we need to be careful when interpreting this study’s results.
We only study the impact NPIs had between January and the end of May 2020, and NPI
effectiveness may change over time as circumstances change. In particular, lifting an NPI
does not imply that transmission will return to its original level. These and other limitations
are detailed in the Discussion.
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Mask wearing Gatherings <1000 Gatherings < 100 Gatherings < 10 Some businesses
closed

Universities closedSchools closed Stay-at-home orderMost businesses
closed

Figure 1: Timing of NPI implementations in early 2020. Crossed-out symbols signify when an NPI was
lifted. Detailed definitions of the NPIs are given in Table 1.
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Methods

Dataset

We analyse the effects of NPIs (Table 1) in 41 countriesa (see Figure 1). We recorded NPI
implementations when the measures were implemented nationally or in most regions of a
country (affecting at least three fourths of the population). For each country, the window
of analysis starts on the 22nd of January and ends after the first NPI was lifted, or on the
30th of May 2020, whichever was earlier. The reason to end the analysis after the first
major reopeningb was to avoid a distribution shift. For example, when schools reopened,
it was often with safety measures, such as smaller class sizes and distancing rules. It is
therefore expected that contact patterns in schools will have been different before school
closure compared to after reopening. Modelling this difference explicitly is left for future
work. Data on confirmed COVID-19 cases and deaths were taken from the Johns Hopkins
CSSE COVID-19 Dataset13. The data used in this study, including sources, are available
online here.

aThe countries were selected for the availability of reliable NPI data at the time when we started data collection
and modelling (April 2020); and for their presence in at least one of the public datasets that we used to
cross-validate our collected data. We excluded countries with fewer than 100 cases (or 10 deaths) by March
31, as our model neglects new cases and deaths below these thresholds. We also excluded a small number
of countries if there were credible media reports casting doubt on the trustworthiness of their reporting of
cases and deaths. Finally, we excluded very large countries like China, the US, and Canada, for ease of data
collection, as these would require more locally fine-grained data. 33 of the 41 included countries are in Europe.
As a result, the NPI effectiveness estimates may be biased towards effects in Europe, and NPI effectiveness may
have been different in other parts of the world.

bConcretely, the window of analysis extended until three days after the first reopening for confirmed cases, and
13 days after the first reopening for deaths. These values correspond to the 5% quantile of the infection-to-
confirmation/death distributions, ensuring that less than 5% of the new infections on the reopening day were
still observed in the window of analysis.
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Table 1: NPIs included in the study. Appendix G details how edge cases in the data collection were
handled.

NPI Description
Mask-wearing
mandatory in
(some) public
spaces

A country has mandated mask usage in the public, sometimes limited
to just some public spaces (which the government deems to have a high
risk of infection). For example, some countries mandated mask-wearing
in most or all indoor public spaces but not outdoors.

Gatherings
limited to 1000
people or less

A country has set a size limit on gatherings. The limit is at most 1000
people (often less), and gatherings above the maximum size are disal-
lowed. For example, a ban on gatherings of 500 people or more would
be classified as “gatherings limited to 1000 or less”, but a ban on gath-
erings of 2000 people or more would not.

Gatherings
limited to 100
people or less

A country has set a size limit on gatherings. The limit is at most 100
people (often less).

Gatherings
limited to 10
people or less

A country has set a size limit on gatherings. The limit is at most 10
people (often less).

Some businesses
closed

A country has specified a few kinds of customer-facing businesses that
are considered “high risk” and need to suspend operations (black-
list). Common examples are restaurants, bars, nightclubs, cinemas,
and gyms. By default, businesses are not suspended.

Most nonessential
businesses closed

A country has suspended the operations of many customer-facing busi-
nesses. By default, customer-facing businesses are suspended unless
they are designated as essential (whitelist).

Schools closed A country has closed most or all schools.
Universities
closed

A country has closed most or all universities and higher education fa-
cilities.

Stay-at-home
order (with
exemptions)

An order for the general public to stay at home has been issued. This is
mandatory, not just a recommendation. Exemptions are usually granted
for certain purposes (such as shopping, exercise, or going to work), or,
more rarely, for certain times of the day. In practice, a stay-at-home or-
der was often accompanied or preceded by other NPIs such as business
closures. We account for these other NPIs separately; e.g., when a coun-
try issued a law that both closed businesses and ordered the population
to stay at home, this is encoded as both a business closure and a stay-
at-home order (with exemptions) in the data. In our results, we thus
estimate the additional effect of the order to generally stay at home.
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Data collection

We collected data on the start and end date of NPI implementations, from the start of the
pandemic until the 30th of May 2020. Before collecting the data, we experimented with
several public NPI datasets, finding that they were not complete enough for our modelling
and contained incorrect dates.c By focusing on a smaller set of countries and NPIs than these
datasets, we were able to enforce strong quality controls: We used independent double
entry and manually compared our data to public datasets for cross-checking.

First, two authors independently researched each country and entered the NPI data into sep-
arate spreadsheets. The researchers manually researched the dates using internet searches:
there was no automatic component in the data gathering process. The average time spent
researching each country per researcher was 1.5 hours.

Second, the researchers independently compared their entries to the following public datasets
and, if there were conflicts, visited all primary sources to resolve the conflict: the EFGNPI
database14, the Oxford COVID-19 Government Response Tracker15, and the mask4all dataset16.

Third, each country and NPI was again independently entered by one to three paid con-
tractors, who were provided with a detailed description of the NPIs and asked to include
primary sources with their data. A researcher then resolved any conflicts between this data
and one (but not both) of the spreadsheets.

Finally, the two independent spreadsheets were combined and all conflicts resolved by a
researcher. The final dataset contains primary sources (government websites and/or media
articles) for each entry.

Data Preprocessing

When the case count is small, a large fraction of cases may be imported from other countries
and the testing regime may change rapidly. To prevent this from biasing our model, we
neglect case numbers before a country has reached 100 confirmed cases and death numbers

cWe evaluated the following datasets:

• Epidemic Forecasting Global NPI Database14

• Oxford COVID-19 Government Response Tracker (OxCGRT)15

• ACAPS #COVID19 Government Measures Dataset

Note that these datasets are under continuous development. Many of the mistakes found will already have
been corrected. We know from our own experience that data collection can be very challenging. We have
the fullest respect for the people behind these datasets. In this paper, we focus on a more limited set of
countries and NPIs than these datasets contain, allowing us to ensure higher data quality in this subset. Given
our experience with public datasets and our data collection, we encourage fellow COVID-19 researchers to
independently verify the quality of public data they use, if feasible.

7

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


before a country has reached 10 deaths. We include these thresholds in our sensitivity
analysis (Appendix C.3).

Short model description

For each country c

For each day t

New infections   N (⋅)
t,c

Daily reproduction 
number Rt,c

New confirmed cases 
 or deaths Ct,c Dt,c

Basic reproduction 
number R0,c

Mask 
wearing

Gatherings 
limited to 

10

Gatherings 
limited to 

100

Some 
businesses 

closed

Gatherings 
limited to 

1000

Many 
businesses 

closed
Schools  
closed

Stay-at-
home order

Growth reductions  from interventions αi i

Daily growth rate gt,c

Product of active 
reductions

 = 1 if  is onϕi,t,c i

For each intervention i

Uncertain delay from 
infection to 

confirmation / death

Uncertain generation 
interval

Universities  
closed

Figure 2: Model Overview. Purple nodes are observed. We describe the diagram from bottom to top:
The effectiveness of NPI i is represented by αi , which is independent of the country. On each day t ,
a country’s daily reproduction number Rt ,c depends on the country’s basic reproduction number R0,c
and the active NPIs. The active NPIs are encoded by Φi ,t ,c , which is 1 if NPI i is active in country c at
time t , and 0 otherwise. Rt ,c is transformed into the daily growth rate gt ,c using the generation interval
parameters, and subsequently is used to compute the new infections N (C )

t ,c and N (D)
t ,c that will turn into

confirmed cases and deaths, respectively. Finally, the number of new confirmed cases Ct ,c and deaths
Dt ,c is computed by a discrete convolution of N (·)

t ,c with the respective delay distributions. Our model
uses both death and case data: it splits all nodes above the daily growth rate gt ,c into separate branches
for deaths and confirmed cases. We account for uncertainty in the generation interval, infection-to-
case-confirmation delay and the infection-to-death delay by placing priors over the parameters of these
distributions.

In this section, we give a short summary of the model (Figure 2). The detailed model
description is given in Appendix A. Code is available online here.

Our model uses case and death data from each country to ‘backwards’ infer the number of
new infections at each point in time, which is itself used to infer the reproduction numbers.
NPI effects are then estimated by relating the daily reproduction numbers to the active
NPIs, across all days and countries. This relatively simple, data-driven approach allows us
to sidestep assumptions about contact patterns and intensity, infectiousness of different age
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groups, and so forth, that are typically required in modelling studies. We make several addi-
tions to the semi-mechanistic Bayesian hierarchical model of Flaxman et al.1, allowing our
model to observe both cases and death data. This increases the amount of data from which
we can extract NPI effects, reduces distinct biases in case and death reporting, and reduces
the bias from including only countries with many deaths. Since epidemiological parameters
are only known with uncertainty, we place priors over them, following recent recommended
practice17. Additionally, as we do not aim to infer the total number of COVID-19 infections,
we can avoid assuming a specific infection fatality rate (IFR) or ascertainment rate (rate of
testing).

The growth of the epidemic is determined by the time- and country-specific reproduction
number Rt ,c , which depends on: a) the (unobserved) basic reproduction number R0,c given
no active NPIs and b) the active NPIs at time t . R0,c accounts for all time-invariant factors
that affect transmission in country c, such as differences in demographics, population den-
sity, culture, and health systems18. We assume that the effect of each NPI on Rt ,c is stable
across countries and time. The effectiveness of NPI i is represented by a parameter αi ,
over which we place an Asymmetric Laplace prior that allows for both positive and negative
effects but places 80% of its mass on positive effects, reflecting that NPIs are more likely to
reduce Rt ,c than to increase it. Following Flaxman et al. and others1,6,8, each NPI’s effect
on Rt ,c is assumed to independently affect Rt ,c as a multiplicative factor:

Rt ,c = R0,c

I∏
i=1

exp
(−αi φi ,t ,c

)
, (1)

where φi ,c,t = 1 indicates that NPI i is active in country c on day t (φi ,c,t = 0 otherwise), and
I is the number of NPIs. The multiplicative effect encodes the plausible assumption that
NPIs have a smaller absolute effect when Rt ,c is already low. We discuss the meaning of
effectiveness estimates given NPI interactions in the Results section.

