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Abstract

Background. Governments are attempting to control the COVID-19 pandemic with non-
pharmaceutical interventions (NPIs). However, it is still largely unknown how effective
different NPIs are at reducing transmission. Data-driven studies can estimate the effective-
ness of NPIs while minimizing assumptions, but existing analyses lack sufficient data and
validation to robustly distinguish the effects of individual NPIs.

Methods. We collect chronological data on NPIs in 41 countries between January and May
2020, using independent double entry by researchers to ensure high data quality. We esti-
mate NPI effectiveness with a Bayesian hierarchical model, by linking NPI implementation
dates to national case and death counts. To our knowledge, this is the largest and most
thoroughly validated data-driven study of NPI effectiveness to date.
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Results. We model each NPI’s effect as a multiplicative (percentage) reduction in the repro-
duction number R. We estimate the mean reduction in R across the countries in our data for
eight NPIs: mandating mask-wearing in (some) public spaces (2%; 95% CI: -14%–16%),
limiting gatherings to 1000 people or less (2%; -20%–22%), to 100 people or less (21%;
1%–39%), to 10 people or less (36%; 16%–53%), closing some high-risk businesses (31%;
13%–46%), closing most nonessential businesses (40%; 22%–55%), closing schools and
universities (39%; 21%–55%), and issuing stay-at-home orders (18%; 4%–31%). These
results are supported by extensive empirical validation, including 15 sensitivity analyses.

Conclusions. Our results suggest that, by implementing effective NPIs, many countries can
reduce R below 1 without issuing a stay-at-home order. We find a surprisingly large role
for school and university closures in reducing COVID-19 transmission, a contribution to the
ongoing debate about the relevance of asymptomatic carriers in disease spread. Banning
gatherings and closing high-risk businesses can be highly effective in reducing transmission,
but closing most businesses only has limited additional benefit.
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Introduction

Worldwide, governments have mobilised vast resources to fight the COVID-19 pandemic. A
wide range of nonpharmaceutical interventions (NPIs) has been deployed, including drastic
measures like stay-at-home orders and the closure of all nonessential businesses. Recent
analyses show that these large-scale NPIs are jointly effective at reducing the virus’ effective
reproduction number,1 but the effects of individual NPIs are still largely unknown. As time
progresses and more data become available, we can move beyond estimating the combined
effect of a bundle of NPIs and begin to understand the effects of individual interventions.
This can help governments efficiently control the epidemic, while removing less effective
NPIs, to ease the burden put on the population.

A promising way to estimate NPI effectiveness is data-driven, cross-country modelling: in-
ferring effectiveness by relating the NPIs implemented in different countries to the course
of the epidemic in these countries. To disentangle the effects of individual NPIs, we need
to leverage data from multiple regions with diverse sets of interventions in place. With
some exceptions,1–4 previous data-driven studies focus on single NPIs or single geographi-
cal regions (Table F.4). In contrast, we evaluate the impact of eight NPIs on the epidemic’s
growth in 34 European and 7 non-European countries. To our knowledge, this is the largest
data-driven study of NPI effects on COVID-19 transmission to date. The data gathered is
publicly available.

To isolate the effect of individual NPIs, we also require sufficiently diverse data. If all coun-
tries implemented the same set of NPIs on the same day, the individual effect of each NPI
would be unidentifiable. However, the COVID-19 response was far less coordinated: coun-
tries implemented different sets of NPIs, at different times, in different orders (Figure 1).

Even with diverse data from many countries, estimating NPI effects remains a challenging
task. First, many components of a model, such as epidemiological parameters and interac-
tions between NPIs, are only known with high uncertainty. Two recent replication studies
demonstrated that NPI effectiveness estimates can be highly sensitive to arbitrary modelling
decisions,5 especially when based on insufficient data.6 Second, the data are retrospective
and observational, meaning that unobserved factors could confound the results. Third,
large-scale public NPI datasets suffer from frequent inconsistencies7 and missing data.8 For
these reasons, the data and the model should be carefully validated. Insufficiently validated
results should not be used to guide policy decisions. We perform, to our knowledge, by far
the most extensive validation of any COVID-19 NPI effectiveness results to date, a crucial
but largely absent or incomplete element of NPI effectiveness studies.5
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Universities closedSchools closed
Mask-wearing

Most businesses closed Stay-at-home order
Some businesses closed

Figure 1: Timing of NPI implementations in early 2020. Crossed-out symbols signify when an NPI was
lifted. Detailed definitions of the NPIs are given in Table 1.
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Methods

Dataset

We analyse the effects of NPIs (Table 1) in 41 countriesa (see Figure 1). We recorded NPI
implementations when the measures were implemented nationally or in most regions of a
country (affecting at least three fourths of the population). For each country, the window of
analysis starts on the 22nd of January and ends after the first NPI was lifted, or on the 30th
of May 2020, whichever was earlier. The reason to end the analysis after the first major
reopeningb was to avoid a distribution shift. For example, when schools reopened, it was
often with safety measures, such as smaller class sizes and distancing rules. It is therefore
expected that contact patterns in schools will have been different before school closure
compared to after reopening. Modelling this difference explicitly is left for future work.
Data on confirmed COVID-19 cases and deaths were taken from the Johns Hopkins CSSE
COVID-19 Dataset.9 The data used in this study, including sources, are available online
here.

aThe countries were selected for their number of cumulative cases surpassing a minimum threshold (at the
time of modelling), the availability of reliable data on NPIs, and the trustworthiness of their reporting of deaths.
Finally, we excluded very large countries like China, the US, and Canada, for ease of data collection, as these
would require more locally fine-grained data.

bConcretely, the window of analysis extended until three days after the first reopening for confirmed cases,
and 13 days after the first reopening for deaths. These values correspond to the 5% quantile of the infection-to-
confirmation/death distributions, ensuring that less than 5% of the new infections on the reopening day were
still observed in the window of analysis.
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Table 1: NPIs included in the study. Appendix G details how edge cases in the data collection were
handled.

NPI Description
Mask-wearing
mandatory in
(some) public
spaces

A country has mandated mask usage in the public, sometimes limited
to just some public spaces (which the government deems to have a high
risk of infection). For example, some countries mandated mask-wearing
in most or all indoor public spaces but not outdoors.

Gatherings
limited to 1000
people or less

A country has set a size limit on gatherings. The limit is at most 1000
people (often less), and gatherings above the maximum size are disal-
lowed. For example, a ban on gatherings of 500 people or more would
be classified as “gatherings limited to 1000 or less”, but a ban on gath-
erings of 2000 people or more would not.

Gatherings
limited to 100
people or less

A country has set a size limit on gatherings. The limit is at most 100
people (often less).

Gatherings
limited to 10
people or less

A country has set a size limit on gatherings. The limit is at most 10
people (often less).

Some businesses
closed

A country has specified a few kinds of customer-facing businesses that
are considered “high risk” and need to suspend operations (black-
list). Common examples are restaurants, bars, nightclubs, cinemas,
and gyms. By default, businesses are not suspended.

Most nonessential
businesses closed

A country has suspended the operations of many customer-facing busi-
nesses. By default, customer-facing businesses are suspended unless
they are designated as essential (whitelist).

Schools closed A country has closed most or all schools.
Universities
closed

A country has closed most or all universities and higher education fa-
cilities.

Stay-at-home
order (with
exemptions)

An order for the general public to stay at home has been issued. This is
mandatory, not just a recommendation. Exemptions are usually granted
for certain purposes (such as shopping, exercise, or going to work), or,
more rarely, for certain times of the day. In practice, a stay-at-home
order was often accompanied by other NPIs such as businesses closures.
However, a stay-at-home order does not in principle entail these other
NPIs, but only the (additional) order to generally stay at home except
for exemptions.
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Data collection

We collected data on the start and end date of NPI implementations, from the start of the
pandemic until the 30th of May 2020. Before collecting the data, we experimented with
several public NPI datasets, finding that they were not complete enough for our modelling
and contained incorrect dates.c By focusing on a smaller set of countries and NPIs than these
datasets, we were able to enforce strong quality controls: We used independent double
entry and manually compared our data to public datasets for cross-checking.

First, two authors independently researched each country and entered the NPI data into sep-
arate spreadsheets. The researchers manually researched the dates using internet searches:
there was no automatic component in the data gathering process. The average time spent
researching each country per researcher was 1.5 hours.

Second, the researchers independently compared their entries to the following public datasets
and, if there were conflicts, visited all primary sources to resolve the conflict: the EFGNPI
database,10 the Oxford COVID-19 Government Response Tracker,11 and the mask4all dataset.12

Third, each country and NPI was again independently entered by one to three paid con-
tractors, who were provided with a detailed description of the NPIs and asked to include
primary sources with their data. A researcher then resolved any conflicts between this data
and one (but not both) of the spreadsheets.

Finally, the two independent spreadsheets were combined and all conflicts resolved by a
researcher. The final dataset contains primary sources (government websites and/or media
articles) for each entry.

Data Preprocessing

Data on cases and deaths are noisy. Many countries preferentially report deaths and cases on
certain days of the week. For example, there are days with zero newly confirmed cases even
though there had been several hundred reported cases on the previous day. We therefore
smooth the data using a moving average (on a linear scale) over 2 days into the past and
future. When the case count is small, a large fraction of cases may be imported from other

cWe evaluated the following datasets:
• Epidemic Forecasting Global NPI Database10

• Oxford COVID-19 Government Response Tracker (OxCGRT)11

• ACAPS #COVID19 Government Measures Dataset
Note that these datasets are under continuous development. Many of the mistakes found will already have been
corrected. We know from our own experience that data collection can be very challenging. We have the fullest
respect for the people behind these datasets. In this paper, we focus on a more limited set of countries and NPIs
than these datasets contain, allowing us to ensure higher data quality in this subset. Given our experience with
public datasets and our data collection, we encourage fellow COVID-19 researchers to independently verify the
quality of public data they use, if feasible.
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countries and the testing regime may change rapidly. To prevent this from biasing our
model, we neglect case numbers before a country has reached 100 confirmed cases and
death numbers before a country has reached 10 deaths. We include all preprocessing steps
in our sensitivity analysis (Appendix C.2).

Model

For each country c

For each day t

New infections     

(  noise)

N (⋅)
t,c⋅

Daily reproduction 
number Rt,c

New confirmed cases 
 or deaths Ct,c Dt,c

Basic reproduction 
number R0,c

Delay from infection to 
confirmation / death

Mask 
wearing

Symptomatic 
testing

Gatherings 
limited to 

10

Gatherings 
limited to 

100

Some 
businesses 

closed

Gatherings 
limited to 

1000

Many 
businesses 

closed

Schools and 
universities 

closed

Stay-home 
order

Growth reductions  from interventions αi i

Daily growth rate gt,cGeneration interval

Product of active 
reductions

 = 1 if  is onϕi,t,c i

For each intervention i

Figure 2: Model Overview. Purple nodes are observed or have a fixed distribution. From bottom to top:
The effectiveness of intervention i is represented by αi . On each day t , a country’s daily reproduction
number Rt ,c depends on the country’s basic reproduction number R0,c and the active NPIs. The active
NPIs are encoded by Φi ,t ,c , which is 1 if NPI i is active in country c at time t , and 0 otherwise. Rt ,c is
transformed into the daily growth rate gt ,c , which also depends on the generation interval. The growth
rate is used to compute the new infections N (C )

t ,c and N (D)
t ,c that will later be registered as confirmed cases

Ct ,c and deaths Dt ,c respectively, after a delay. Our model uses both death and case data: it splits all
nodes above the daily growth rate gt ,c into separate branches for deaths and confirmed cases.