In the early phase of an epidemic, the number of new daily infections grows exponentially.
During exponential growth, there is a one-to-one correspondence between the daily growth
rate and Rt ,c

19. The correspondence depends on the generation interval (the time between
successive infections in a chain of transmission), which we assume to have a Gamma dis-
tribution. The prior on the mean generation interval has mean 5.06 days, derived from a
meta-analysis20.

We model the daily new infection count separately for confirmed cases and deaths, repre-
senting those infections which are subsequently reported and those which are subsequently
fatal. However, both infection numbers are assumed to grow at the same daily rate in ex-
pectation, allowing the use of both data sources to estimate each αi . The infection numbers
translate into reported confirmed cases and deaths after a stochastic delay. The delay is the
sum of two independent distributions, assumed to be equal across countries: the incuba-
tion period and the delay from onset of symptoms to confirmation. We put priors over the
means of both distributions, resulting in a prior over the mean infection-to-confirmation
delay with a mean of 10.92 days20, see Appendix A.3. Similarly, the infection-to-death
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delay is the sum of the incubation period and the delay from onset of symptoms to death,
and the prior over its mean has a mean of 21.8 days20. Finally, as in related NPI models1,6,
both the reported cases and deaths follow a negative binomial noise distribution with an
inferred noise dispersion.

Using a Markov chain Monte Carlo (MCMC) sampling algorithm21, this model infers pos-
terior distributions of each NPI’s effectiveness while accounting for cross-country variations
in testing, reporting, and fatality rates as well as uncertainty in the generation interval and
delay distributions. To analyse the extent to which modelling assumptions affect the re-
sults, our sensitivity analysis includes all epidemiological parameters, prior distributions,
and many of the structural assumptions introduced above (Appendix B.2 and Appendix
C). MCMC convergence statistics are given in Appendix C.7.

Results

NPI Effectiveness

Our model enables us to estimate the individual effectiveness of each NPI, expressed as a
percentage reduction in R. As in related work1,6,8, this percentage reduction is modelled
as constant over countries and time, and independent of the other implemented NPIs. In
practice, however, NPI effectiveness may depend on other implemented NPIs and local
circumstances. Thus, our effectiveness estimates ought to be interpreted as the effectiveness
averaged over the contexts in which the NPI was implemented, in our data10. Our results thus
give the average NPI effectiveness across typical situations that the NPIs were implemented
in. Figure 3 (bottom left) visualises which NPIs typically co-occurred, aiding interpretation.

Under the default model settings, the mean percentage reduction in R (with 95% credible
interval) associated with each NPI is as follows (Figure 3): mandating mask-wearing in
(some) public spaces: -1% (-13%–8%), limiting gatherings to 1000 people or less: 13%
(-3%–31%), to 100 people or less: 28% (9%–44%), to 10 people or less: 36% (17%–
53%), closing some high-risk businesses: 20% (0%–40%), closing most nonessential busi-
nesses: 29% (8%–47%), closing schools and universities: 41% (23%–56%), and issuing
stay-at-home orders (with exemptions): 10% (-2%–22%). Note that we cannot robustly
disentangle the individual effects of closing schools and closing universities since the im-
plementation dates of these NPIs coincided nearly perfectly in all countries except Iceland
and Sweden (Appendix D.2.1). We thus show the joint effect of closing both schools and
universities, and treat "schools and universities closed" as one single NPI going forward.

Some NPIs frequently co-occurred, i.e., were partly collinear. However, we are able to iso-
late the effects of individual NPIs since the collinearity is imperfect and our dataset is large.
For every pair of NPIs, we observe one of them without the other for 748 country-days on
average (Appendix D.2.2). The minimum number of country-days for any NPI pair is 143
(for limiting gatherings to 1000 or 100 attendees). Additionally, under excessive collinear-
ity, and insufficient data to overcome it, individual effectiveness estimates are highly sensi-
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Figure 3: Top: NPI effects under default model settings. The Figure shows the average percentage
reductions in R as observed in our data (or, in terms of the model, the posterior marginal distributions
of 1−exp(−αi )), with median, 50% and 95% credible intervals. A negative 1% reduction refers to a 1%
increase in R. Cumulative effects are shown for hierarchical NPIs (gathering bans and business closures)
i.e., the result for Most nonessential businesses closed shows the cumulative effect of two NPIs with
separate parameters and symbols - closing some (high-risk) businesses, and additionally closing most
remaining (non-high-risk, but nonessential) businesses given that some businesses are already closed.
Bottom Left: Conditional activation matrix. Cell values indicate the frequency that NPI i (x-axis) was
active given that NPI j (y-axis) was active. E.g., schools were always closed whenever a stay-at-home
order was active (bottom row, third column from the right), but not vice versa. Bottom Right: Total
number of days each NPI was active across all countries.
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Most businesses
closed

Stay-at-home
order

Mask wearing

Gatherings <1000

Gatherings <100

Gatherings <10

Some businesses
closed

 Schools and
universities closed

Figure 4: Combined NPI effectiveness for the most common sets of NPIs in our data, by size of the NPI set.
Shaded regions denote 50% and 95% credible intervals. Left: Maximum R0 that could be reduced to be-
low 1 for each set of NPIs. Right: Predicted R after implementation of each set of NPIs, assuming R0 = 3.8.
Readers can interactively explore the effects of all sets of NPIs at http://epidemicforecasting.org/calc.

tive to variations in the data and model parameters22. High sensitivity prevented Flaxman
et al.1, who had a smaller dataset, from disentangling NPI effects9. Our estimates are sub-
stantially less sensitive (see next section). Finally, the posterior correlations between the
effectiveness estimates are weak, suggesting manageable collinearity (Appendix D.2.3).

Although the correlations between the individual estimates are weak, we should take them
into account when evaluating combined NPI effects. For example, if two NPIs frequently
co-occurred, there may be more certainty about the combined effect than about the two
individual effects. Figure 4 shows the combined effectiveness of the sets of NPIs that
are most common in our data. Together, our set of NPIs reduced R by 77% (74%–79%)
on average. Across countries, the mean R without any NPIs (i.e. the R0) was 3.3 (Ta-
ble D.5 reports R0 for all countries). Starting from this number, the estimated R likely could
have been reduced below 1 by closing schools and universities, high-risk businesses, and
limiting gathering sizes. Readers can interactively explore the effects of sets of NPIs at
http://epidemicforecasting.org/calc. A CSV file containing the joint effectiveness of all NPI
combinations is available online here.

Sensitivity and validation

We perform a range of validation and sensitivity experiments (Appendix B, with further
experiments in Appendix C). First, we analyse how the model extrapolates to unseen coun-
tries and find that it makes calibrated forecasts over periods of up to 2 months, with un-
certainty increasing over time. Further, we perform multiple sensitivity analyses, studying
how results change if we modify the priors over epidemiological parameters, exclude coun-
tries from the dataset, use only deaths or confirmed cases as observations, vary the data
preprocessing, and more. Finally, we investigate our key assumptions by showing results
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for several alternative models (structural sensitivity10) and examine possible confounding
of our estimates by unobserved factors influencing R. In total, we consider 201 alternative
experimental conditions.

Figure 5 (left) shows the median NPI effectiveness across these 201 experimental condi-
tions. Compared to the results under our default settings (Figures 3 and 4), median NPI
effects vary under alternative plausible experimental conditions. However, the trends in the
results are robust, and some NPIs outperform others under all tested conditions. While we
test over large ranges of plausible values, our experiments do not include every possible
source of uncertainty and the results might change more substantially under experimental
conditions we have not tested.

We categorise NPI effects into small, moderate, and large, which we define as a median
reduction in R of less than 17.5%, between 17.5% and 35%, and more than 35% (vertical
lines in Figure 5). Six of the NPIs fall into a single category in a large fraction of experi-
mental conditions: school and university closures are associated with a large effect in 99%
of experimental conditions, limiting gatherings to 10 people or less in 94%. Closing most
nonessential businesses has a moderate effect in 96% of conditions, limiting gatherings to
100 people or less in 97%. Making mask-wearing mandatory in (some) public spaces falls
into the “small effect” category in 100% of experimental conditions, issuing stay-at-home
orders (with exemptions) in 99%. Two NPIs fall less clearly into one category: Closing some
(high-risk) businesses has a moderate effect in 86% of conditions, and limiting gatherings to
1000 people or less has a small effect in 79%. However, both NPIs have small-to-moderate
effects in more than 99% of experimental conditions. The effect of limiting gatherings to
1000 people or less is the least stable across the sensitivity analyses, which may reflect its
aforementioned partial collinearity with limiting gatherings to 100 people or less.

Aggregating all sensitivity analyses can hide sensitivity to specific assumptions. We display
the median NPI effects in four categories of sensitivity analyses (Figure 5, right), and each
individual sensitivity analysis is shown in the Appendix. The trends in the results are also
stable within the categories.

Discussion

We use a data-driven approach to estimate the effects that eight nonpharmaceutical in-
terventions had on COVID-19 transmission in 41 countries between January and the end
of May 2020. We find that several NPIs were associated with a clear reduction in R, in
line with the mounting evidence that NPIs can be effective at mitigating and suppressing
outbreaks of COVID-19. Furthermore, our results suggest that some NPIs outperformed
others. While the exact effectiveness estimates vary with modelling assumptions, the broad
conclusions discussed below are largely robust across 201 experimental conditions in 11
sensitivity analyses.
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Figure 5: Median NPI effects across the sensitivity analyses. Left: Median NPI effects (reduction in R)
when varying different components of the model or the data in 201 experimental conditions. Results are
displayed as violin plots, using kernel density estimation to create the distributions. Inside the violins,
the box plots show median and interquartile-range. The vertical lines mark 0%, 17.5%, and 35% (see
text). Right: Categorised sensitivity analyses. Structural: Using only cases or only deaths as observations
(2 experimental conditions; Figure B.12), varying the model structure (3 conditions; Figure B.13 left).
Data: Leaving out one country at a time (41 conditions; Figure B.10), varying the threshold below which
cases and deaths are masked (8 conditions; Figure C.17); sensitivity to correcting for undocumented
cases and to country-level differences in case ascertainment (2 conditions; Figure B.11). Epidemiological
priors: Jointly varying the means of the priors over the means of the generation interval, the infection-
to-case-confirmation delay, and the infection-to-death delay (125 conditions; Figure C.15), varying the
prior over R0 (4 conditions; Figure C.16 left), varying the prior over NPI effectiveness (2 conditions;
Figure C.16 right). Unobserved factors: Excluding observed NPIs one at a time (9 conditions; Figure B.14
left), controlling for additional NPIs from a different dataset (5 conditions; Figure B.14 right).
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Business closures and gathering bans both seem to have been effective at reducing COVID-
19 transmission. Closing only high-risk businesses appears to have been only somewhat less
effective than closing most nonessential businesses; the median reduction in R differs only
by 9% (6%–12%; mean and 95% interval of median estimates across the experiments set-
tings in Figure 5). Closing only high-risk businesses may thus have been the more promising
policy option in some circumstances. Limiting gatherings to 10 people or less was more ef-
fective than limits up to 100 or 1000 people. This may reflect the fact that small gatherings
are common.