Our model uses case and death data from each country to ‘backwards’ infer the number of
new infections at each point in time, which is itself used to infer the reproduction numbers.
NPI effects are then estimated by relating the daily reproduction numbers to the active
NPIs, across all days and countries. This relatively simple, ‘data-driven’ approach allows us
to sidestep assumptions about contact patterns and intensity, infectiousness of different age
groups, and so forth, that are typically required in modelling studies. Our semi-mechanistic
Bayesian hierarchical model is based on that of Flaxman et al.,1 extended to use both case
and death data. This increases the amount of data from which we can extract NPI effects,
reduces distinct biases of case and death reporting, and reduces the bias of only including
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countries that have many deaths. Additionally, as we do not aim to infer the total number of
COVID-19 infections, we do not assume a specific infection fatality rate (IFR) or ascertain-
ment rate (rate of testing). We proceed by summarising the model (Figure 2). A detailed
description is given in Appendix A. Code is available online here.

The growth of the epidemic is determined by the time- and country-specific reproduction
number Rt ,c , which depends on: a) the (unobserved) basic reproduction number R0,c given
no active NPIs and b) the active NPIs at time t . R0,c accounts for all time-invariant factors
that affect transmission in country c, such as differences in demographics, population den-
sity, culture, and health systems.13 We assume that the effect of each NPI on Rt ,c is stable
across countries and time. The effectiveness of NPI i is represented by a parameter αi ,
over which we place a symmetric prior with mean zero, allowing both positive and negative
effects. Following Flaxman et al. and others,1–3 each NPI’s effect on Rt ,c is assumed to
independently affect Rt ,c as a multiplicative factor:

Rt ,c = R0,c

I∏
i=1

exp
(−αi φi ,t ,c

)
, (1)

where φi ,c,t = 1 indicates that NPI i is active in country c on day t (φi ,c,t = 0 otherwise), and
I is the number of NPIs. The multiplicative effect encodes the plausible assumption that
NPIs have a smaller absolute effect when Rt ,c is already low. We discuss the meaning of
effectiveness estimates given NPI interactions in the Results section.

In the early phase of an epidemic, the number of new daily infections grows exponentially.
During exponential growth, there is a one-to-one correspondence between the daily growth
rate and Rt ,c .14 The correspondence depends on the generation interval (the time between
successive infections in a chain of transmission), which we assume to have a Gamma dis-
tribution with mean 6.67 days.1,15,16 We model the daily new infection count separately
for confirmed cases and deaths, representing those infections which are later reported and
those which are later fatal. However, both infection numbers are assumed to grow at the
same daily rate in expectation, allowing the use of both data sources to estimate each αi .
The infection numbers translate into reported confirmed cases and deaths after a stochastic
delay, which is assumed to be equal across countries. The delay is the sum of two indepen-
dent gamma distributions, assumed to be equal across countries: the incubation period and
the delay from onset of symptoms to confirmation. We use previously published empirical
distributions from China and Italy,16–19 which mutually agree, and give a mean infection-
to-confirmation delay of 10.35 days. Similarly, the infection-to-death delay is the sum of the
incubation period and the (gamma distributed) delay from onset of symptoms to death,17,20

which sum up to a mean delay of 22.9 days. Finally, both the reported deaths and cases
follow a negative binomial noise distribution an inferred dispersion parameter, as in related
NPI models.1,3

Using a Markov chain Monte Carlo (MCMC) sampling algorithm,21 this model infers poste-
rior distributions of each NPI’s effectiveness while accounting for cross-country variations
in testing, reporting, and fatality rates. However, it relies on the key assumptions that NPIs

9

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://github.com/epidemics/COVIDNPIs/tree/paper
https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


have equal effects across countries and time, and that changes in R are due to the observed
NPIs. To analyse the extent to which modelling choices affect the results, our sensitivity
analysis includes all epidemiological parameters, prior distributions, and many of the struc-
tural assumptions introduced above (Appendix B.2 and Appendix C). MCMC convergence
statistics are given in Appendix C.

Results

NPI Effectiveness

Our model enables us to estimate the individual effectiveness of each NPI, expressed as
a percentage reduction in R. As in related work,1–3 this percentage reduction is modelled
as constant over countries and time, and independent of the other implemented NPIs. In
practice, however, NPI effectiveness may depend on other implemented NPIs and local
circumstances. Thus, our effectiveness estimates ought to be interpreted as the effectiveness
averaged over the contexts in which the NPI was implemented, in our data.5 Our results thus
give the average NPI effectiveness across typical situations that the NPIs were implemented
in. Figure 3 (bottom left) visualizes which NPIs typically co-occurred, aiding interpretation.

The mean percentage reduction in R (with 95% credible interval) associated with each NPI
is as follows (Figure 3): mandating mask-wearing in (some) public spaces: 2% (-14%–
16%), limiting gatherings to 1000 people or less: 2% (-20%–22%), to 100 people or less:
21% (1%–39%), to 10 people or less: 36% (16%–53%), closing some high-risk businesses:
31% (13%–46%), closing most nonessential businesses: 40% (22%–55%), closing schools
and universities: 39% (21%–55%), and issuing stay-at-home orders: 18% (4%–31%).

Some NPIs frequently co-occur, i.e., are collinear. However, we are able to isolate the ef-
fects of individual NPIs since the collinearity is imperfect and our dataset is large. For every
pair of NPIs, we observe one of them without the other for 748 country-days on average
(Appendix D.3). The minimum number of country-days for any NPI pair is 143 (for lim-
iting gatherings to 1000 or 100 attendees). Additionally, under excessive collinearity, and
insufficient data to overcome it, individual effectiveness estimates are highly sensitive to
variations in the data and model parameters.22 High sensitivity prevented Flaxman et al.,1

who had a smaller dataset, from disentangling NPI effects.6 Our estimates are substantially
less sensitive (see below). Finally, the posterior correlations between the effectiveness esti-
mates are weak, suggesting manageable collinearity (Appendix D.4).

Although the correlations between the individual estimates are weak, we should take them
into account when evaluating combined effects of NPIs. For example, if two NPIs fre-
quently co-occur, there may be more certainty about the combined effect than about the
two individual effects. Figure 4 shows the combined effectiveness of the sets of NPIs that
are most common in our data. All NPIs together reduce R by 82% (79%–85%). Across
our countries, the mean R without any NPIs (i.e. R0) is 3.8, matching the mean result of
Flaxman et al.1 (Table D.2 reports R0 for all countries) Starting from this number, the esti-
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Figure 3: Top: NPI effects. The Figure shows the average percentage reductions in R as observed in
our data (or, in terms of the model, the posterior marginal distributions of 1−exp(−αi )), with median,
50% and 95% credible intervals. A negative 1% reduction refers to a 1% increase in R. Cumulative
effects are shown for hierarchical NPIs (gathering bans and business closures) i.e., the result for Most
nonessential businesses closed shows the cumulative effect of two NPIs with separate parameters and
symbols - closing some (high-risk) businesses, and additionally closing most remaining (non-high-risk,
but nonessential) businesses given that some businesses are already closed. Finally, we show the joint
effect of closing both schools and universities because the dates of school and university closures nearly
perfectly coincide in our data and we cannot meaningfully isolate their individual effects (Appendix
D.2). Bottom Left: Conditional activation matrix. Cell values indicate the frequency that NPI i (x-axis)
was active given that NPI j (y-axis) was active. E.g., schools were always closed whenever a stay-at-
home order was active (bottom row, third column from the right), but not vice versa. Bottom Right:
Total number of days each NPI was active across all countries.
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Mask-wearing
Most businesses 
closed Schools Closed Universities Closed Stay-at-home order

Some businesses
closed

Figure 4: Combined NPI effectiveness for the most common sets of NPIs in our data, by size of the NPI set.
Shaded regions denote 50% and 95% credible intervals. Left: Maximum R0 that can be reduced to below
1 for each set of NPIs. Right: Predicted R after implementation of each set of NPIs, assuming R0 = 3.8.
Readers can interactively explore the effects of all sets of NPIs at http://epidemicforecasting.org/calc.

mated R can be reduced below 1 by closing schools and universities, high-risk businesses,
and limiting gathering sizes. Readers can interactively explore the effects of sets of NPIs
at http://epidemicforecasting.org/calc. A CSV file containing the joint effectiveness of all
possible NPI combinations is available online here.

Validation

We perform a range of experiments to study the robustness and calibration of our NPI effec-
tiveness estimates (Appendix B, with further experiments in Appendix C). We analyse how
the model extrapolates to unseen countries and periods, and perform multiple sensitivity
analyses. Amongst other things, we analyse how results change if we vary epidemiological
parameters or vary the data (using only deaths or confirmed cases as observations; ex-
cluding countries from the data). To investigate our key assumptions, we show results for
several alternative models (structural sensitivity), analyze the role of NPI timing, and ex-
amine possible confounding of our estimates by unobserved factors influencing R. Figure 5
summarises these analyses by showing how each NPI’s effectiveness is ranked compared
to other NPIs and how its rank is distributed across all experiment conditions. The strong
agreement across these many analyses increases our confidence in the results while also
showing that the precise effectiveness estimates come with additional uncertainty.

Discussion

We use a data-driven approach to estimate the effects of eight nonpharmaceutical interven-
tions on COVID-19 transmission in 41 countries. All eight NPIs together reduce R by 82%
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Figure 5: Ranking of NPIs by median effectiveness, across all sensitivity analyses (15 sensitivity analyses
with a total of 96 experiment conditions). In each analysis, NPI effects were estimated under several
different plausible variations of the model or the data (Appendix B and Appendix C). The colour
indicates in which fraction of all experiment conditions an NPI occupied a given rank. The sensitivity
analyses aggregated in this Figure are shown in Figures B.8, B.9, C.11, C.12, C.13, and B.7A.

(79%–85%). This finding is in strong agreement with the joint effect estimated in eleven
countries by Flaxman et al.1 and contributes to the mounting evidence that NPIs can be
effective at mitigating and suppressing outbreaks of COVID-19. Furthermore, our results
suggest that some NPIs outperform others. While the exact effectiveness estimates vary
mildly, the qualitative conclusions discussed below are robust across 15 sensitivity analyses.

Business closures and gathering bans both seem effective at reducing COVID-19 transmis-
sion. Closing only high-risk businesses (mean reduction in R: 31%) appears only somewhat
less effective than closing most nonessential businesses (40%), making it the more promis-
ing policy option in some circumstances. Limiting gatherings to 10 people or less (36%) was
more effective than limits up to 100 (21%) or 1000 people (2%). This may reflect that small
gatherings are common. As previously discussed, we estimate the average additional effect
each NPI had in the contexts where it was implemented. When countries introduced stay-
at-home orders, they nearly always also banned gatherings and closed schools, universities,
and nonessential businesses if they had not done so already. Flaxman et al.1 and Hsiang
et al.4 add the effect of these distinct NPIs to the effectiveness of stay-at-home orders, and
accordingly find a large effect. In contrast, we and Banholzer et al.3 isolate the additional
effect of ordering the population to stay at home, and instead find a smaller effect (18%). A
typical country can reduce R to below 1 without a stay-at-home order (Figure 4) provided
other NPIs stay active.

Mandating mask-wearing in various public spaces had a small positive effect on average
in the countries we studied (2%). This does not rule out that mask-wearing has a larger
effect in other contexts. In our data, mask-wearing was only mandated when other NPIs
had already reduced public interactions. When most transmission occurs in private spaces,
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wearing masks in public is expected to be less effective. This might explain why a larger
effect was found in studies that included China and South Korea, where mask-wearing
was introduced earlier.2,23 While there is an emerging body of literature indicating that
mask-wearing can be effective in reducing transmission, the bulk of evidence comes from
healthcare settings.24 In non-healthcare settings, risk compensation25 and open questions
about different types of masks play a larger role, potentially reducing effectiveness. While
our results cast doubt on reports that mask-wearing is the main determinant shaping a
country’s epidemic,23 the policy still seems promising given all available evidence, due to
its comparatively low economic and social costs. Its effectiveness may increase as other
NPIs are lifted and public interactions return.

We find a surprisingly large effect for school and university closures: an average 39% re-
duction in R. This finding is remarkably robust across different model structures, variations
in the data, and epidemiological assumptions (Figure B.7). It remains robust when control-
ling for NPIs excluded from our study and the onset time of major government intervention
(Figures B.9 and C.10). Since school and university closures almost perfectly coincide in
the countries we study, an approach such as ours cannot distinguish their individual effects
(Appendix D.2). Furthermore, it cannot distinguish direct and indirect effects, such as
forcing parents to stay at home or causing broader behaviour changes by increasing public
concern.

Previous evidence on school and university closures is mixed.1,3,26 Early data suggest that
children and young adults are equally susceptible to infection but have a notably lower
observed case rate than older adults—whether this is due to school and university closures
remains unknown.27–29 Although infected young people are often asymptomatic, they ap-
pear to shed similar amounts of virus as older people,30,31 and might therefore circulate
the infection to higher-risk demographics unknowingly. This also limits our ability to detect
large outbreaks in educational facilities, which closed in nearly all countries before such
detection was feasible (with exceptions32). As outbreaks detected in UK schools are rapidly
increasing,33 this topic merits further study.

Our study has several limitations. First, NPI effectiveness may depend on the context of
implementation, such as the presence of other NPIs and country-specific factors. Our esti-
mates must be interpreted as the average effectiveness over the contexts in our dataset,5

and expert judgement is required to adjust them to local circumstances. Second, R may
have been reduced by unobserved NPIs or spontaneous behaviour changes. To investigate
whether these reductions could be falsely attributed to the observed NPIs, we perform sev-
eral additional analyses and find that our results are stable to a range of unobserved effects
(Appendix B.2). However, this cannot give final certainty. Investigating the role of unob-
served effects is an important topic for future investigations. Third, our results cannot be
used without qualification to predict the effect of lifting NPIs. For example, closing schools
and universities seems to have greatly reduced transmission, but this does not mean that re-
opening them will cause infections to soar. Educational institutions can (and do) implement
safety measures such as reduced class sizes. Further work is needed to analyse the effects
of reopenings; our collected data may be instrumental. Fourth, while we included more
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NPIs than previous work (Table F.4), several promising NPIs were excluded. For example,
testing, tracing, and case isolation may be an important part of a cost-effective epidemic
response,34 but were not included because it is difficult to obtain comprehensive data. We
discuss further limitations in Appendix E.

Currently, governments across the world are seeking to keep R below 1 while minimising the
social and economic costs of their interventions. We hope that our results can guide policy
decisions on which restrictions to lift, and which NPIs to implement in any potential second
wave of infections. Additionally, our results show which areas of public life are most in
need of restructuring, so that they can continue despite the pandemic. However, our results
should not be seen as the final answer on NPI effectiveness, but rather as a contribution
to a diverse body of evidence, alongside other retrospective studies, experimental trials,
simulations, and clinical experience.

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgements

Jan Brauner was supported by the EPSRC Centre for Doctoral Training in Autonomous Intel-
ligent Machines and Systems [EP/S024050/1] and by Cancer Research UK. Sören Minder-
mann’s funding for graduate studies was from Oxford University and DeepMind. Mrinank
Sharma was supported by the EPSRC Centre for Doctoral Training in Autonomous Intel-
ligent Machines and Systems [EP/S024050/1]. Gavin Leech was supported by the UKRI
Centre for Doctoral Training in Interactive Artificial Intelligence [EP/S022937/1].

The paid contractor work in the data collection and the development of the interactive
website was funded by the Berkeley Existential Risk Initiative.

We thank Jacob Lagerros for operational support and for introducing some of the authors
to each other. We thank Maksym Balatsko, Marek Pukaj, and Tomáš Witzany for developing
the interactive website.

Declarations of interest

No conflicts of interests.

Authors’ contributions

D Johnston, JM Brauner, J Kulveit, G Altman, AJ Norman, JT Monrad, G Leech, V Mikulik
designed and conducted the NPI data collection. S Mindermann, M Sharma, JM Brauner,
AB Stephenson, H Ge, YW Teh, Y Gal, J Kulveit, T Gavenciak, J Salvatier, MA Hartwick, L
Chindelevitch designed the model and modelling experiments. M Sharma, AB Stephenson,
T Gavenciak, J Salvatier performed and analysed the modelling experiments. J Kulveit,
T Gavenciak, JM Brauner conceived the research. S Mindermann, T Besiroglu, J Kulveit,
JM Brauner did the literature search. JM Brauner, S Mindermann, M Sharma, G Leech,
T Besiroglu, V Mikulik wrote the manuscript. All authors read and gave feedback on the
manuscript and approved the final manuscript. JM Brauner, S Mindermann, and M Sharma
contributed equally. Y Gal and J Kulveit contributed equally to senior authorship.

Keywords

COVID-19, SARS-CoV-2, nonpharmaceutical intervention, countermeasure, Bayesian model

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


References

1 Seth Flaxman et al. “Estimating the effects of non-pharmaceutical interventions on
COVID-19 in Europe”. In: Nature (2020), pp. 1–8.

2 Xiaohui Chen and Ziyi Qiu. “Scenario analysis of non-pharmaceutical interventions on
global COVID-19 transmissions”. https://arxiv.org/abs/2004.04529. Apr. 7, 2020.

3 Nicolas Banholzer et al. “Impact of non-pharmaceutical interventions on documented
cases of COVID-19”. In: COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv (Apr.
2020). DOI: 10.1101/2020.04.16.20062141. URL: https://www.medrxiv.org/
content/10.1101/2020.04.16.20062141v3.

4 Solomon Hsiang et al. “The Effect of Large-Scale Anti-Contagion Policies on the Coro-
navirus (COVID-19) Pandemic”. In: medRxiv (May 2020), p. 2020.03.22.20040642.
DOI: 10.1101/2020.03.22.20040642.

5 Mrinank Sharma et al. “On the Robustness of Effectiveness Estimation of Nonpharma-
ceutical Interventions Against COVID-19 Transmission”. In: Arxiv (2020).

6 Kristian Soltesz et al. “On the sensitivity of non-pharmaceutical intervention models
for SARS-CoV-2 spread estimation”. In: medRxiv (2020).

7 Cindy Cheng et al. “COVID-19 Government Response Event Dataset (CoronaNet v.
1.0)”. In: Nature Human Behaviour (2020), pp. 1–13.

8 Oxford Covid Government Response Tracker. July 2020. URL: https://github.com/
OxCGRT/covid-policy-tracker.

9 Johns Hopkins University Center for Systems Science and Engineering. COVID-19 Data
Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University. https://github.com/CSSEGISandData/COVID-19. 2020.

10 Epidemic Forecasting Global NPI Database. http://epidemicforecasting.org/datasets.
2020.

11 Thomas Hale et al. Oxford COVID-19 Government Response Tracker. Blavatnik School
of Government. https : / / www . bsg . ox . ac . uk / research / research - projects /
coronavirus-government-response-tracker. 2020.

12 #Mask4All. What Countries Require Masks in Public or Recommend Masks? https :
/ / masks4all . co / what - countries - require - masks - in - public/. (Accessed on
05/24/2020).

13 Suryakant Yadav and Pawan Kumar Yadav. “Basic Reproduction Rate and Case Fatality
Rate of COVID-19: Application of Meta-analysis”. In: COVID-19 SARS-CoV-2 preprints
from medRxiv and bioRxiv (May 2020). DOI: 10.1101/2020.05.13.20100750. URL:
https://www.medrxiv.org/content/10.1101/2020.05.13.20100750v1.

14 J Wallinga and M Lipsitch. “How generation intervals shape the relationship between
growth rates and reproductive numbers”. In: Proceedings of the Royal Society B: Biolog-
ical Sciences 274.1609 (Nov. 2006), pp. 599–604. DOI: 10.1098/rspb.2006.3754.

15 John M Griffin et al. “A rapid review of available evidence on the serial interval and
generation time of COVID-19”. In: medRxiv (2020).

17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://arxiv.org/abs/2004.04529
https://doi.org/10.1101/2020.04.16.20062141
https://www.medrxiv.org/content/10.1101/2020.04.16.20062141v3
https://www.medrxiv.org/content/10.1101/2020.04.16.20062141v3
https://doi.org/10.1101/2020.03.22.20040642
https://github.com/OxCGRT/covid-policy-tracker
https://github.com/OxCGRT/covid-policy-tracker
https://github.com/CSSEGISandData/COVID-19
http://epidemicforecasting.org/datasets
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://masks4all.co/what-countries-require-masks-in-public/
https://masks4all.co/what-countries-require-masks-in-public/
https://doi.org/10.1101/2020.05.13.20100750
https://www.medrxiv.org/content/10.1101/2020.05.13.20100750v1
https://doi.org/10.1098/rspb.2006.3754
https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


16 D Cereda et al. “The early phase of the COVID-19 outbreak in Lombardy, Italy”. In:
(Mar. 20, 2020). arXiv: 2003.09320v1 [q-bio.PE]. URL: https://arxiv.org/abs/
2003.09320.

17 Natalie M Linton et al. “Incubation period and other epidemiological characteristics of
2019 novel coronavirus infections with right truncation: a statistical analysis of publicly
available case data”. In: Journal of clinical medicine 9.2 (2020), p. 538.

18 Qun Li et al. “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–
Infected Pneumonia”. In: New England Journal of Medicine 382.13 (Mar. 2020), pp. 1199–
1207. DOI: 10.1056/nejmoa2001316.

19 Qifang Bi et al. “Epidemiology and Transmission of COVID-19 in Shenzhen China:
Analysis of 391 cases and 1,286 of their close contacts”. In: COVID-19 SARS-CoV-2
preprints from medRxiv and bioRxiv (Mar. 2020). DOI: 10.1101/2020.03.03.20028423.
URL: https://www.medrxiv.org/content/10.1101/2020.03.03.20028423v3.

20 Robert Verity et al. “Estimates of the severity of coronavirus disease 2019: a model-
based analysis”. In: The Lancet Infectious Diseases (Mar. 2020). DOI: 10.1016/s1473-
3099(20)30243-7.

21 Matthew D. Hoffman and Andrew Gelman. “The No-U-Turn Sampler: Adaptively Set-
ting Path Lengths in Hamiltonian Monte Carlo”. In: Journal of Machine Learning Re-
search 15.47 (2014), pp. 1593–1623. URL: http://jmlr.org/papers/v15/hoffman14a.
html.

22 Christopher Winship and Bruce Western. “Multicollinearity and model misspecifica-
tion”. In: Sociological Science 3.27 (2016), pp. 627–649.

23 Renyi Zhang et al. “Identifying airborne transmission as the dominant route for the
spread of COVID-19”. In: Proceedings of the National Academy of Sciences 117.26 (June
2020), pp. 14857–14863. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.2009637117.