As previously discussed, we estimate the average effect each NPI had in the contexts in
which it was implemented. When countries introduced stay-at-home orders, they nearly al-
ways also banned gatherings and closed schools, universities, and some or most businesses,
if they had not done so already (Figure 3, bottom left). Flaxman et al.1 and Hsiang et al.3

add the effect of these distinct NPIs to the effectiveness of stay-at-home orders, and accord-
ingly find a large effect. In contrast, we account for these other NPIs separately and isolate
the additional effect of ordering the population to stay at home (when large gatherings
are banned and educational institutions and some businesses closed).d In accordance with
other studies that took this approach, we find a small effect2,6. A typical country could have
reduced R to below 1 without a stay-at-home order (Figure 4), provided other NPIs were
implemented.

Mandating mask-wearing in various public spaces had no clear effect, on average, in the
countries we studied. This does not rule out mask-wearing mandates having a larger ef-
fect in other contexts. In our data, mask-wearing was only mandated when other NPIs
had already reduced public interactions. When most transmission occurs in private spaces,
wearing masks in public is expected to be less effective. This might explain why a larger
effect was found in studies that included China and South Korea, where mask-wearing
was introduced earlier8,23. While there is an emerging body of literature indicating that
mask-wearing can be effective in reducing transmission, the bulk of evidence comes from
healthcare settings24. In non-healthcare settings, risk compensation25 may play a larger
role, potentially reducing effectiveness. While our results cast doubt on reports that mask-
wearing is the main determinant shaping a country’s epidemic23, the policy still seems
promising given all available evidence, due to its comparatively low economic and social
costs. Its effectiveness may have increased as other NPIs have been lifted and public inter-
actions have recommenced.

We find a large effect for school and university closures. This finding is remarkably robust
across different model structures, variations in the data, and epidemiological assumptions
(Figure 5). It remains robust when controlling for NPIs excluded from our study (Fig-
ure B.14). Our approach cannot distinguish direct and indirect effects, such as forcing par-

dIn principle, a stay-at-home order does not imply these other NPIs. It is possible for a country to simultaneously
have allowed schools to be open and have a stay-at-home order (with exemptions for attending school) in
place. However, this is not how stay-at-home orders were implemented by the countries in our dataset, and
we cannot estimate the effect of such a hypothetical stay-at-home order from the available data.
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ents to stay at home or causing broader behaviour changes by increasing public concern.
Additionally, since school and university closures almost perfectly coincided in the coun-
tries we study, our approach cannot distinguish their individual effects (Appendix D.2.1).
This limitation likely also holds for other observational studies which do not include data
on university closures and estimate only the effect of school closures1–3,5–8. Previous evi-
dence on school and university closures is mixed1,6,26. Early data suggest that children and
young adults are equally susceptible to infection but have a notably lower observed inci-
dence rate than older adults—whether this is due to school and university closures remains
unknown27–30. Although infected young people are often asymptomatic, they appear to
shed similar amounts of virus as older people31,32, and might therefore transmit the infec-
tion to higher-risk demographics unknowingly. As the role of children in transmission is
still unclear33 while outbreaks detected in schools are rising33–35, this topic merits careful
attention.

Our study has several limitations. First, NPI effectiveness may depend on the context of
implementation, such as the presence of other NPIs and country-specific factors. Our esti-
mates must be interpreted as the average effectiveness over the contexts in our dataset10,
and expert judgement is required to adjust them to local circumstances. Second, R may
have been reduced by unobserved NPIs or spontaneous behaviour changes. To investigate
whether these reductions could be falsely attributed to the observed NPIs, we perform sev-
eral additional analyses and find that our results are stable to a range of unobserved effects
(Appendix B.3). However, this sensitivity check cannot provide certainty. Investigating the
role of unobserved effects is an important topic to explore further. Third, our results can-
not be used without qualification to predict the effect of lifting NPIs. For example, closing
schools and universities seems to have greatly reduced transmission, but this does not mean
that reopening them will cause infections to soar. Educational institutions can implement
safety measures such as reduced class sizes as they reopen. Further work is needed to anal-
yse the effects of reopenings; we hope that our collected data aids this effort. Fourth, while
we included more NPIs than most previous work (Table F.7), several promising NPIs were
excluded. For example, testing, tracing, and case isolation may be an important part of a
cost-effective epidemic response36, but were not included because it is difficult to obtain
comprehensive data. We discuss further limitations in Appendix E.

Although our work focuses on estimating the impact of NPIs on the reproduction number
R, the ultimate goal of governments may be to reduce the incidence, prevalence, and excess
mortality of COVID-19. Controlling R is essential, but the contribution of NPIs towards these
goals may also be mediated by other factors such as their duration and timing37, periodicity
and adherence38,39, and successful containment40. While each of these factors addresses
transmission within individual countries, it can be crucial to additionally synchronise NPIs
between countries since cases can be imported41.

In conclusion, as governments around the world seek to keep R below 1 while minimising
the social and economic costs of their interventions, we hope that our results can inform
policy decisions on which NPIs to implement in any potential further wave of infections.
Additionally, our work may provide insight on which areas of public life are most in need
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of restructuring, so that they can continue despite the pandemic. However, our estimates
should not be seen as the final word on NPI effectiveness, but rather as a contribution
to a diverse body of evidence, alongside other retrospective studies, simulation studies,
experimental trials, and clinical experience.
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Appendix A. Modelling details

Appendix A.1. Detailed model description

For each country c

For each day t

New infections   N (⋅)
t,c

Daily reproduction 
number Rt,c

New confirmed cases 
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Figure A.6: Model Overview. Purple nodes are observed. We describe the diagram from bottom to top:
The effectiveness of NPI i is represented by αi , which is independent of the country. On each day t ,
a country’s daily reproduction number Rt ,c depends on the country’s basic reproduction number R0,c
and the active NPIs. The active NPIs are encoded by Φi ,t ,c , which is 1 if NPI i is active in country c at
time t , and 0 otherwise. Rt ,c is transformed into the daily growth rate gt ,c using the generation interval
parameters, and subsequently is used to compute the new infections N (C )

t ,c and N (D)
t ,c that will turn into

confirmed cases and deaths, respectively. Finally, the number of new confirmed cases Ct ,c and deaths
Dt ,c is computed by a discrete convolution of N (·)

t ,c with the respective delay distributions. Our model
uses both death and case data: it splits all nodes above the daily growth rate gt ,c into separate branches
for deaths and confirmed cases. We account for uncertainty in the generation interval, infection-to-
case-confirmation delay and the infection-to-death delay by placing priors over the parameters of these
distributions.

We construct a semi-mechanistic Bayesian hierarchical model, similar to Flaxman et al1,
but with several key extensions. First, we model both confirmed cases and deaths, al-
lowing us to leverage significantly more data. Furthermore, we do not assume a specific
infection fatality rate (IFR) since we do not aim to infer the total number of COVID-19 in-
fections. Additionally, since epidemiological parameters are only known with uncertainty,
we place priors over them, following recent best practice2. Concretely, we place priors on
the means and standard deviations/dispersions of the generation interval, the infection-
to-confirmation delay, and the infection-to-death delay. These prior choices are detailed
in Appendix A.3. The end of this section details further adaptations which allow us to

23

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


minimise assumptions about testing, reporting, and the IFR. Code is available online here.
For readers who wish to re-implement the model, a concise list of all equations is given in
Appendix H.

We describe the model in Figure A.6 from bottom to top. The epidemic’s growth is deter-
mined by the time-and-country-specific (instantaneous) reproduction number Rt ,c . It de-
pends on: a) the basic reproduction number R0,c without any NPIs active and b) the active
NPIs. We place a prior distribution over R0,c , reflecting the wide disagreement of regional
estimates of R0

3. The mean R0,c is 3.28, based on a meta-analysis4. We parameterize the
effectiveness of NPI i , assumed to be same across countries and time, with αi . Each NPI is
assumed to have an independent multiplicative effect on Rt ,c as follows:

Rt ,c = R0,c

I∏
i=1

exp
(−αi φi ,t ,c

)
, (A.1)

where φi ,c,t = 1 means NPI i is active in country c on day t (φi ,c,t = 0 otherwise), and I is
the number of NPIs. We place an Asymmetric Laplace prior over αi with scale parameter
10, asymmetry parameter 0.5 and location parameter 0. Our prior allows for (unbounded)
positive and negative effects as we cannot a priori exclude the possibility that the introduc-
tion of an NPI increases R. However, our prior places 80% of its mass on positive effects,
reflecting a belief that NPIs are much more likely to reduce Rt than not. This is a shrinkage
prior, placing 50% of its mass on ‘small’ effectiveness (less than 10% change in Rt ). All prior
distributions are independent.

Growth rates. Nt ,c denotes the number of new infections at time t and country c. In the
early phase of an epidemic, Nt ,c grows exponentially with a dailya growth rate g t ,c . During
exponential growth, there is a well-known one-to-one correspondence between g t ,c and Rt ,c

(Eq. 2.9 in5):

Rt ,c = 1

M(− log(1+ g t ,c ))
, (A.2)

where M(·) is the moment-generating function of the distribution of the generation interval
(the time between successive cases in a transmission chain). We account for uncertainty in
the generation interval (GI), assumed to be a Gamma distribution, by placing prior distri-
butions over its mean and standard deviation (Appendix A.3). Using (A.2), we can write
g t ,c as a function g t ,c (Rt ,c ;µGI,σGI) (see Appendix H), where µGI is the GI mean and σGI is
the GI standard deviation.

aMany epidemiological models define growth rates as the exponent r in an exponential growth function. Here,
we use daily growth rates instead for ease of exposition. These choices are mathematically equivalent. Note
that we adapted equation (2.9) in Wallinga & Lipsitch5 to account for our choice.
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Note that the GI can change over time due to NPIs. In particular, the effective contact tracing
and case isolation in China substantially shortened the mean GI to only 2.6 days among the
identified cases6. Since most cases were likely not identified even in Wuhan, China7, and
our study omits most of the countries with highly effective contact tracing programs such
as China or South Korea, we model the GI as constant (but uncertain) over time. A possible
extension for further work is to model the change in GI explicitly.

Infection model. Rather than modelling the total number of new infections Nt ,c , we model
new infections that will either be subsequently a) confirmed positive, N (C )

t ,c , or b) lead to a
reported death, N (D)

t ,c . These are inferred from the observation models for cases and deaths.
We assume that both grow at the same expected rate, g t ,c :

N (C )
t ,c = N (C )

0,c

t∏
τ=1

[
(1+ gτ,c ) ·exp

(
ε(C )
τ,c

)]
, (A.3)

N (D)
t ,c = N (D)

0,c

t∏
τ=1

[
(1+ gτ,c ) ·exp

(
ε(D)
τ,c

)]
, (A.4)

where ε(·)
τ,c ∼ N (0,σN = 0.2) are separate, independent noise terms. Noise on the infection

numbers is not used by Flaxman et al.1 but has a history in epidemic modelling8. Empiri-
cally, we find that it leads to substantially more robust effectiveness estimates9.

We select σN by cross-validation, as no reference is available for it. We evaluate five dif-
ferent values (σN ∈ {0.05,0.1,0.2,0.3,0.4}), with a fixed, randomly chosen validation set of
6 countries. σN = 0.2 maximises the predictive log-likelihood on the validation set. This
ensures a more calibrated model, which is less likely to produce overconfident or unstable
estimates10. We did not tune any other aspect of the model.

We seed our model with unobserved initial values, N (C )
0,c and N (D)

0,c , which have uninformative
priors.b

Observation model for confirmed cases. The mean predicted number of new confirmed cases
is a discrete convolution

C t ,c =
t∑

τ=1
N (C )

t−τ,c PC (delay= τ) (A.5)

where PC (delay) is the distribution of the delay from infection to confirmation. In reality,
this delay distribution is the sum of two independent distributions: the incubation period
(lognormal distribution) and the delay from onset of symptoms to confirmation (negative
binomial distribution). These distributions are uncertain but modelling (and placing pri-
ors over) them individually leads to unidentifiability. Therefore, we model the total delay

bSince we treat new infections as a continuous number, its initial value can be between 0 and 1.
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between infection and confirmation, assuming that this follows a negative binomial dis-
tribution. We convert priors over the individual delays to a prior over the total delay by
bootstrapping — please see Appendix A.3.

As in Flaxman et al.1, the observed cases Ct ,c follow a negative binomial noise distribu-
tion with mean C t ,c and an inferred dispersion parameter, Ψ(C ). This distribution encodes
that small case numbers are more noisy and should therefore receive less weight. Hav-
ing separate dispersion parameters for cases and deaths ensures that they can be weighted
differently if there is a difference in their noise distributions.

Observation model for deaths. The mean predicted number of new deaths is a discrete
convolution

D t ,c =
t∑

τ=1
N (D)

t−τ,c PD (delay= τ), (A.6)

where PD (delay) is the distribution of the delay from infection to death. As for cases, we
model the total delay between infection and death as negative binomial, which is in reality
the sum of two independent distributions: the incubation period and the delay from onset
of symptoms to death (gamma distribution).

Finally, the observed deaths D t ,c also follow a negative binomial distribution with mean D t ,c

and an inferred dispersion parameter, Ψ(D).

The model was implemented in PyMC311. We infer the unobserved variables in our model
using the No-U-Turn Sampler (NUTS)12, a standard Markov chain Monte Carlo sampling
algorithm.

Appendix A.2. Testing, reporting, and infection fatality rates

Scaling all values of a time series by a constant does not change its growth rates. The
model is therefore invariant to the scale of the observations and consequently to country-
level differences in the IFR and the ascertainment rate (the proportion of infected people
who are subsequently reported positive). For example, assume countries A and B differ only
in their ascertainment rates. Then, our model will infer a difference in N (C )

0,c (Eq. (A.3)) but
not in the growth rates g t ,c across A and B. Accordingly, the inferred NPI effectiveness will
be identical.c

In reality, a country’s ascertainment rate (and IFR) can also change over time. In principle,
it is possible to distinguish changes in the ascertainment rate from the NPIs’ effects: de-
creasing the ascertainment rate decreases future cases Ct ,c by a constant factor whereas the

cThis is only approximately true. The negative binomial output distribution has a coefficient of variation dimin-
ishing with its mean; i.e., smaller observations are relatively more noisy and carry less weight. Furthermore,
whilst the prior over N (C )

0,c could break scale invariance, the uninformative prior results in a negligible effect.
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introduction of an NPI decreases them by a factor that grows exponentially over time.d The
noise term, exp

(
ε(C )
τ,c

)
(Eq. (A.3)), mimics changes in the ascertainment rate—noise at time

τ affects all future cases—and allows for gradual, multiplicative changes in ascertainment.

Appendix A.3. Method for uncertainty over key epidemiological parameters

We account for uncertainty in the following delay distributions: the generation interval, the
delay from infection to symptom onset (incubation period), the delay from symptom onset
to case confirmation, and the delay from symptom onset to death.

Each distribution has an uncertain mean (Table A.3), whose prior distribution we take
from a meta-analysis13 published shortly after our window of analysis. This helps account
for possible heterogeneity between different populations, and therefore often finds higher
uncertainty in the means than estimated in primary studies, while using more data. The
meta-analysis reports mean values with 95% confidence intervals. We set normal priors over
the mean delays, with mean equal to the reported mean in the meta-analysis and standard
deviation set such that the prior 95% credible interval includes the 95% confidence intervals
from the meta-analysis. For example, the meta-analysis reports an expected mean delay
from symptoms to death of 16.71 days with a 95% credible interval ranging from 15.37 to
18.17. We thus assume that the prior is normal with µ= 16.71 and σ= 0.75, which ensures
that its 95% credible interval ranges from 15.25 to 18.17, strictly including the interval
reported in the meta analysis to be conservative. Priors are truncated at zero.

Furthermore, we account for the uncertainty in the standard deviation of these delay dis-
tributions by placing normal priors based on primary studies, following the same method
as above (Table A.4). For the standard deviation of the generation interval, we use patient
data from Feretti et al.14 and reproduce their method, fitting a Gamma distribution to the
generation time.

Finally, the distributional forms of the delay distributions are taken from the above primary
studies.

The delay from infection to case confirmation is the sum of the incubation period and the
symptom-onset-to-case-confirmation delay. Similarly, the delay from infection to death is
the sum of the incubation period and the symptom-onset-to-death delay. However, for
computational tractability, we model the total delay distributions, converting the priors de-
scribed above to priors over the total delays. We assume that the total delays follow negative
binomial distributions, which are computationally tractable and empirically provide a close
fit to both sum distributions. We place normal priors over the mean and dispersion parame-
ters of these total delay distributions by bootstrapping. For example, we compute priors for
the total infection-to-case-confirmation delay distribution by sampling Nbootstrap = 250 in-

dHowever, our model may struggle when the ascertainment rate also changes exponentially over time. This
could happen when a country reaches its testing capacity. See Appendix E.
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cubation periods and symptom-onset-to-case-confirmation distributions. For each sampled
pair of distributions, we draw 106 samples from their sum and fit a negative binomial using
moment matching. We compute the mean and standard deviation of the negative binomial
distribution parameters across the bootstrap, and use this for our prior. The resulting priors
are given in Table A.2.
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Table A.2: Epidemiological parameter distributions used in the model. The details on sources and priors
used to generate this Table are given in Tables A.3 and A.4.

Delay type Sources Prior on mean Prior on standard Distributional
deviation or form
dispersion

Infection to case Fonfria et al.13, N (10.92,σ= 0.94) Dispersion: Negative
confirmation Lauer et al.15, N (5.41,σ= 0.27) binomial

Cereda et al.16

Infection to death Fonfria et al.13, N (21.82,σ= 1.01) Dispersion: Negative
Lauer et al.15, N (14.26,σ= 5.18) binomial
Linton et al.17

Generation interval Fonfria et al.13, N (5.06,σ= 0.33) SD: N (2.11,σ= 0.5) Gamma
Feretti et al.14

Table A.3: Mean of epidemiological parameters, all from meta-analysis13, and distributional forms.

Delay type Reported mean Prior on mean Distributional
and 95% CI form of delay

Incubation period 5.79 (5.48–6.11) logµ∼N (1.53,σ= 0.051) Lognormal15

Onset to death 16.71 (15.37–18.17) N (16.71,σ= 0.75) Gamma17

Onset to case confirmation 5.82 (4.74–7.15) N (5.82,σ= 0.68) Negative binomial16

Generation interval 5.06 (4.50–5.70) N (5.06,σ= 0.33) Gamma14

Table A.4: Standard deviation or dispersion of epidemiological parameters.

Delay type Source Reported standard deviation or Prior on standard
dispersion, with uncertainty deviation or

dispersion
Incubation period Lauer et al.15 SD of log delay: SD of log delay:

0.48 (95% CI: 0.27–0.54) N (0.48,σ= 0.0759)
Onset to death Linton et al.17 SD: 6.9 (95% CI: 5.2–9.1) N (6.9,σ= 1.122)
Onset to case confirmation Cereda et al.16 Dispersion: 1.57 ± 0.054 N (1.57,σ= 0.054)
Generation interval Feretti et al.14 SD: 2.11 ± 0.5 (reproduced by us) N (2.11,σ= 0.5)
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Appendix B. Validation

Appendix B.1. Unseen data

An important way to validate a Bayesian model is by checking its predictions on unseen
data, even if prediction is not the purpose of the model10,18. If an NPI effectiveness model
is entirely unable to extrapolate to unseen countries, we have strong reason to doubt its
effectiveness estimates. However, we do not expect NPI effectiveness models to extrapolate
perfectly. Almost always, unobserved factors such as changes in the ascertainment rate or
IFR, spontaneous behaviour changes, or unobserved NPIs, will affect the observed number
of cases and deaths. Our models ought to treat these factors as noise and not attribute their
effects on Rt to the observed NPIs.

We use Leave-One-Out Cross-Validation (LOO-CV), fitting the model on 40 countries and
extrapolating to the excluded country. We repeat this process for all 41 countries. In the
excluded country, the first 14 days of case and death data are observed to estimate R0,c as
well as the initial outbreak sizes, N (C )

0,c and N (D)
0,c . All later days are unobserved (masked).