24 Derek K Chu et al. “Physical distancing, face masks, and eye protection to prevent
person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and
meta-analysis”. In: The Lancet (2020).

25 Graham P Martin, Esmée Hanna, and Robert Dingwall. “Urgency and uncertainty:
covid-19, face masks, and evidence informed policy”. In: BMJ 369 (2020).

26 Juanjuan Zhang et al. “Changes in contact patterns shape the dynamics of the COVID-
19 outbreak in China”. In: Science (2020).

27 Nisha S Mehta et al. “SARS-CoV-2 (COVID-19): What do we know about children?
A systematic review”. In: Clinical Infectious Diseases (May 2020). DOI: 10.1093/cid/
ciaa556.

28 Petra Zimmermann and Nigel Curtis. “Coronavirus Infections in Children Including
COVID-19”. In: The Pediatric Infectious Disease Journal 39.5 (May 2020), pp. 355–368.
DOI: 10.1097/inf.0000000000002660.

29 When Should a School Reopen? Final Report. http://www.independentsage.org/wp-
content/uploads/2020/05/Independent-Sage-Brief-Report-on-Schools-5.pdf.
(Accessed on 05/28/2020). May 2020.

18

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://arxiv.org/abs/2003.09320v1
https://arxiv.org/abs/2003.09320
https://arxiv.org/abs/2003.09320
https://doi.org/10.1056/nejmoa2001316
https://doi.org/10.1101/2020.03.03.20028423
https://www.medrxiv.org/content/10.1101/2020.03.03.20028423v3
https://doi.org/10.1016/s1473-3099(20)30243-7
https://doi.org/10.1016/s1473-3099(20)30243-7
http://jmlr.org/papers/v15/hoffman14a.html
http://jmlr.org/papers/v15/hoffman14a.html
https://doi.org/10.1073/pnas.2009637117
https://doi.org/10.1093/cid/ciaa556
https://doi.org/10.1093/cid/ciaa556
https://doi.org/10.1097/inf.0000000000002660
http://www.independentsage.org/wp-content/uploads/2020/05/Independent-Sage-Brief-Report-on-Schools-5.pdf
http://www.independentsage.org/wp-content/uploads/2020/05/Independent-Sage-Brief-Report-on-Schools-5.pdf
https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


30 Terry C. Jones et al. “An analysis of SARS-CoV-2 viral load by patient age”. 2020.

31 Arnaud G L’Huillier et al. “Shedding of infectious SARS-CoV-2 in symptomatic neonates,
children and adolescents”. In: COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
(May 2020). DOI: 10.1101/2020.04.27.20076778.

32 Arnaud Fontanet et al. “Cluster of COVID-19 in northern France: A retrospective closed
cohort study”. In: COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv (Apr.
2020). DOI: 10.1101/2020.04.18.20071134.

33 Weekly Coronavirus Disease 2019 (COVID-19) Surveillance Report - week 26. https:
//assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/895356/Weekly_COVID19_Surveillance_Report_w26.pdf.
2020.

34 Tim Colbourn et al. Modelling the Health and Economic Impacts of Population-Wide Test-
ing, Contact Tracing and Isolation (PTTI) Strategies for COVID-19 in the UK. ID 3627273.
June 2020. DOI: 10.2139/ssrn.3627273. URL: https://papers.ssrn.com/abstract=
3627273.

19

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.27.20076778
https://doi.org/10.1101/2020.04.18.20071134
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/895356/Weekly_COVID19_Surveillance_Report_w26.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/895356/Weekly_COVID19_Surveillance_Report_w26.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/895356/Weekly_COVID19_Surveillance_Report_w26.pdf
https://doi.org/10.2139/ssrn.3627273
https://papers.ssrn.com/abstract=3627273
https://papers.ssrn.com/abstract=3627273
https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


Appendix

Table of Contents
Appendix A Modelling details 21

Appendix A.1 Detailed model description . . . . . . . . . . . . . . . . . . . . . . 21

Appendix A.2 Technical Model Description . . . . . . . . . . . . . . . . . . . . . . 24

Appendix B Validation 28

Appendix B.1 Unseen data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Appendix B.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Appendix B.3 Robustness to unobserved effects . . . . . . . . . . . . . . . . . . . 31

Appendix C Additional sensitivity analyses and validation 33

Appendix C.1 Role of NPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix C.2 Sensitivity to data preprocessing . . . . . . . . . . . . . . . . . . . 34

Appendix C.3 Sensitivity to additional epidemiological assumptions . . . . . . 35

Appendix C.4 Additional country exclusions . . . . . . . . . . . . . . . . . . . . . 37

Appendix C.5 Validation using predictions in excluded countries . . . . . . . . . 38

Appendix C.6 MCMC stability results . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix C.7 Posterior predictive distributions . . . . . . . . . . . . . . . . . . . 44

Appendix D Additional results 45

Appendix D.1 Estimated R0 by country . . . . . . . . . . . . . . . . . . . . . . . . 45

Appendix D.2 The individual effects of school and university closures . . . . . . 46

Appendix D.3 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix D.4 Correlations between effectiveness estimates . . . . . . . . . . . . 47

Appendix E Additional discussion of assumptions and limitations 49

Appendix E.1 Limitations of the data . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix E.2 Model limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix F Overview of previous work 50

Appendix G Handling edge cases in the data collection 53

Appendix H References 57

20

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


Appendix A. Modelling details

Appendix A.1. Detailed model description

For each country c
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Figure A.6: Model Overview. Purple nodes are observed or have a fixed distribution. We describe the
diagram from bottom to top: Each NPI’s effectiveness is characterised by αi , which is independent of
the country. On each day, a country’s daily reproduction number Rt ,c only depends on that country’s
base reproduction number R0,c and the active NPIs (Φi ,t ,c ). Rt ,c is transformed to the daily growth rate
gt ,c , which is used to compute the new infections N (C )

t ,c and N (D)
t ,c that will turn into confirmed cases

and deaths, respectively. Finally, the number of new confirmed cases Ct ,c and deaths Dt ,c is computed
by convolution of N (·)

t ,c with the respective delay distributions. The same model structure is used for
confirmed cases and deaths. The model combines both observations; it splits all nodes above the daily
growth rate gt ,c into separate branches for deaths and cases.

We construct a semi-mechanistic Bayesian hierarchical model, similar to Flaxman et al.1 The
main difference is that we model both confirmed cases and deaths, allowing us to leverage
significantly more data. Furthermore, we do not assume a specific infection fatality rate
(IFR) since we do not aim to infer the total number of COVID-19 infections. The end of this
section details further adaptations which allow us to minimize assumptions about testing,
reporting, and the IFR. A list of all technical details is given in Appendix A.2.

We describe the model in Figure A.6 from bottom to top. The epidemic’s growth is deter-
mined by the time-and-country-specific (instantaneous) reproduction number Rt ,c . It de-
pends on: a) the basic reproduction number R0,c without any NPIs active and b) the active
NPIs. We place a prior (and hyperprior) distribution over R0,c , reflecting the wide disagree-
ment of regional estimates of R0.2 We parameterize the effectiveness of NPI i , assumed to
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be same across countries and time, with αi . Each NPI is assumed to have an independent
multiplicative as on Rt ,c as follows:

Rt ,c = R0,c

I∏
i=1

exp
(−αi φi ,t ,c

)
, (A.1)

where φi ,c,t = 1 means NPI i is active in country c on day t (φi ,c,t = 0 otherwise), and I is
the number of NPIs. We use a weakly informative symmetric prior αi ∼N (0,0.2), allowing
for both positive and negative effects, because we presently cannot rule out that some NPIs
directly or indirectly increase transmission.

Growth rates. Nt ,c denotes the number of new infections at time t and country c. In the
early phase of an epidemic, Nt ,c grows exponentially with a dailya growth rate g t ,c . During
exponential growth, there is a well-known one-to-one correspondence between g t ,c and
Rt ,c :3

Rt ,c = 1

M(− log(1+ g t ,c ))
, (A.2)

where M(·) is the moment-generating function of the distribution of the generation interval
(the time between successive cases in a transmission chain). We assume that the generation
interval distribution is given by a gamma distribution with mean 6.67 days and standard
deviation 2.1. The mean is based on an Italian study,4 which is deemed most relevant to
European countries,5 and the standard deviation stems from a international set of countries
since in European countries it has only been estimated for the serial rather than generation
interval to our knowledge.6,7 Using (A.2), we can write g t ,c as g t ,c (Rt ,c ) (see Appendix A.2).

Infection model. Rather than modelling the total number of new infections Nt ,c , we model
new infections that will either be subsequently a) confirmed positive, N (C )

t ,c , or b) lead to a
reported death, N (D)

t ,c . These are backwards-inferred from the observation models for cases
and deaths, shown further below. We assume that both grow at the same expected rate g t ,c :

N (C )
t ,c = N (C )

0,c

t∏
τ=1

[
(1+ gτ,c ) ·exp

(
ε(C )
τ,c

)]
(A.3)

N (D)
t ,c = N (D)

0,c

t∏
τ=1

[
(1+ gτ,c ) ·exp

(
ε(D)
τ,c

)]
(A.4)

aMany epidemiological models define growth rates as the exponent r in an exponential growth function.
Here, we use daily growth rates instead for ease of exposition. These choices are mathematically equivalent.
Note that we adapted equation (2.9) in Wallinga & Lipsitch3 to account for our choice.
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where ε(·)
τ,c ∼ N (0,σN = 0.2) are separate, independent noise terms. Noise on the infection

numbers is not used by Flaxman et al.1 but has a history in epidemic modelling.8 Empiri-
cally, we find that it leads to substantially more robust effectiveness estimates.9

We select σN by cross validation as no reference is available for it. We did not tune any other
aspect of the model—instead, we use choices from Flaxman et al.1 or the most relevant
available sources. We evaluate five different values (σN ∈ {0.05,0.1,0.2,0.3,0.4}), fitting the
model on 35 countries each time and evaluating on a fixed, randomly chosen validation
set of 6 countries. We select σN = 0.2 to maximize the log-likelihood on the validation set.
Cross validation ensures a more calibrated model, less likely to produce overconfident and
unstable estimates.10 The final model with σN = 0.2 is then evaluated on data from 20 held-
out days in all countries which were not used to adjust any aspect of the model (Figure
B.7). We find that different values for σN produce very similar effectiveness estimates but
larger values lead to greater uncertainty and robustness (Figure C.12 and Sharma et al.9).

We seed our model with unobserved initial values, N (C )
0,c and N (D)

0,c , which have uninformative
priors.b

Observation model for confirmed cases. The mean predicted number of new confirmed cases
is a discrete convolution

C t ,c =
t∑

τ=1
N (C )

t−τ,c PC (delay= τ) (A.5)

where PC (delay) is the distribution of the delay from infection to confirmation. This delay
distribution is the sum of two independent gamma distributions: the incubation period
and the delay from onset of symptoms to confirmation. We use previously published and
agreeing empirical distributions from China and Italy,4,11–13 which sum up to a mean delay
of 10.35 days. Finally, the observed cases Ct ,c follow a negative binomial noise distribution
with mean C t ,c and an inferred dispersion parameter, following Flaxman et al.1

Observation model for deaths. The mean predicted number of new deaths is a discrete
convolution

D t ,c =
t∑

τ=1
N (D)

t−τ,c PD (delay= τ),

where PD (delay) is the distribution of the delay from infection to death. It is also the sum
of two independent gamma distributions: the aforementioned incubation period and the
delay from onset of symptoms to death,11,14 which sum up to a mean delay of 22.9 days.
Finally, the observed deaths D t ,c also follow a negative binomial distribution with mean D t ,c

and the same inferred dispersion parameter used for observed cases.

bSince we treat new infections as a continuous number, its initial value can (and often should) be between
0 and 1.
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Single and combined models. To construct models which only use either confirmed cases or
deaths as observations, we remove the variables corresponding to the disregarded observa-
tions.