The model uses the effectiveness estimates inferred from the 40 included countries and NPI
activation dates to predict the course of the pandemic in the excluded country.

Figure B.7 visually shows extrapolations obtained from LOO-CV for a randomly chosen
subset of six countries (all countries are shown in Figures C.18 to C.21). The predictive
accuracy of the model, as expected, degrades with an increasing prediction horizon, sug-
gesting the presence of unobserved factors. However, the predictive credible intervals are
wide, and increase over time as noise in the growth rate accumulates. Importantly, our
model makes calibrated forecasts in excluded countries (Fig. B.8), over periods of up to 2
months.

These are challenging predictions; to the best of our knowledge, no related study analyses
how their estimated NPI effects generalise to unseen countries. Most related studies do
not validate predictions on unseen data at all19–23, reviewed in9. Flaxman et al.1 hold out
the last 14 days, from 20 April to 4th of May, for all countries in aggregate. However, the
countries they study implemented all NPIs in March or earlier (Supplementary Table 2 in1),
meaning that in fact all countries were used to estimate NPI effects.

Note that Fig. B.8 includes the 6 countries that were used to select the hyperparameter
(Appendix A). However, the calibration is similar if these 6 countries are excluded (Fig-
ure C.23).

Appendix B.2. Sensitivity Analysis

Sensitivity analysis reveals the extent to which results depend on uncertain parameters
and modelling choices, and can diagnose model misspecification and excessive collinearity
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Figure B.7: Model extrapolations on a randomly chosen subset of 6 excluded countries, produced using
leave-one-out cross-validation. In each excluded country, the first 14 days of death and case data (solid
dots) are observed; the model then extrapolates to all future days within the period of analysis (empty
dots). For each country, we show the full window of analysis (from the start of the epidemic until the first
NPI was lifted, or 30th of May 2020, whichever was earlier; see Methods). The shaded areas represent
the 95% credible intervals.

in the data24. We vary many of the components of our model and recompute the NPI
effectiveness estimates, summarised here. Further analysis can be found in Appendix C.

For each sensitivity analysis, we quantify sensitivity using an easily interpretable measure
shown above the legend of each plot: the average standard deviation, denoted σ̄. First,
for each NPI, we compute the standard deviation of its median effect estimates across all
experimental conditions in the given sensitivity analysis. We then average these across
the NPIs. Since effectiveness is expressed in percentage reductions of Rt , the unit of σ̄ is
percent. Zero percent corresponds to no sensitivity.

We perform a multivariate sensitivity analysis on the key epidemiological priors. For com-
putational reasons, all other sensitivity analyses are univariate.

Multivariate sensitivity to main epidemiological priors. The key epidemiological param-
eters in our model describe the delay from infection to case-confirmation, the delay from
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Figure B.8: Calibration in held-out countries with leave-one-out cross validation. In each excluded
country, the first 14 days of death and case data are observed to estimate R0,c as well as the initial
outbreak sizes; the model then extrapolates to all future days within the period of analysis. The plot
shows the percentage of observed daily case and death counts that lie within the X% credible interval,
across all countries and days. The identity line represents ideal calibration.

infection to death, and the generation interval. Our model places prior distributions over
the means of these delay distributions. Since the priors already account for uncertainty in
the delays, this analysis considers what would happen if our prior beliefs changed. Since
the epidemiological parameters may interact in unexpected ways, we perform a multivari-
ate sensitivity analysis, jointly changing the mean of the prior over the mean of each delay
distribution (referred to as the "prior mean of the mean" below). We vary the prior means of
the mean delays across a wide but epidemiologically plausible range of 5 values, resulting
in 125 different experimental conditions. We present these results in two ways.

First, Figure B.9 shows the global sensitivity of our results to the prior mean of the mean of
each distribution individually. For example, for each setting of the prior mean of the mean
generation interval, we show the average over the 5×5 = 25 runs with different prior means
placed over the mean delays between infection and case confirmation/death. This is equiv-
alent to placing a uniform prior across the 125 experiment conditions and marginalising,
and is standard methodology for computing global sensitivity to an individual parameter.

The prior means seem to mostly influence the relative effectiveness of business closures
and gathering bans. Increasing the prior means of the infection-to-case-confirmation/death
mean delays results in larger effectiveness estimates for gatherings bans and smaller esti-
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mates for business closures, while increasing the prior mean of the generation interval has
the opposite effect.

Second, we assess the sensitivity of our results to jointly varying the prior means. This yields
σ̄= 2.46%. We present this result graphically in Appendix C.1.
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Figure B.9: Sensitivity to key epidemiological parameter choices, evaluated using a multivariate analysis.
We jointly vary the prior means over the mean of the generation interval, the delay between infection
and case confirmation, and the delay between infection and death. Each panel displays sensitivity to the
prior mean of one distribution, and the NPI effects are computed by averaging over the 25 runs with
different prior means of the two other distributions (see text).

Sensitivity to country exclusions. Figure B.10 shows results if one country at a time is
excluded from the data. As there is no strong justification for including or excluding any
particular country, results ought to be stable if a country is excluded.
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Figure B.10: Sensitivity to excluding individual countries.

Sensitivity to case-undercounting. Figure B.11 shows results when scaling the recorded
number of cases in each country. First, we correct the number of reported cases on each day
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using estimates of the time-varying ascertainment rate from Golding et al.25. For example, if
the estimated ascertainment rate in country c at time t is 50%, we double the corresponding
number of reported cases. With this altered case data, the model estimates a larger effect
for closing schools and universities, and a smaller effect for limiting gatherings to 1000
people or less. There is little change in the effects estimated for the other NPIs.

Second, we randomly either double or halve the reported number of cases in each country.
This is intended to demonstrate that the model is invariant to constant differences in ascer-
tainment between countries. As expected, there are negligible differences compared to the
default results.
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Figure B.11: Sensitivity to case undercounting, considering both constant undercounting and time-
varying undercounting.

Sensitivity to structurally different models. Figure B.12 shows the NPI effectiveness
estimates from models that use only cases or deaths as observations, in contrast to our
main model, which uses both. As expected, there are some differences in the NPI effect
estimates between the models, which may be caused by the unique biases present in case
data and in death data. Differences could also occur if NPIs differentially affected cases
and deaths (e.g. if they affect different age groups). Nevertheless, the study’s qualitative
conclusions, as outlined in the Discussion,e hold across the different data types.

A number of implicit structural assumptions are made by the choice of model structure.
We test sensitivity to these assumptions by evaluating NPI effectiveness estimates from al-
ternative models, reproducing the structural sensitivity analysis from our concurrent work,
where these models are described and compared in detail9. While these alternative model
structures are also plausible, we chose the model described in the main text as it is relatively
simple whilst also being highly robust9.

eThe main qualitative conclusions as outlined in the Discussion are: Stay-at-home orders had a small effect;
Mandating mask-wearing had a small effect; School and university closures had a large effect; Gatherings bans
were effective; More strict gathering bans were more effective than less strict ones; Business closures were
effective; Closing most nonessential businesses had limited benefit over closing just high-risk businesses.
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Figure B.12: Sensitivity to different data types i.e., models using only confirmed cases, only deaths, or
both.

The models are:

1. Different Effects Model. The effectiveness of each NPI is allowed to vary across coun-
tries.

2. Discrete Renewal Model. Instead of converting Rt into a daily growth rate, a renewal
process is used as the infection model, as in earlier work1,8,26–28. For computational
reasons, we do not place a prior distribution over the generation interval parameters
for this model.

3. Noisy-R Model. The noise terms ε(·)
c,t affect Rt rather than the growth rate, as in Fraser8.

4. Additive Effects Model Each NPI has an additive effect on Rt . The joint effectiveness
of a set of NPIs is produced by summing, rather than multiplying, their individual
effectiveness estimates.

As Figure B.13 (left) shows, the multiplicative effect models support almost all conclusions
drawn in the Discussion.e The only exception is that the stay-at-home order NPI is cate-
gorised as "moderately effective" under the Different Effects Model (median reduction in Rt

of 18%).

The results of the Additive Effects Model cannot be directly compared to the other models
since it expresses results on a different scale (percentage reduction in R0 instead of Rt ). It
is therefore shown in a separate panel. However, the trend in the results is visually similar
to the default results.

Appendix B.3. Robustness to unobserved effects

Our data neither captures all NPIs which were implemented nor directly measures broader
behavioural changes. Since these factors influence Rt , we must be wary of their effect
being attributed to observed NPIs. We investigate this further by assessing how much effec-
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Figure B.13: Structural sensitivity analysis. NPI effectiveness estimates under different structural as-
sumptions. Left. Effectiveness estimates for multiplicative effect models. Note that, for computational
reasons, the discrete renewal model does not have a prior over the generation interval. Right Effective-
ness estimates for an additive effect models. For this model, the effectiveness of each NPI is expressed
as a reduction of R0 rather than Rt .

tiveness estimates change when previously unobserved factors are included and also when
observed factors are excluded. This is best practice for addressing unobserved factors, such
as confounders29,30.

Unobserved factors can bias results if their timing is correlated with the timing of the ob-
served NPIs31. The timings of our observed NPIs’ implementation dates are indeed mutually
correlated, prompting the question of how much results change when we make previously
observed NPIs unobserved. Figure B.14 (left) shows NPI effectiveness estimates when pre-
viously observed NPIs are excluded in turn. The study’s main qualitative conclusionse hold
across all experimental conditions, and the variations in NPI effectiveness are rarely large
enough to cause a change in effectiveness category (Figure 5) except for the Gatherings
limited to 1000 people or less NPI. Considering that some of the excluded NPIs have strong
estimated effects when included, and are correlated with other NPIs, this degree of robust-
ness is encouragingly high. It suggests that unobserved factors will not significantly bias
results as long as their effects and their correlations with the studied NPIs do not exceed
those of the studied NPIs. We hypothesise that this robustness to unobserved factors is due
to the noise on the daily growth rate in our model9.

In addition, Figure B.14 (right) shows NPI effectiveness estimates when we observe (i.e.
control for) additional NPIs, taken from the OxCGRT dataset32.
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Figure B.14: Robustness to unobserved effects. Left: Results when excluding previously observed NPIs.
We exclude one of the NPIs in turn and show the estimates for the other NPIs. Note that this subplot
shows the marginal effect for hierarchical NPIs rather than the total effect, different to other figures
that show cumulative effects for gathering bans and businesses closures. For example, Figure 3 displays
the total effect of closing most nonessential businesses, while here we show the additional effect of
closing most nonessential businesses over just closing some high-risk businesses. We show the additional
effects here because the effect of a cumulative intervention would become undefined when part of it is
excluded from the analysis. Right: Results when controlling for previously unobserved NPIs. We include
one additional NPI in turn and show the estimates for the NPIs in our study (the additional NPI is not
shown).
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Appendix C. Additional sensitivity analyses and validation

Appendix C.1. Multivariate Sensitivity Analysis - Expanded Results

We now present the results of our joint multivariate sensitivity analysis (previously sum-
marised in Figure B.9), in which we vary the mean of the prior (“prior mean”) over the
mean of the generation interval, the delay between infection and death, and the delay
between infection and case confirmation.

Figure C.15 shows, for each NPI, how NPI effects change when all prior means are varied
simultaneously.

We find that the most sensitive NPIs are Gatherings limited to 1000 people or fewer, Gath-
erings limited to 100 people or fewer and Most nonessential businesses closed. However, the
largest differences appear when all of the parameters are set to the most extreme values
that jointly produce a change in a particular direction. We also see systematic trends as
the parameters are varied, e.g., increasing the prior mean of the generation interval mean
tends to decrease the effectiveness of the Gatherings limited to 1000 or fewer NPI, while in-
creasing prior means of the infection to death/case confirmation distribution means tends
to increase the effectiveness of this NPI.
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Figure C.15: Global sensitivity analysis. Each cell shows the difference between the median effectiveness
estimate under a specific experimental condition and the default condition, where the estimates are
expressed as percentage reduction in Rt . Each subplot represents a particular prior mean of the mean
generation interval and an NPI. The NPIs vary top to bottom and the generation interval prior mean
increases left to right. Each cell with a subplot represents a particular choice of the prior mean of the
mean infection to death delay (increasing left to right) and the prior mean of the mean infection to case
confirmation delay (increasing bottom to top). Positive cell values indicate that the median NPI estimate
is larger than with default settings and vice versa.
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Appendix C.2. Sensitivity to additional epidemiological assumptions

For completeness, Figure C.16 shows sensitivity to two further epidemiological assumptions.
On the left, we show the dependence of NPI effectiveness estimates on R0. We place a
Normal prior over R0, and a hyperprior over its variance, reflecting the wide disagreement
of regional estimates of R0. In the sensitivity analysis, we vary the mean of the prior from
a low value (2.38) to a high one (4.28). As expected, higher mean R0 values result in larger
NPI effects. This trend is apparent in all NPIs but stronger for NPIs that tended to be
implemented early on (like school closures and gathering bans).

On the right, we vary the prior over NPI effectiveness. Our default prior on NPI effectiveness
is assymmetric, reflecting a belief that NPIs are more likely to reduce Rt than increase it.
Here, we additionally test a symmetric Normal prior, and a one-sided Half-Normal prior,
which does not allow for NPIs to increase Rt .

Appendix C.3. Sensitivity to data preprocessing

When the case count is small, a large fraction of cases may be imported from other coun-
tries and the testing regime may change rapidly. To prevent this from biasing our model,
we neglect case numbers before a country has reached 100 confirmed cases. Similarly, we
neglect death numbers before a country has reached 10 deaths. Here, we vary these thresh-
olds. Intuitively, the minimum cases threshold should be higher than the minimum deaths
threshold.
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Figure C.16: Sensitivity to additional epidemiological priors. Left: Sensitivity to the prior mean on R0.
Right: Sensitivity to the NPI effectiveness prior.
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Variations in the minimum number of deaths.
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Appendix C.4. Validation by predicting unseen data - all countries

Here we show the country-level plots of the single-country holdout experiments from Ap-
pendix B.1. We use leave-one-out cross-validation: fitting the model on 40 countries and
showing its predictions on the excluded country. We repeat this process for all 41 countries.
In the excluded country, the first 14 days (filled dots) of death and case data are observed
to allow roughly inferring R0. These days are not used to infer NPI effectiveness. All later
days are masked (unfilled dots). The activation dates of NPIs are also given, and the model
uses the effectiveness estimates inferred from the 40 other countries.
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Figure C.18: Predictions on excluded countries.
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Figure C.19: Predictions on excluded countries.
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Figure C.20: Predictions on excluded countries.
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Figure C.21: Predictions on excluded countries. Vertical lines show the activation (or inactivation) dates
of NPIs. Shaded areas are 95% credible intervals. Blue and red dots show the observed confirmed cases
and deaths, while blue and red lines show the median model estimates of cases (Ct ) and deaths (Dt ).
Empty dots are not observed by the model. For each country, we show the full window of analysis (from
the start of the epidemic until the first NPI was lifted, or the 30th of May 2020, whichever was earlier;
see Methods).
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Appendix C.5. Posterior predictive distributions

The posterior predictive distribution (Figure C.22) shows the predicted number of cases and
deaths after observing the data. Although these curves can be called ‘fits’, the degree of fit
to the data must be interpreted with great care. The fit is generally tight, but this is partly
due to the inferred latent noise variables ε(C )

t and ε(D)
t . Inferring this latent noise allows

the posterior predictive distribution to closely match the data without overfitting the effec-
tiveness parameters to the data. Such behavior is common in Bayesian models, which often
perfectly interpolate the data without overfitting33. The noise terms can account for peri-
ods where infections grew faster or slower than predicted based solely on the active NPIs.
In such periods, the noise may account for changes in testing, reporting, and unobserved
interventions.
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Figure C.22: Left: Posterior predictive distributions for two exemplary countries. See text. Right: In-
ferred Rt over time.
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Appendix C.6. Calibration without countries used for hyperparameter selec-
tion
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Calibration: Country Holdouts

Figure C.23: Calibration in held-out countries with leave-one-out cross-validation. Here we include only
those 35 countries that were not used to select the hyperparameter. We show the first 14 days of cases
and deaths in each country and then extrapolate to future days within the period of analysis. The plot
shows the percentage of observed daily case and death counts that lie within the X% credible interval,
across all countries and days.
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Appendix C.7. MCMC stability results
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Figure C.24: MCMC stability results. Left: R-hat statistic. Values are close to 1, indicating convergence.
Right: Relative effective sample size. A value of 1 indicates perfect decorrelation between samples.
Values above (below) 1 indicate that the effective number of samples is higher (lower) than the actual
number of samples due to negative (positive) correlation, respectively.
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Appendix D. Additional results

Appendix D.1. Estimated R0 by country

Table D.5: Estimated values for R0 by country. The parenthesis give the 95% credible interval which is
often wide. The mean R0 across countries is 3.3.

Country Estimated R0 Country Estimated R0

Albania 3.48 (2.75;4.31) Lithuania 3.23 (2.48;4.03)
Andorra 2.75 (2.14;3.4) Malaysia 2.96 (2.36;3.61)
Austria 3.1 (2.5;3.77) Malta 3.27 (2.48;4.14)
Belgium 3.6 (3.02;4.27) Mexico 3.99 (3.27;4.8)
Bosnia and Herzegovina 3.31 (2.59;4.06) Morocco 3.59 (2.99;4.27)
Bulgaria 3.75 (3.04;4.57) Netherlands 3.16 (2.6;3.75)
Croatia 3.42 (2.7;4.18) New Zealand 2.41 (1.77;3.1)
Czech Republic 3.46 (2.76;4.25) Norway 2.73 (2.15;3.38)
Denmark 2.8 (2.2;3.47) Poland 3.97 (3.2;4.82)
Estonia 2.91 (2.29;3.61) Portugal 3.55 (2.92;4.25)
Finland 2.79 (2.21;3.43) Romania 4.01 (3.35;4.75)
France 3.31 (2.8;3.89) Serbia 3.8 (3.08;4.61)
Georgia 3.56 (2.81;4.39) Singapore 2.95 (2.38;3.56)
Germany 2.85 (2.31;3.46) Slovakia 3.53 (2.71;4.45)
Greece 3.21 (2.61;3.88) Slovenia 2.99 (2.3;3.73)
Hungary 4.03 (3.32;4.82) South Africa 4.47 (3.77;5.27)
Iceland 1.71 (1.13;2.42) Spain 3.6 (3.06;4.23)
Ireland 3.68 (3.09;4.33) Sweden 2.29 (1.76;2.88)
Israel 3.79 (3.09;4.59) Switzerland 2.89 (2.34;3.51)
Italy 3.36 (2.88;3.91) United Kingdom 3.2 (2.67;3.78)
Latvia 3.01 (2.33;3.76)
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Appendix D.2. Collinearity

Appendix D.2.1. The individual effects of school and university closures

The dates of school and university closures coincide nearly perfectly for every country ex-
cept Iceland and Sweden, which closed universities but not schools (Figure 1). As a con-
sequence, the inferred individual effects depend strongly on the inclusion or exclusion of
these countries in the dataset (Figure D.25). If we included all countries, we would con-
clude that university closures were more effective than school closures (black markers in
Figure D.25). However, if we excluded Iceland or Sweden, we would conclude that they
were roughly equally effective. As there is no strong justification for including or excluding
one particular country, we cannot meaningfully disentangle the effects of school and uni-
versity closures. However, there is much more data to determine the joint effect, and it is
indeed much more stable (Figure D.25).
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Figure D.25: The individual effectiveness of closing schools and of closing universities, as well as the
joint effect of closings school and universities, estimated on all countries (default), all countries except
Sweden, and all countries except Iceland. Median, 50% and 95% credible intervals are shown.

Appendix D.2.2. Co-occurrence of NPIs

Table D.6 shows the total number of days across all countries available to distinguish NPI
effects. For every pair of NPIs (row - column), the entry shows the number of country-
days on which only one of the NPIs was implemented (but not both or neither). Note that
we do not show the traditional collinearity statistics (variance inflation factors and data
correlations) since their applicability to time series data is limited. In particular, the value
of these statistics in our data increases as data for a longer time period becomes available,
which would misleadingly suggest that we could address problems from collinearity by
using less data.
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Table D.6: Total number of days across all countries available to distinguish NPI effects. For every pair of
NPIs (row - column), the entry shows the number of country-days on which exactly one of the NPIs was
implemented. Abbreviations: G.: Gatherings; SBC: Some businesses closed; MBC: Most nonessential
businesses closed; SaUC: Schools and universities closed; SaHO: Stay-at-home order.