Testing, reporting, and infection fatality rates. Scaling all values of a time series by a con-
stant does not change its growth rates. The model is therefore invariant to the scale of the
observations and consequently to country-level differences in the IFR and the ascertainment
rate (the proportion of infected people who are subsequently reported positive). For exam-
ple, assume countries A and B differ only in their ascertainment rates. Then, our model will
infer a difference in N (C )

t ,c (Eq. (A.5)) but not in the growth rates g t ,c across A and B (Eq.
(A.3)-(A.4)). Accordingly, the inferred NPI effectiveness will be identical.c

In reality, a country’s ascertainment rate (and IFR) can also change over time. In principle,
it is possible to distinguish changes in the ascertainment rate from the NPIs’ effects: de-
creasing the ascertainment rate decreases future cases Ct ,c by a constant factor whereas the
introduction of an NPI decreases them by a factor that grows exponentially over time.d The
noise term, exp

(
ε(C )
τ,c

)
(Eq. (A.3)), mimic changes in the ascertainment rate—noise at time τ

affects all future cases—and allows for gradual, multiplicative changes in the ascertainment
rate.

We infer the unobserved variables in our model using Hamiltonian Monte-Carlo15,16 (HMC),
a standard MCMC sampling algorithm.

Appendix A.2. Technical Model Description

Variables are indexed by intervention i , country c, and day t . All prior distributions are
independent.

• Data
1. NPI Activations: φi ,t ,c ∈ {0,1}.
2. Smoothed Observed Cases: Ct ,c .
3. Smoothed Observed Deaths: D t ,c .

• Prior Distributions

cThis is only approximately true. The negative binomial output distribution has a coefficient of variation
diminishing with its mean; i.e., smaller observations are relatively more noisy and carry less weight. Further-
more, whilst the prior over N (C )

0,c could break scale invariance, the uninformative prior results in a negligible
effect.

dHowever, our model may struggle when the ascertainment rate also changes exponentially over time. This
could happen when a country reaches its testing capacity. See Appendix E.
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1. Country-specific R0

R0,c = Normal(R̄0,κ) (A.6)

R̄0 = 3.25, based on a meta analysis.17 (A.7)

κ∼ Half Normal(µ= 0,σ= 0.5) (A.8)

2. NPI Effectiveness

αi ∼ Normal(µ= 0,σ=p
0.2) (A.9)

(A.10)

3. Infection Initial Counts (uninformative priors)

N (C )
0,c = exp(ζ(C )

c ) (A.11)

N (D)
0,c = exp(ζ(D)

c ) (A.12)

ζ(C )
c ∼ Normal(µ= 0,σ= 50) (A.13)

ζ(D)
c ∼ Normal(µ= 0,σ= 50) (A.14)

(A.15)

4. Observation Noise Dispersion Parameter

Ψ∼ Half Normal(µ= 0,σ= 5) (A.16)

• Hyperparameters
1. Infection Noise Scale, σN = 0.2 (selected by cross-validation).

• Epidemiological parameters
1. Generation Interval Parameters. The generation interval is assumed to have a

Gamma distribution with mean 6.67 and standard deviation 2.1 days.4–6 This leads
to a distribution Gamma(α= 7.9,β= 1.2).

2. Delay Distributions. The time from infection to confirmation is assumed to be
the sum of the incubation period and the time taken from symptom onset to lab-
oratory confirmation. Therefore, the time taken from infection to confirmation,
T (C ) is:4,11–13

T (C ) ∼ Gamma(µ= 5.1,
σ

µ
= 0.86)+Negative Binomial(µ= 5.25,α= 1.57) (A.17)

The time from infection to death is assumed to be the sum of the incubation
period and the time taken from symptom onset to death. Therefore, the time
taken from infection to death, T (D) is:1,11,14

T (D) ∼ Gamma(µ= 5.1,
σ

µ
= 0.86)+Gamma(µ= 17.8,

σ

µ
= 0.45), (A.18)
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where α is known as the dispersion parameter. Caution: larger values of α
correspond to a smaller variance, and less dispersion. With our parameterisation,
the variance of the Negative Binomial distribution is µ+ µ2

α .
For computational efficiency, we discretise this distribution using Monte Carlo
sampling. We therefore form discrete arrays, πC[i ] and πD[i ] where the value of
πC[i ] corresponds to the probability of the delay being i days. We truncate πC

to a maximum delay of 31 days and πD to a maximum delay of 63 days.

• Infection Model
1. Rt ,c = R0,c ·exp

(−∑9
i=1αi φi ,t ,c

)
.

2. g t ,c = exp

(
β(R

1
α

c,t −1)

)
− 1 where α and β are the parameters of the generation

interval distribution. This is the exact conversion under exponential growth, fol-
lowing eq. (2.9) in Wallinga & Lipsitch.3 (Note that we use daily growth rates.)

3.

N (C )
t ,c = N (C )

0,c

t∏
τ=1

[
(gτ,c +1) ·expε(C )

τ,c

]
, (A.19)

N (D)
t ,c = N (D)

0,c

t∏
τ=1

[
(gτ,c +1) ·expε(D)

τ,c )
]

,with noise (A.20)

ε(C )
τ,c ∼ Normal(µ= 0,σ=σN ), (A.21)

ε(D)
τ,c ∼ Normal(µ= 0,σ=σN ) (A.22)

N (C )
t ,c represents the number of daily new infections at time t in country c who

will eventually be tested positive (N (D)
t ,c similar but for infections who will pass

away).
• Observation Model: We use discrete convolutions to produce the expected number

of new cases and deaths on a given day.

C̄t ,c =
32∑
τ=1

N (C )
t−τ,cπC [τ], (A.23)

D̄ t ,c =
64∑
τ=1

N (D)
t−τ,cπD [τ]. (A.24)

Finally, the output distribution follows a Negative Binomial noise distribution as pro-
posed by Flaxman et al.1

Ct ,c ∼ Negative Binomial(µ= C̄t ,c ,α=Ψ) (A.25)

D t ,c ∼ Negative Binomial(µ= D̄ t ,c ,α=Ψ) (A.26)

α is the dispersion parameter of the distribution. Caution: larger values of α cor-
respond to a smaller variance, and less dispersion. With our parameterisation, the
variance of the Negative Binomial distribution is µ+ µ2

α , so that smaller observations
are relatively more noisy.
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This model was implemented in PyMC318 with the NUTS MCMC sampling algorithm.16
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Appendix B. Validation

Appendix B.1. Unseen data

An important way to validate a Bayesian model is by checking how well it predicts unseen
data, even if prediction is not the purpose of the model.10,19 If an NPI effectiveness model
is entirely unable to extrapolate to unseen countries, or to future unseen confirmed cases
and deaths, we have strong reason to doubt its effectiveness estimates. However, we do
not expect NPI effectiveness models to extrapolate perfectly. Almost always, there will be
unobserved factors affecting the observed number of cases and deaths, such as changes
in the ascertainment rate or IFR, spontaneous behaviour changes, and unobserved NPIs.
Our models ought to treat these factors as noise and not attribute their effects on R to the
observed NPIs.

We fit our model while holding out the last 20 days of cases and deaths for all countries,
and then extrapolate to the last 20 days (Figure B.7, top left). A 20-day prediction is
challenging; the longest attempted holdout period we found in data-driven NPI models was
3 days,1 and most other related work does not validate predictions on unseen data at all.9

The model is well-calibrated, with most points falling within the 95% credible intervals.
The model predicts a higher number than reported exactly twice as often as predicting a
lower number. This suggests that unobserved factors have reduced R below what would be
predicted based on the active NPIs alone. We would indeed expect most countries to have
fewer cases and deaths than predicted solely from the eight NPIs in our model. There are
several other NPIs, as well as further unobserved behaviour changes, that we do not model
but that likely reduce R on average. The result suggests that these factors are, at least to a
certain extent, successfully treated as noise instead of confounding the effects of NPIs.

However, note that the model shown in Figure B.7 (top left) was fitted on 20 days less of
data (per country) than the main model. The predictions can thus only serve for model
validation insofar as we expect the model fitted on all days to have similar or better extrap-
olation to unseen data as the model fitted on all but the last 20 days. In further validation
experiments, we analyse how the model extrapolates to individual countries left-out during
fitting, and again find that it makes well-calibrated predictions (Appendix C.5).

Appendix B.2. Sensitivity Analysis

Sensitivity analysis reveals which results depend on uncertain parameters and modelling
choices, and can diagnose model misspecification and excessive collinearity in the data.20

We vary many of the components of our model and recompute the NPI effectiveness esti-
mates, summarised here. Further analysis in Appendix C.

Sensitivity to epidemiological parameters. The epidemiological parameters in our model
are the delay from infection to reporting, the delay from infection to death, and the gener-
ation interval. Furthermore, we specify a prior distribution over NPI effectiveness. In Fig-
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ure B.7 (top right), we consider several alternative values for these parameters. Consistent
with Flaxman et al.1 and theoretical expectation,3 we find that a shorter mean generation
interval implies a smaller initial R0 and therefore lower effectiveness estimates on average.
However, the estimate for banning large gatherings increases, partly a consequence of in-
cluding an unrealistically13 short generation interval of 4 days. Restricting the prior to only
allow NPIs to reduce, but not increase R, has no significant impact on the estimates (’Half
Normal’). Using an uninformative prior (log-normal with µ = 1 and σ = 10; ’Wide’) ampli-
fies differences between NPIs, suggesting that our default prior is informative. Using the
prior of Flaxman et al. increases the differences between NPIs, an outcome which this prior
encourages. We do not use this prior in our main analysis because it is designed to make
realistic assumptions about the joint effect of all NPIs, not about their individual effects.
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Figure B.7: Results validation. Top left: We fit our model while holding out the last 20 days of cases and
deaths for all countries. The figure shows the extrapolation to the last 20 days. Each dot represents pre-
dicted cases or deaths in one country. 95% sampled credible intervals shown. Observed cases and deaths
are smoothed (see Methods). Others: NPI effectiveness estimates when epidemiological parameters or
data are varied. Median, 50% and 95% credible intervals of the marginal posterior distribution of the ef-
fectiveness parameters are shown. Top right: Sensitivity to epidemiological parameter choices. Changes
in the mean generation interval, delay distributions between infection and case confirmation/death, and
the prior on NPI effectiveness. Bottom left: Sensitivity to removing one country at a time from the data.
Bottom right: Sensitivity to different data sources: using only confirmed cases, only deaths, or both.
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Sensitivity to data. Figure B.7 (bottom right) shows the NPI effectiveness estimates from
models that use only cases or deaths as observations, in contrast to our main model, which
uses both. Reassuringly, the three models have similar results. This suggests that results
are not biased by factors specific to deaths or confirmed cases, such as changes in the
ascertainment rate, IFR, and model-specific time delays. Figure B.7 (bottom left) shows
results if one country at a time is excluded from the data. As there is no strong justification
for in- or excluding one particular country, results ought to be stable if a country is excluded.
This is indeed the case. All countries are shown in Appendix C.