G. <1000 G. <100 G. <10 SBC MBC SaUC SaHO
Mask-wearing 1829 1686 1472 1554 1315 1588 1038
Gatherings <1000 143 501 299 620 325 1173
Gatherings <100 358 240 515 284 1030
Gatherings <10 262 403 308 696
Some businesses closed 331 176 898
Most businesses closed 393 569
Schools and universities closed 940

Appendix D.2.3. Correlations between effectiveness estimates

The effectiveness parameters αi are typically negatively correlated with each other for NPIs
which are often used together, reflecting uncertainty about which NPI is reducing R. Ex-
cessive collinearity in the data would result in wide posterior credible intervals with strong
correlations24, but we find weak posterior correlations between effectiveness estimates.
The strongest correlation between any pair of NPIs is −0.42, between "closing schools and
universities" and "closing some businesses" (Figure D.26). The weak correlations are one
indicator that collinearity is manageable with our dataset.

Effect on NPI combinations. To better understand posterior correlations, we visualize
their effect in hosted video files. As we condition on different values for one NPI, we can
see that the estimates of other NPIs change only slightly, always staying well within the
credible intervals in Figure 3. The significance of posterior correlations is small enough that
it is possible to calculate a reasonable approximation to the mean effect of a set of NPIs by
simply combining the mean percentage reductions for each individual NPI (e.g. two 50%
reductions lead to a 75% reduction). For example, this approximation leads to a joint effect
of 75% for all NPIs together, which closely matches the exact mean joint effect of 77%.

Videos are available online here.
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Figure D.26: Posterior correlations between effectiveness parameters αi .

Appendix D.3. Posterior Epidemiological Parameter Distributions

Figure D.27 shows the posterior distributions for variables describing the key delay distribu-
tions in our model: the generation interval, the delay between infection and case confirma-
tion, and the delay between infection and death. We find that the posterior distributions of
these parameters are somewhat tighter than their priors, but they still explore a wide range
of values. This suggests that the data provides evidence, albeit weak, about these delay
distributions (for example, from visual inspection, the data would show that the delay is
longer for deaths than for cases). An exception is the dispersion of the infection to death
delay distribution, which has a very wide prior.
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Figure D.27: Posterior distributions over key epidemiological parameters describing the generation in-
terval and the delays between infection and case confirmation/death.
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Appendix E. Additional discussion of assumptions and limitations

Appendix E.1. Limitations of the data

We only record NPIs if they are implemented in most of a country (if they affect more
than three-quarters of the population). We thus miss NPIs which were only implemented
regionally. For example, a few regions in Germany implemented stay-at-home orders, but
most did not. Thus, Germany is listed as "no stay-at-home order" in our data. Additionally,
our NPI definitions were not perfectly granular. For example, a gathering ban on gatherings
of >15 people and a ban on gatherings of >60 people would both fall under the NPI
"Gatherings limited to 100 people or less", despite likely having different effects on Rt .
Finally, while we included more NPIs than previous work (Table F.7), there are many NPIs
for which we were not able to collect enough high-quality data for our modeling, such as
public cleaning or changes to public transportation.

Of the 41 countries in our dataset, 33 are in Europe. As a result, the NPI effectiveness
estimates may be biased towards effects in Europe, and NPI effectiveness may have been
different in other parts of the world.

Appendix E.2. Model limitations

Independence of country and time. We assume that the effect of NPIs on Rt is constant
across countries and time. However, the exact implementation and adherence of each NPI
is likely to vary. Our uncertainty estimates in Figure 3 account for these problems only to
a limited degree. Additionally, different countries have different cultural norms and age
profiles, affecting the degree to which a particular intervention is effective. For example, a
country where a higher proportion of the population is in education will likely experience a
larger effect from a government order to close schools and universities. Our estimates thus
should be adjusted to local circumstances. To address differences between countries, our
structural sensitivity analysis includes a model where each NPI can have a different effect
per country (Appendix B.2). The average effectiveness estimates across countries in this
model match the conclusions from our default model.

Testing, reporting, and the IFR. Our model can account for differences in testing (and
IFR/reporting) between countries and over time, as discussed in Appendix A. However,
we have not used additional data on testing to validate if it does so reliably. Our model may
struggle to account for changes in the testing regime—for instance, when a country reaches
its testing capacity so that the ascertainment rate declines exponentially. An exponential de-
cline would have the same effect on observations as an unobserved NPI. Consequently, we
cannot quantify its effect on our results (though the sensitivity analyses look reassuring).
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Interaction between NPIs. As discussed in the Results section, our model reports the aver-
age additional effect each NPI had in the contexts where it was active in our data (in the
sense mathematically shown by Sharma et al.9). Figure 3 (bottom left) summarises these
contexts, aiding interpretation. The effectiveness of an NPI can only be extrapolated to
other contexts if its effect does not depend on the context. For example, we may expect
that closing schools has a similar effectiveness whether or not businesses are also closed.
But wearing masks in public may be less effective when a stay-at-home order limits public
interactions.

Growth rates. The functional form of the relationship between the daily growth rate of the
number of infections g t and the reproductive number Rt holds exactly when the epidemic
is in its exponential growth phase, but becomes less accurate as the number of susceptible
people in a population decreases and/or control measures are implemented. However, we
also report results from a renewal process model8 that does not depend on this assumption,
and we find similar effectiveness estimates.

Signalling effect of NPIs. As we explained in the Discussion for school closures, we do not
distinguish between the direct effect of an NPI and its indirect effect as it signals the gravity
of the situation to the public. Conversely, lifting interventions may also have a signalling
effect.

Homogeneous effect of interventions. We work under the implicit assumption that NPIs af-
fect different population groups equally. This could affect results in various ways. For exam-
ple, suppose country A tests an older demographic than country B, and we are considering
the effect of an NPI that mostly affects the older demographic (for example, isolating the
elderly). Then the NPI will appear to have a greater effect on confirmed cases in country A,
breaking the assumption that effects are constant across countries. Our previous discussion
of interpreting results when this assumption is violated applies.
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Appendix F. Overview of previous work

Table F.7: Data-driven, multi-country, multi-NPI studies of the effectiveness of observed (as opposed to
hypothetical) NPIs in reducing the transmission of COVID-19.

Study NPIs studied
Regions/countries

studied
Method

Banholzer et
al., 202023

School closure,
border closure, event
ban, gathering ban,

venue closure,
lockdown, work ban

U.S., Canada, Australia,
Austria, Belgium,

Denmark, Finland,
France, Germany, Greece,

Ireland, Italy,
Luxembourg, the

Netherlands, Portugal,
Spain, Sweden, UK,
Norway, Switzerland

Semi-mechanistic
Bayesian hierarchical

model

Chen and
Qiu, 202021

Travel restriction,
mask-wearing,

lockdown, social
distancing, school

closure, centralized
quarantine

Italy, Spain, Germany,
France, UK, Singapore,

South Korea, China, U.S.

Regression with
delayed effect

Susceptible-Infectious-
Removed (SIR)

model

Flaxman et
al., 20201

School or university
closure, case-based
isolation, ban on

large public events,
social distancing,

lockdown

Austria, Belgium,
Denmark, France,

Germany, Italy, Norway,
Spain, Sweden,
Switzerland, UK

Semi-mechanistic
Bayesian hierarchical

model

Islam et al.,
202020

School closures,
workplace closures,
restrictions on mass
gatherings, public
transport closure,

lockdown

149 countries or regions
Interrupted time
series regression

Liu et al.,
202022

13 NPIs from the
OXCGRT dataset

130 countries and regions panel regression
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Table F.8: Some data-driven studies of the effectiveness of observed NPIs in reducing the transmission
of COVID-19, which study a single-country and/or a single-NPI.

Study NPIs studied
Regions/countries

studied
Method

Choma et al.,
202034

Single aggregated
NPI

22 countries and 25 states

Regression with
Susceptible-Infectious-

Removed-Deceased
(SIRD) model

Dandekar
and

Barbastathis,
202035

General quarantine
and isolation

Wuhan, Italy, South
Korea, and U.S.

A mix of a mechanistic
model and a

data-driven neural
network model

Dehning et
al., 202036

Contact ban,
restrictions on

gatherings, schools,
childcare, businesses

Germany
Bayesian inference of

transmission rate

Gatto et al.,
202037

Various restrictions to
mobility and

human-to-human
interactions

Italy

Susceptible–Exposed–
Infected–Recovered
(SEIR)-like disease
transmission model

Hsiang et al.,
202019

Restricting travel (5
subcategories),
distancing (10
subcategories),
quarantine and

lockdown (2
subcategories),

additional policies (2
subcategories)

China, South Korea, Italy,
Iran, France, U.S. (each

country modelled
individually)

Linear regression on
estimated growth

rates

Jarvis et al.,
202038

Physical (social)
distancing measures

UK
Questionnaire data
and compartmental

epidemic model
Kraemer et
al., 202039

Travel restrictions
and cordon sanitaire

China Regression

Kucharski et
al., 202040 Travel restrictions Wuhan (China)

Various, including
Susceptible-Exposed-
Infectious-Removed

(SEIR) model

Lai et al.,
202041

Case detection and
isolation, travel

restrictions, contact
reductions

China
Travel-network-based

SEIR model

Continued on next page
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Table F.8 – Continued from previous page

Study NPIs studied
Regions/countries

studied
Method

Lorch et al.,
202042

Mobility restrictions,
testing & tracing,

social distancing, and
business restrictions

Tübingen (Germany)
Authors’ own

spatiotemporal model
of epidemics

Maier and
Brockmann,

202043

General quarantine
and isolation

Mainland China
Quantitative fits to

empirical data

Orea and
Álvarez,
202044

Lockdown Spain
Spatial econometric

analysis

Quilty et al.,
202045

Intercity travel
restrictions

Beijing, Chongqing,
Hangzhou, and Shenzhen

(Mainland China)

Branching process
transmission model

Sears et al.,
202046

Mobility changes as a
proxy for

stay-at-home
mandates

U.S.
Difference-in-

differences statistical
model

Siedner et
al., 202047

General social
distancing

U.S.
Interrupted
time-series
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Appendix G. Handling edge cases in the data collection

In our data collection process, we relied on carefully worded definitions of 9 different NPIs
(Table F.7), which allowed us to systematically determine the date on which a country
imposed an NPI and, if applicable, the date the NPI was lifted.

In some cases, however, we faced ambiguities in how to interpret the start date of an NPI.
One kind of challenge arose when descriptions of policy measures were less specific than
our NPI definitions (e.g. a ban on “large gatherings” that does not specify the exact number
of people that constitutes a “large gathering”). Another difficulty was due to NPI policies
that made distinctions that we did not make in our own NPI definitions (e.g., an NPI policy
that made a distinction between the number of people able to gather indoors vs outdoors).