Sensitivity to structurally different models. A number of implicit structural assumptions
are made in our model. We test sensitivity to these assumptions by evaluating NPI effective-
ness estimates from alternative models, reproducing the structural sensitivity analysis from
our concurrent work where these models are described in detail.9

As Figure B.8 shows, all models support the conclusions we draw in the Discussion. The
models are:

1. Different Effects Model. The effectiveness of each NPI is allowed to vary across coun-
tries.

2. Discrete Renewal Model. Instead of converting R into a daily growth rate, a renewal
process is used as the infection model, as in a number of earlier works.1,8,21–23

3. Noisy-R Model. The noise terms ε(·)
c,t affect R rather than the growth rate, as in Fraser8

4. Additive Effects Model Each NPI has an additive effect on R. The joint effectiveness
of a set of NPIs is produced by summing, rather than multiplying, their individual
effectiveness estimates.
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Figure B.8: Structural sensitivity analysis. Effectiveness estimates under different structural assump-
tions. Note that the additive model (blue) cannot be quantitatively compared to others (see text).

The results of the additive model (blue) cannot be directly compared to the other models
since they are not expressed as percentage reductions in R, but in R0. Its estimates are
therefore smaller (but support the same conclusions).
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Figure B.9: Robustness to unobserved effects. Left: Results when controlling for previously unobserved
NPIs. We include one additional NPI in turn and show the estimates for the NPIs in our study (the ad-
ditional NPI is not shown). Right: Results when excluding previously observed NPIs. We exclude one
of the NPIs in turn and show the estimates for the other NPIs. Both: Note that this figure shows the
additional effect of each NPI. In other figures, we show the cumulative effects for gathering bans and
businesses closures, denoted by showing multiple symbols (as explained in the caption to Figure 3).
For example, Figure 3 displays the total effect of closing most nonessential businesses, while here we
show the additional effect of closing most nonessential businesses over just closing some high-risk busi-
ness. We show the additional effects here because the effect of a cumulative intervention would become
undefined when part of it is excluded from the analysis.

Appendix B.3. Robustness to unobserved effects

Our data neither captures all NPIs implemented nor directly measures broader behavioural
changes. Since these factors influence R, we must be wary of their effect being attributed to
observed NPIs. We investigate this further by assessing how much effectiveness estimates
change when previously unobserved factors are included and also when observed factors
are excluded. This is best practice for assessing robustness to unobserved factors.24,25 We
also perform several additional investigations, outlined in Appendix C.1.

Unobserved factors can bias results if their timing is correlated with the timing of the ob-
served NPIs.26 The timing of our observed NPIs’ implementation dates is indeed correlated,
prompting the question how much excluding observed NPIs changes results. Figure B.9
(right) shows NPI effectiveness estimates when previously observed NPIs are excluded in
turn. Estimates are robust, with all 50% credible intervals mutually overlapping. Consider-
ing that some of the excluded NPIs have strong estimated effects when included, and are
correlated with other NPIs, this degree of robustness is surprisingly high. It suggests that
unobserved factors will not significantly bias results as long as their effects and their cor-
relations with the studied NPIs do not exceed those of the studied NPIs. We hypothesize
that this robustness to unobserved factors is due to the noise on infection numbers in our
model.9

In addition, Figure B.9 (left) shows NPI effectiveness estimates when we include (i.e. con-
trol for) additional NPIs, taken from the OxCGRT dataset.27
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Our conclusions are not affected by controlling for these NPIs. This further suggests that
unobserved factors are successfully treated as noise.
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Appendix C. Additional sensitivity analyses and validation

Note: The individual effect of school and university closures cannot be meaningfully dis-
entangled, as discussed in Appendix D.2. For completeness, we still show the individual
estimates for school and university closures at the bottom of each graph in this section.

Appendix C.1. Role of NPI timing











北













便





-50% -25% 0% 25% 50% 75% 100%
Average additional reduction in R, in the context of our data

Mask-wearing

Gatherings <1000

Gatherings <100

Gatherings <10

Some businesses closed

Most businesses closed

Schools and universities
closed

Stay-at-home order

Schools closed

Universities closed

NPI Timing 1
Any Active
Bonus NPI
Different Confirmation
Delays
Schools and
Universities Delayed
Default

-50% -25% 0% 25% 50% 75% 100%
Average additional reduction in R, in the context of our data

NPI 1

NPI 2

NPI 3

NPI 4

NPI 5

NPI 6

NPI 7

NPI 8

NPI 9

NPI Timing 2

Figure C.10: Relationship between NPI effectiveness and timing. Left: 1) Effect of delaying school and
university closures by 6 days in the data, 2) increasing confirmation delay by 2 days in countries without
extensive testing and decreasing by 2 days in countries with testing, and 3) controlling for the start of
government intervention (i.e. any NPI active). Right: Effectiveness for early and late NPIs. The model
estimates the effect of all first, second, etc NPIs.

There are several reasons to investigate the relationship between NPI timing and effective-
ness. First, as previously discussed in Appendix B, unobserved factors such as behavior
change may typically happen when the first NPIs are introduced and could confound their
effects. This could lead to the surprisingly high estimates for school and university closures
since these NPIs were often implemented early. Second, as discussed in the Results sec-
tion, NPIs effectiveness may depend on the presence of other NPIs, and fewer NPIs will be
present earlier which could reduce the additional effect of later NPIs.

In Figure C.10 (left), we show three additional experiments. First, following Flaxman et
al.,1 we control for the onset of government intervention by introducing an ‘NPI’ that is
active from the day the first NPI is implemented. This test is intended to control for potential
confounding from early unobserved NPIs and behavior changes. The result suggests that
the estimate for school and university closures is not confounded or otherwise biased by the
fact that these NPIs were often mandated early. However, including this covariate increases
the uncertainty and somewhat decreases the mean estimate for bans of larger gatherings,
which were also often the first NPIs implemented.

Second, we delay school and university closures by one mean generation interval (rounded
to 6 days). This is motivated by the fact that children and adolescents are less likely to
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show symptoms or die from COVID-19. Their infections may therefore show up with an ad-
ditional delay in the case and death data, as they must first infect higher-risk demographics.
Delaying school and university closures also causes them to be one of the later NPIs in most
countries, a test if their high effectiveness may have been due to their relatively early ap-
pearance. As the inferred effect is stable, we can rule out these potential concerns (Figure
C.10, left).

Third, we relax the assumption that the delay from infection to confirmation is equal be-
tween countries. It may be longer in countries that mostly test patients in hospitals and
not in the community. Therefore, we increased the delay by 2 days in countries that did
not offer testing to symptomatic people (using data from the Oxford COVID Government
Response Tracker27), and decreased it by 2 days in countries that did. Although we do not
have exact data for these different delays, 2 days is plausible based on hospital admission
data.28

In Figure C.10 (right), we relabel the NPIs in each country as "1st NPI", "2nd NPI", etc.
We then estimate the effect of these ‘NPIs’, which can represent various actual NPIs. The
effectiveness ranking by order of implementation is 3,6,1,8,7,5,2,4,9. The result shows that
earlier NPIs are not necessarily estimated to be more effective, alleviating our concern that
later NPIs are less effective due to interacting with earlier NPIs.

Appendix C.2. Sensitivity to data preprocessing

In the following sections, we show sensitivity to data preprocessing steps and additional pa-
rameters, and reprint sensitivity results from the previous section while additionally show-
ing the individual estimates for school and university closures at the bottom of each graph.

We have smoothed case and death data with a moving average over a window of ±2 days
to incorporate the prior knowledge that large jumps in the data are due to inconsistent
reporting. Here, we show results for smaller and larger smoothing windows, including no
smoothing (Figure C.11, top right). There is no impact on our conclusions.

Furthermore, we exclude data in each country before 100 cases and 10 deaths are cumula-
tively reached to avoid biasing the model with foreign-imported cases. Here, we vary these
thresholds. Interestingly, the death threshold has no clear effect on results, whereas the
case threshold does (Figure C.11 (bottom left, bottom right). Raising the case threshold
up to 500 removes a large portion of our data in March, making it difficult to determine
R0 (this is not the case for the death threshold). In contrast, making the case threshold
too low likely introduces bias created by foreign-imported cases and early changes in test-
ing regimes with lead to an overestimate of R0. Nonetheless, all choices support our main
conclusions (Discussion).

The other subfigures repeat sensitivity analyses from Appendix B with individual effects for
school and universitiy closures shown at the bottom.
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Figure C.11: Additional sensitivity analysis to data variations. Top right: Sensitivity to smoothing case
and death data over different windows (1 implies no smoothing). Bottom left/right: Sensitivity to the
threshold for excluding case and death data.

Appendix C.3. Sensitivity to additional epidemiological assumptions

For completeness, we test sensitivity to two further epidemiological assumptions. These
are: 1) The prior on R0—we vary its mean from a very small value (2.5) to the default value
(3.25) and a large value (4.5). 2) The standard deviation of the noise σN on the growth rate.
As previously discussed, this parameter is set to 0.2 using cross-validation. Other choices are
not necessarily reasonable as they lead to miscalibrated predictions (the parameter could
potentially be inferred from the data but this would be computationally challenging). We
show these other choices for completeness. All choices support our conclusions and all
credible intervals overlap, but higher noise, as expected, leads to higher uncertainty.

Results are shown in Figure C.12 (middle left, middle right).
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Figure C.12: Sensitivity to additional and previously shown epidemiological assumptions. Middle left:
Sensitivity to the prior mean on R0. Others: Repetition of previously shown results with individual effect
for school and university closures added.
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Appendix C.4. Additional country exclusions
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Figure C.13: Sensitivity to excluding one country at a time from the data.
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Appendix C.5. Validation using predictions in excluded countries

Evaluating predictions on unseen data is an important model validation step, even if pre-
diction is not the goal of the model.29 We use 41-fold cross-validation: fitting the model on
40 countries and showing its predictions on the excluded country. We repeat this process
for all 41 countries. In the excluded country, the first 14 days of death and case data are
observed to allow roughly inferring R0. These days are not used to infer NPI effectiveness.
The activation dates of NPIs are also given, and the model uses the effectiveness estimates
inferred from the 40 other countries.

Our model makes sensible, calibrated forecasts over long periods excluded in countries
(Figures C.14 to C.17).

Explanation of the Figures: Vertical lines show the activation (and deactivation) date of
NPIs. Shaded areas are 95% credible intervals. Left: The yellow and green lines (’Daily
Infections - Later Reported/Later Fatal’) show the estimates of daily new infections that will
turn into confirmed cases (N (C )

t ) and deaths (N (D)
t ). Blue and red dots show the observed

confirmed cases and deaths (smoothed), while blue and red lines show the median model
estimates of cases (Ct ) and deaths (D t ). Empty dots are not shown to the model. For each
country, we show the full window of analysis (from the start of the epidemic until the first
NPI was lifted, or 30th of May 2020, whichever was earlier (see Methods).

38

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


21-FEB
6-MAR

20-MAR
3-APR

17-APR

10
0

10
1

10
2

10
3

10
4

10
5

10
6












便

Albania

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

15-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北

 








Andorra

21-FEB
6-MAR

20-MAR
3-APR

17-APR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北













便

便

Austria

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北






便

便

Belgium

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北










Bosnia and Herzegovina

21-FEB
6-MAR

20-MAR
3-APR

17-APR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北 北









Bulgaria

21-FEB
6-MAR

20-MAR
3-APR

17-APR

10
0

10
1

10
2

10
3

10
4

10
5

10
6




 
 







便

便

Croatia

21-FEB
6-MAR

20-MAR
3-APR

17-APR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北


 
 





便

便

Czech Republic

21-FEB
6-MAR

20-MAR
3-APR

17-APR

10
0

10
1

10
2

10
3

10
4

10
5

10
6







 


Denmark

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

15-MAY
29-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6








Estonia

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6













Finland

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Daily Infections - Later Fatal
Predicted Daily Deaths

Daily Infections - Later Reported
Predicted Daily Confirmed Cases

Recorded Daily Deaths (Smoothed)
Heldout Daily Deaths (Cases)

Recorded Daily Confirmed Cases (Smoothed)
Heldout Daily Confirmed Cases (Cases)

北







便

便

France

Figure C.14: Predictions on excluded countries.
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Figure C.15: Predictions on excluded countries.
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Figure C.16: Predictions on excluded countries.

41

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

15-MAY
29-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北






 便

South Africa

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

北








便

便

Spain

21-FEB
6-MAR

20-MAR
3-APR

17-APR
1-MAY

15-MAY
29-MAY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 

Sweden

21-FEB
6-MAR

20-MAR
3-APR

17-APR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Daily Infections - Later Fatal
Predicted Daily Deaths

Daily Infections - Later Reported
Predicted Daily Confirmed Cases

Recorded Daily Deaths (Smoothed)
Heldout Daily Deaths (Cases)

Recorded Daily Confirmed Cases (Smoothed)
Heldout Daily Confirmed Cases (Cases)

   











Switzerland

Figure C.17: Predictions on excluded countries. Empty dots are not shown to the model. 14 initial days
are shown to the model, to enable inferring the basic R0, but were not used to infer NPI effectiveness.
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Appendix C.6. MCMC stability results
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Figure C.18: MCMC stability results. Left: R-hat statistic. Values are close to 1, indicating convergence.
Right: Relative effective sample size. Values of 1 indicate perfect decorrelation between samples. Values
over 1 indicate that the effective number of samples is higher than the actual number of samples (due
to negative correlation), and vice versa.

43

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


Appendix C.7. Posterior predictive distributions

The posterior predictive distribution (Figure C.19) shows the predicted true number of cases
and deaths after observing the data. Although these curves can be called ‘fits’, the degree
of fit to the data must be interpreted with great care. The fit is generally tight, but this is
partly due to working with inferred latent noise variables: the noise terms ε(C )

t and ε(D)
t on

the growth rates g t . Inferring this latent noise allows the posterior predictive distribution
to closely match the data without overfitting the effectiveness parameters to the data. Such
behavior is common in Bayesian models, which often perfectly interpolate the data without
overfitting.30 The noise terms can account for periods where infections grew faster or slower
than predicted based solely on the active NPIs. In such periods, the noise may account for
changes in testing, reporting, and unobserved interventions.
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Figure C.19: Left: Posterior predictive distributions for two exemplary countries. See text. Right: In-
ferred Rt over time.
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Appendix D. Additional results

Appendix D.1. Estimated R0 by country

Table D.2: Estimated values for R0, by country. The parenthesis give the 95% credible interval. The mean
R0 across countries is 3.8.

Country Estimated R0 Country Estimated R0

Albania 3.92 (2.85;5.25) Lithuania 3.55 (2.55;4.78)
Andorra 2.81 (2.03;3.74) Malaysia 3.52 (2.67;4.53)
Austria 3.59 (2.75;4.59) Malta 3.64 (2.52;5)
Belgium 4.33 (3.44;5.39) Mexico 4.7 (3.58;6.04)
Bosnia and Herzegovina 3.74 (2.73;4.93) Morocco 4.43 (3.44;5.68)
Bulgaria 4.32 (3.26;5.63) Netherlands 3.53 (2.77;4.41)
Croatia 3.93 (2.93;5.15) New Zealand 2.65 (1.82;3.65)
Czech Republic 4.15 (3.06;5.46) Norway 2.96 (2.21;3.89)
Denmark 2.92 (2.17;3.78) Poland 4.87 (3.69;6.31)
Estonia 2.88 (2.11;3.78) Portugal 4.4 (3.4;5.58)
Finland 2.96 (2.21;3.84) Romania 4.74 (3.7;5.97)
France 3.91 (3.14;4.81) Serbia 4.44 (3.35;5.74)
Georgia 4.3 (3.19;5.69) Singapore 3.53 (2.72;4.45)
Germany 3.51 (2.73;4.43) Slovakia 3.83 (2.64;5.29)
Greece 3.39 (2.56;4.39) Slovenia 3.25 (2.32;4.4)
Hungary 4.74 (3.66;6.07) South Africa 5.65 (4.46;7.13)
Iceland 1.59 (0.98;2.38) Spain 4.71 (3.8;5.71)
Ireland 4.42 (3.48;5.56) Sweden 2.25 (1.7;2.91)
Israel 4.39 (3.34;5.69) Switzerland 3.07 (2.36;3.92)
Italy 4.12 (3.35;5.01) United Kingdom 3.94 (3.17;4.83)
Latvia 3.27 (2.33;4.42)
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Appendix D.2. The individual effects of school and university closures

The dates of school and university closures coincide nearly perfectly for every country ex-
cept Iceland and Sweden, which closed universities but not schools (Figure 1). As a con-
sequence, the inferred individual effects depend strongly on the in- or exclusion of these
countries in the dataset (Figure D.20). We conclude that we cannot meaningfully disentan-
gle these two NPIs based on only two countries, and show their joint effect (Figure 3), for
which there is much more data.









-50% -25% 0% 25% 50% 75% 100%
Average additional reduction in R, in the context of our data

Schools closed

Universities closed

Schools and univerisities closed

Schools and Universities Sensitivity
Iceland Excluded
Sweden Excluded
Default

Figure D.20: The individual effectiveness of closing schools and of closing universities, as well as the
joint effect of closings school and universities, estimated on all countries (default), all countries except
Sweden, and all countries except Iceland. Median, 50% and 95% credible intervals are shown. The
individual effect of school closures is highly sensitive to the in- or exclusion of one of the countries. If
we include all countries, we would conclude that the joint effect is mostly driven by university closures.
However, if we exclude Sweden, we would conclude that schools closures play a larger role. As there is no
strong justification for in- or excluding one particular country, we conclude that we cannot meaningfully
disentangle the effects of school and university closures. The combined effect is more stable.

Appendix D.3. Collinearity

Table D.3 shows the total number of days across all countries available to distinguish NPI
effects. For every pair of NPIs (row - column), the entry shows the number of country-
days on which only one of the NPIs was implemented (but not both or none). Note that
we do not show the traditional collinearity statistics, variance inflation factors and data
correlations, since their applicability to time series data is limited. In particular, the value
of these statistics in our data increases as data for a longer time period becomes available,
which would misleadingly suggest that we could address problems from collinearity by
using less data.
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Table D.3: Total number of days across all countries available to distinguish NPI effects. For every pair of
NPIs (row - column), the entry shows the number of country-days on which exactly one of the NPIs was
implemented. Abbreviations: G.: Gatherings; SBC: Some businesses closed; MBC: Most nonessential
businesses closed; SaUC: Schools and universities closed; SaHO: Stay-at-home order.

G. <1000 G. <100 G. <10 SBC MBC SaUC SaHO
Mask-wearing 1829 1686 1472 1554 1315 1588 1038
Gatherings <1000 143 501 299 620 325 1173
Gatherings <100 358 240 515 284 1030
Gatherings <10 262 403 308 696
Some businesses closed 331 176 898
Most businesses closed 393 569
Schools and universities closed 940

Appendix D.4. Correlations between effectiveness estimates

The effectiveness parameters αi are typically negatively correlated with each other for NPIs
which are often used together, reflecting uncertainty about which NPI is reducing R. Ex-
cessive collinearity in the data would result in wide posterior credible intervals with strong
correlations,20 but we find weak posterior correlations between effectiveness estimates.
The strongest correlation between any pair of NPIs is −0.41, between limiting gatherings to
100 attendants and 1000 attendants or less (Figure D.21). The weak correlations are one
indicator that collinearity is manageable with our dataset.

To better understand posterior correlations, we visualize their effect in hosted video files.
As we condition on different values for one NPI, we can see that the estimates of other
NPIs change only slightly, always staying well within the credible intervals in Figure 3.
The significance of posterior correlations is small enough that it is possible to calculate
a reasonable approximation to the mean effect of a set of NPIs by simply combining the
mean percentage reductions for each individual NPI (e.g. two 50% reductions lead to a
75% reduction). For example, this approximation leads to a joint effect of 82% for all NPIs
together, which matches the exact mean joint effect (also 82%) up to rounding error.

Videos are available online here.
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Figure D.21: Posterior correlations between effectiveness parameters αi .
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Appendix E. Additional discussion of assumptions and limitations

Appendix E.1. Limitations of the data

We only record NPIs if they are implemented in most of a country (if they affect more than
three fourths of the population). We thus miss if NPIs were only implemented regionally.
For example, a few regions in Germany implemented stay-at-home orders but most did
not. Thus, Germany is listed as "no stay-at-home order" in our data. Additionally, our NPI
definitions were not perfectly granular. For example, a gathering ban on gatherings of >15
people and a ban on gatherings of >60 people would both fall under the NPI "Gatherings
limited to 100 people or less", despite likely having different effects on R. Finally, while
we included more NPIs than previous work (Table F.4), there are many NPIs for which we
were not able to collect enough high-quality data for our modeling, such as public cleaning
or changes to public transportation.

Appendix E.2. Model limitations

Independence of country and time. We assume that the effect of NPIs on R is constant
across countries and time. However, the exact implementation and adherence of each NPIs
is likely to vary. Our uncertainty estimates in Figure 3 account for these problems only to
a strictly limited degree. Additionally, different countries have different cultural norms and
age profiles, affecting the degree to which a particular intervention is effective. For example,
a country where a higher proportion of the population is in education will likely observe
a larger effect from a government order to close schools and universities. Our estimates
thus should be adjusted to local circumstances. To address differences between countries,
our structural sensitivity analysis includes a model where each NPI can have a different
effect per country (Appendix C). The average effectiveness estimates across countries in
this model match the conclusions from our default model.

Testing, reporting, and the IFR. Our model can account for differences in testing (and
IFR/reporting) between countries and over time, as discussed in Appendix A. However,
we have not used additional data on testing to validate if it does so reliably. Our model may
struggle to account for changes in the testing regime—for instance, when a country reaches
its testing capacity so that the ascertainment rate declines exponentially. An exponential
decline would have the same effect on observations as an unobserved NPI. Consequently,
we cannot quantify its effect on our results (though the sensitivity analyses look promising).

Interaction between NPIs. As discussed in the Results section, our model reports the aver-
age additional effect each NPI had in the contexts where it was active in our data (in the
sense mathematically shown by Sharma et al.9). Figure 3 (bottom left) summarises these
contexts, aiding interpretation. The effectiveness of an NPI can only be extrapolated to
other contexts if its effect does not depend on the context. For example, we may expect
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that closing schools has a similar effectiveness whether or not businesses are also closed.
But wearing masks in public may be less effective when a stay-at-home order limits public
interactions.

Growth rates. The functional form of the relationship between the daily growth rate of the
number of infections g and the reproductive number R holds exactly when the epidemic
is in its exponential growth phase, but becomes less accurate as the number of susceptible
people in a population decreases and/or control measures are implemented. However, we
also reported results from a renewal process model8 that lacks this assumption and finds
similar effectiveness estimates.