To resolve these ambiguities in a consistent manner, our researchers developed a set of prin-
ciples and guidelines that were followed during the data collection process. For each of the
examples below, the relevant sources are available in the data table in the supplementary
material.

Situation: Sometimes only public gatherings are banned, with no explicit ban on pri-
vate gatherings

How we deal with it: We still counted this as a ban on gatherings.

Examples:

• Sweden: In Sweden, they banned all public gatherings of more than 50 people (demon-
strations, religious meetings, theater performances, markets, and other events that
relied on the constitutional freedom of assembly), however, the ban did not have a
mandate to prohibit private gatherings (such as private parties). We counted this as a
ban on gatherings.

• Finland: In Finland, they banned all public gatherings of more than 10 people on
the 16th of March. Although formal restrictions did not apply to private gatherings,
this policy met our definition of a ban on gatherings. (Note that this inclusion seems
particularly valid in light of the fact that, according to Finnish police, the formal
restrictions on public events were widely interpreted to apply to private gatherings as
well, and there were very few reports of large private parties despite the absence of
formal restrictions.)

Situation: The size limits on gatherings sometimes differ between indoor and outdoor
gatherings.

How we deal with it: In these cases, we relied on the limitations on indoor events, as these
events entail a greater risk of transmission.

Example:
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• Spain: In Spain, a range of rules were employed as the country gradually eased re-
strictions on gatherings. In phase 1, cultural events were permitted with up to 30
people indoors and up to 200 outdoors. This was counted as “Gatherings limited to
100 people or less.”

Situation: The size limit on gatherings sometimes differs between different types of
gatherings.

How we deal with it: In this case, researchers would use their best judgment to infer whether
the restriction would apply to most gatherings of a given size.

Example:

• Spain: In Spain, phase 1 of the reopening allowed for cultural events to have up to
30 participants indoors, while social gatherings were limited to 10 people. In this
case, since “cultural events” is broad, we counted this as a case of “gatherings limited
to 100 people or less.” However, if for example all gatherings above 5 people had
been banned with an exception for funerals, we would have counted this as “gather-
ings limited to 10 people or less,” since the exemption only applied to a minority of
gatherings.

Situation: Limitations on gathering sizes are not clearly given, yet a policy stating that
“large events are banned” is in place.

How we deal with it: Our researchers used the relevant context to infer the most likely scope
of the policy.

Example:

• Albania: on March 8 “authorities had also ordered cancellations of all large public
gatherings including cultural events and were asking sporting federations to cancel
scheduled matches”. The events that are mentioned here are multi-thousand person
gatherings, and so we took March 8th to be the start date of “Gatherings limited to
1000 people or less”. However it was unclear whether gatherings of 100-1000 would
also have been banned, so we did not yet say that “Gatherings limited to 100 people
or less” was instantiated.

Situation: Only some schools were closed, or schools reopened gradually.

How we deal with it: Since our definition of the NPI is that “Most schools are closed”, we did
not count the closure of just a few schools or school years sufficient to meet this criteria.
Similarly, if schools reopened for only a very limited number of year groups, for example
for final year students sitting exams, we did not count this as a lifting of the “most schools
closed” NPI.

61

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


Examples:

• Sweden: Sweden kept all schools through 9th grade open, but closed high schools
(>16 year olds). In this case, we did not count this as “Most schools closed”, since
more than 75% of students are below 9th grade.

• Czech Republic: After closing all schools on March 13, the Czech Republic allowed
schools to reopen for teaching in some contexts from May 11 (specifically for students
in their final year of primary school or high school preparing for exams). However,
we still counted this as “Most schools closed” since the majority of students were not
in school. We recorded the end date for school closure to be June 8, when all schools
reopened.

Situation: In a country where most non-essential businesses were closed, the lifting
of business closures is gradual, and businesses in different sectors are successively
allowed to open.

How we deal with it: Countries reopen sectors in different, idiosyncratic ways and succes-
sions. Given the available data, it is not feasible to create a principle that can be applied
unambiguously to every single case without some involvement of researcher judgment. The
general guideline we used was: If only a few, low-risk businesses (e.g., bike stores, hard-
ware stores, etc.) are additionally allowed to reopen, then we still counted this as “Most
nonessential businesses closed.” However if any one of the following criteria are met, then
we counted “Most nonessential businesses closed” as having lifted, but the “Some businesses
closed” NPI was still in place:

• All regular retail stores, with only a few exceptions e.g. size limitations, are open
• Contact-based services, such as hairdressers and tattoo parlors, are open
• Restaurants and bars are open and serving indoors

We decided that meeting any one of these criteria is a sufficient condition for taking a coun-
try from “Most nonessential businesses closed” to “Some businesses closed.” This heuristic
was partly based on the fact that the status of these categories appeared to be consistently
correlated, meaning that, even in the absence of complete specifications as to what had
reopened or not, it was typically possible to infer the overall level of reopening based on
either of these categories. Meeting at least one of these criteria was considered a necessary
condition for ending the “Most nonessential businesses closed” NPI.

Examples:

• Slovakia: On April 22, retail operations and services up to 300 m2 opened. Since this
meets one of the sufficient conditions, we counted April 22 as the end date for “Most
nonessential businesses closed”

• Ireland: On May 18, the following reopened: hardware stores, builders, merchants
and those providing essential supplies, retailers involved in the sale and repair of
vehicles, certain office supply stores. Because this white list does not meet any of the

62

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


three criteria, Ireland’s end date for “Most nonessential businesses closed” was not
counted as May 18.

• Czech Republic: On April 20, several businesses reopened, including farmer’s mar-
kets, marketplaces, locksmiths, bike shops, car dealers, electronics stores. At this
point, none of the criteria were met, so we recorded the Czech Republic as still hav-
ing “Most nonessential businesses closed”. On May 11, a long list of businesses re-
opened, including barbers, hairdressers, museums, all establishments in sufficiently
large shopping centers, shows with up to 100 participants, and restaurants with a
window facing the street. Since contact-based services (hairdressers) and all retail
establishments in sufficiently large spaces were allowed to reopen, we counted May
11 as the end date for the “Most nonessential businesses closed” NPI.

• Croatia: On April 27, all “trade activities” (except within shopping malls), service jobs
that don’t involve physical contact, museums, libraries, and galleries opened. Since
the criteria regarding “all retail stores being open” was met, we counted April 27 as
the end date for “Most nonessential businesses closed”.
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Appendix H. All model equations

This section will mainly be of interest to readers that wish to re-implement the model.

Variables are indexed by NPI i , country c, and day t . All prior distributions are independent.

Data

1. NPI Activations: φi ,t ,c ∈ {0,1}.
2. Observed (Daily) Cases: Ct ,c .
3. Observed (Daily) Deaths: D t ,c .

Prior Distributions

1. Country-specific R0: R0,c ∼ Normal(3.25,κ); κ∼ Half Normal(µ= 0,σ= 0.5).
2. NPI effectiveness: αi ∼ Asymmetric Laplace(m = 0,κ= 0.5,λ= 10). m is the location

parameter, κ> 0 is the asymmetry parameter, and λ> 0 is the scale parameter.
3. Infection Initial Counts:

N (C )
0,c = exp(ζ(C )

c ),

N (D)
0,c = exp(ζ(D)

c ),

ζ(C )
c ∼ Normal(µ= 0,σ= 50),

ζ(D)
c ∼ Normal(µ= 0,σ= 50).

4. Observation Noise Dispersion Parameters:

Ψcases ∼ Half Normal(µ= 0,σ= 5), (H.1)

Ψdeaths ∼ Half Normal(µ= 0,σ= 5). (H.2)

Hyperparameters

1. Growth Noise Scale, σg = 0.2.

Delay Distributions

1. Generation interval distribution13,14:

µGI ∼ Normal(µ= 5.06,σ= 0.3265),

σGI ∼ Normal(µ= 2.11,σ= 0.5).
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2. Time from infection to case confirmation T (C )13,15,16:f

µinf→conf ∼ Normal(µ= 10.92,σ= 0.94),

Ψinf→conf ∼ Normal(µ= 5.41,σ= 0.27).

This distribution is converted into a forward-delay vector:

T (C )[t ] =
{

1
ZC

Negative Binomial(t ;µ=µinf→conf,α=Ψinf→conf) t < 32

0 otherwise
,

with ZC =
31∑

t ′=0
Negative Binomial(t ′;µ=µinf→conf,α=Ψinf→conf),

i.e., the delay follows a truncated and normalised negative binomial distribution.
3. Time from infection to death T (D)f13,15,17:

µinf→death ∼ Normal(µ= 21.82,σ= 1.01),

Ψinf→death ∼ Normal(µ= 14.26,σ= 5.18).

This distribution is converted into a forward-delay vector:

T (D)[t ] =
{

1
ZD

Negative Binomial(t ;µ=µinf→death,α=Ψinf→death) t < 48

0 otherwise
,

with ZD =
47∑

t ′=0
Negative Binomial(t ′;µ=µinf→death,α=Ψinf→death),

i.e., the delay follows a truncated and normalised negative binomial distribution.

Infection Model

Rt ,c = R0,c ·exp

(
−

I∑
i=1

αi φi ,t ,c

)
, where I is the number of NPIs.

αGI =
µGI

σ2
GI

,

βGI =
µ2

GI

σ2
GI

,

g t ,c = exp

(
βGI(R

1
αGI
c,t −1)

)
−1.

fα in the definition of the Negative Binomial distribution is the dispersion parameter. Larger values of α
correspond to a smaller variance, and less dispersion. With our parameterisation, the variance of the Negative

Binomial distribution is µ+ µ2

α .
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N (C )
t ,c = N (C )

0,c

t∏
τ=1

[
(gτ,c +1) ·expε(C )

τ,c

]
,

N (D)
t ,c = N (D)

0,c

t∏
τ=1

[
(gτ,c +1) ·expε(D)

τ,c )
]

,with noise

ε(C )
τ,c ∼ Normal(µ= 0,σ=σg ),

ε(D)
τ,c ∼ Normal(µ= 0,σ=σg ).

Observation Modelf

C̄t ,c =
31∑
τ=0

N (C )
t−τ,cT

(C )[τ],

D̄ t ,c =
47∑
τ=0

N (D)
t−τ,cT

(D)[τ],

Ct ,c ∼ Negative Binomial(µ= C̄t ,c ,α=Ψcases),

D t ,c ∼ Negative Binomial(µ= D̄ t ,c ,α=Ψdeaths).
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