Signalling effect of NPIs. As we explained in the Discussion for school closures, we do not
distinguish between the direct effect of an NPI and its indirect effect as it signals the gravity
of the situation to the public. Conversely, lifting interventions may also have a signalling
effect.

Homogeneous effect of interventions. We work under the implicit assumption that NPIs af-
fect different population groups equally. This could affect results in various ways. For exam-
ple, suppose country A tests an older demographic than country B, and we are considering
the effect of an NPI that mostly affects the older demographic (for example, isolating the
elderly). Then the NPI will appear to have a greater effect on confirmed cases in country A,
breaking the assumption that effects are constant across countries. Our previous discussion
of interpreting results when this assumption is violated applies.

Appendix F. Overview of previous work

Table F.4: Existing data-driven studies of the effectiveness of observed (as opposed to hypothetical) NPIs
in reducing the transmission of COVID-19.

Study NPIs studied
Regions/countries

studied
Method

Flaxman et
al., 20201

School or university
closure, case-based
isolation, ban on

large public events,
social distancing,

lockdown

Austria, Belgium,
Denmark, France,

Germany, Italy, Norway,
Spain, Sweden,
Switzerland, UK

Semi-mechanistic
Bayesian hierarchical

model

Continued on next page
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Table F.4 – Continued from previous page

Study NPIs studied
Regions/countries

studied
Method

Chen and
Qiu, 202031

Travel restriction,
mask-wearing,

lockdown, social
distancing, school

closure, centralized
quarantine

Italy, Spain, Germany,
France, UK, Singapore,

South Korea, China, U.S.

Regression with
delayed effect

Susceptible-Infectious-
Removed (SIR)

model

Banholzer et
al., 202032

School closure,
border closure, event
ban, gathering ban,

venue closure,
lockdown, work ban

U.S., Canada, Australia,
Austria, Belgium,

Denmark, Finland,
France, Germany, Greece,

Ireland, Italy,
Luxembourg, the

Netherlands, Portugal,
Spain, Sweden, UK,
Norway, Switzerland

Semi-mechanistic
Bayesian hierarchical

model

Hsiang et al.,
202033

Restricting travel (5
subcategories),
distancing (10
subcategories),
quarantine and

lockdown (2
subcategories),

additional policies (2
subcategories)

China, South Korea, Italy,
Iran, France, U.S.

Linear regression on
estimated growth

rates

Choma et al.,
202034

Single aggregated
NPI

22 countries and 25 states

Regression with
Susceptible-Infectious-

Removed-Deceased
(SIRD) model

Dehning et
al., 202035

Contact ban,
restrictions on

gatherings, schools,
childcare, businesses

Germany
Bayesian inference of

transmission rate

Siedner et
al., 202036

General social
distancing

U.S.
Interrupted
time-series

Kraemer et
al., 202037

Travel restrictions
and cordon sanitaire

China Regression

Kucharski et
al., 202038 Travel restrictions Wuhan (China)

Various, including
Susceptible-Exposed-
Infectious-Removed

(SEIR) model
Continued on next page
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Table F.4 – Continued from previous page

Study NPIs studied
Regions/countries

studied
Method

Dandekar
and

Barbastathis,
202039

General quarantine
and isolation

Wuhan, Italy, South
Korea, and U.S.

A mix of a mechanistic
model and a

data-driven neural
network model

Maier and
Brockmann,

202040

General quarantine
and isolation

Mainland China
Quantitative fits to

empirical data

Sears et al.,
202041

Mobility changes as a
proxy for

stay-at-home
mandates

U.S.
Difference-in-

differences statistical
model

Jarvis et al.,
202042

Physical (social)
distancing measures

UK
Questionnaire data
and compartmental

epidemic model
Orea and
Álvarez,
202043

Lockdown Spain
Spatial econometric

analysis

Lorch et al.,
202044

Mobility restrictions,
testing & tracing,

social distancing, and
business restrictions

Tübingen (Germany)
Authors’ own

spatiotemporal model
of epidemics

Gatto et al.,
202045

Various restrictions to
mobility and

human-to-human
interactions

Italy

Susceptible–Exposed–
Infected–Recovered
(SEIR)-like disease
transmission model

Quilty et al.,
202046

Intercity travel
restrictions

Beijing, Chongqing,
Hangzhou, and Shenzhen

(Mainland China)

Branching process
transmission model

52

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.05.28.20116129doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20116129
http://creativecommons.org/licenses/by-nc/4.0/


Appendix G. Handling edge cases in the data collection

In our data collection process, we relied on carefully worded definitions of 9 different NPIs
(Table F.4), which allowed us to systematically determine the date on which a country
imposed an NPI and, if applicable, the date the NPI was lifted.

In some cases, however, we faced ambiguities in how to interpret the start date of an NPI.
One kind of challenge arose when descriptions of policy measures were less specific than
our NPI definitions (e.g., a ban on “large gatherings” that does not specify the exact number
of people that constitutes a “large gathering”). Another difficulty was due to NPI policies
that made distinctions that we did not make in our own NPI definitions (e.g., an NPI policy
that made a distinction between the number of people able to gather indoors vs outdoors).

To resolve these ambiguities in a consistent manner, our researchers developed a set of prin-
ciples and guidelines that were followed during the data collection process. For each of the
examples below, the relevant sources are available in the data table in the supplementary
material.

Situation: Sometimes only public gatherings are banned, with no explicit ban on pri-
vate gatherings

How we deal with it: We still counted this as a ban on gatherings.

Examples:

• Sweden: In Sweden, they banned all public gatherings of more than 50 people (demon-
strations, religious meetings, theater performances, markets, and other events that
relied on the constitutional freedom of assembly), however, the ban did not have a
mandate to prohibit private gatherings (such as private parties). We counted this as a
ban on gatherings.

• Finland: In Finland, they banned all public gatherings of more than 10 people on
the 16th of March. Although formal restrictions did not apply to private gatherings,
this policy met our definition of a ban on gatherings. (Note that this inclusion seems
particularly valid in light of the fact that, according to Finnish police, the formal
restrictions on public events were widely interpreted to apply to private gatherings as
well, and there were very few reports of large private parties despite the absence of
formal restrictions.)

Situation: The size limits on gatherings sometimes differ between indoor and outdoor
gatherings.

How we deal with it: In these cases, we relied on the limitations on indoor events, as these
events entail a greater risk of transmission.

Example:
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• Spain: In Spain, a range of rules were employed as the country gradually eased re-
strictions on gatherings. In phase 1, cultural events were permitted with up to 30
people indoors and up to 200 outdoors. This was counted as “Gatherings limited to
100 people or less.”

Situation: The size limit on gatherings sometimes differs between different types of
gatherings.

How we deal with it: In this case, researchers would use their best judgment to infer whether
the restriction would apply to most gatherings of a given size.

Example:

• Spain: In Spain, phase 1 of the reopening allowed for cultural events to have up to
30 participants indoors, while social gatherings were limited to 10 people. In this
case, since “cultural events” is broad, we counted this as a case of “gatherings limited
to 100 people or less.” However, if for example all gatherings above 5 people had
been banned with an exception for funerals, we would have counted this as “gather-
ings limited to 10 people or less,” since the exemption only applied to a minority of
gatherings.

Situation: Limitations on gathering sizes are not clearly given, yet a policy stating that
“large events are banned” is in place.

How we deal with it: Our researchers used the relevant context to infer the most likely scope
of the policy.

Example:

• Albania: on March 8 “authorities had also ordered cancellations of all large public
gatherings including cultural events and were asking sporting federations to cancel
scheduled matches”. The events that are mentioned here are multi-thousand person
gatherings, and so we took March 8th to be the start date of “Gatherings limited to
1000 people or less”. However it was unclear whether gatherings of 100-1000 would
also have been banned, so we did not yet say that “Gatherings limited to 100 people
or less” was instantiated.

Situation: Only some schools were closed, or schools reopened gradually.

How we deal with it: Since our definition of the NPI is that “Most schools are closed,” we did
not count the closure of just a few schools or school years sufficient to meet this criteria.
Similarly, if schools reopened for only a very limited number of year groups, for example
for final year students sitting exams, we did not count this as a lifting of the “most schools
closed” NPI.
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Examples:

• Sweden: Sweden kept all schools through 9th grade open, but closed high schools
(>16 year olds). In this case, we did not count this as “Most schools closed”, since
more than 75% of students are below 9th grade.

• Czech Republic: After closing all schools on the March 13, the Czech Republic allowed
schools to reopen for teaching in some contexts from May 11 (specifically for students
in their final year of primary school or high school preparing for exams). However,
we still counted this as “Most schools closed” since the majority of students were not
in school. We recorded the end date for school closure to be June 8, when all schools
reopened.

Situation: In a country where most non-essential businesses were closed, the lifting
of business closures is gradual, and businesses in different sectors are successively
allowed to open.

How we deal with it: Countries reopen sectors in different, idiosyncratic ways and succes-
sions. Given the available data, it is not feasible to create a principle that can be applied
unambiguously to every single case without some involvement of researcher judgment. The
general guideline we used was: If only a few, low-risk businesses (e.g., bike stores, hard-
ware stores, etc.) are additionally allowed to reopen, then we still counted this as “Most
nonessential businesses closed.” However if any one of the following criteria are met, then
we counted “Most nonessential businesses closed” as having lifted, but the “Some businesses
closed” NPI was still in place:

• All regular retail stores, with only a few exceptions e.g. size limitations, are open
• Contact-based services, such as hairdressers and tattoo parlors, are open
• Restaurants and bars are open and serving indoors

We decided that meeting any one of these criteria is a sufficient condition for taking a coun-
try from “Most nonessential businesses closed” to “Some businesses closed.” This heuristic
was partly based on the fact that the status of these categories appeared to be consistently
correlated, meaning that, even in the absence of complete specifications as to what had
reopened or not, it was typically possible to infer the overall level of reopening based on
either of these categories. Meeting at least one of these criteria was considered a necessary
condition for ending the “Most nonessential businesses closed” NPI.

Examples:

• Slovakia: On April 22, retail operations and services up to 300 m2 opened. Since this
meets one of the sufficient conditions, we counted April 22 as the end date for “Most
nonessential businesses closed”

• Ireland: On May 18, the following reopened: hardware stores, builders merchants
and those providing essential supplies, retailers involved in the sale and repair of
vehicles, certain office supply stores. Because this white list does not meet any of the
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three criteria, Ireland’s end date for “Most nonessential businesses closed” was not
counted as May 18.

• Czech Republic: On April 20, several businesses reopened, including farmer’s mar-
kets, marketplaces, locksmiths, bike shops, car dealers, electronics stores. At this
point, none of the criteria were met, so we recorded the Czech Republic as still hav-
ing “Most nonessential businesses closed”. On May 11, a long list of businesses re-
opened, including barbers, hairdressers, museums, all establishments in sufficiently
large shopping centers, shows with up to 100 participants, and restaurants with a
window facing the street. Since contact-based services (hairdressers) and all retail
establishments in sufficiently large spaces were allowed to reopen, we counted May
11 as the end date for the “Most nonessential businesses closed” NPI.

• Croatia: On April 27, all "trade activities" (except within shopping malls), service jobs
that don’t involve physical contacts, museums, libraries, galleries opened. Since the
criteria regarding ‘all retail stores being open’ was met, we counted April 27 as the
end date for “Most nonessential businesses closed”.
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