Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A control approach to the Covid-19 disease using a SEIHRD dynamical model

Fernando Pazos, Flavia E. Felicioni
doi: https://doi.org/10.1101/2020.05.27.20115295
Fernando Pazos
National University of Avellaneda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: quini.coppe@gmail.com
Flavia E. Felicioni
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The recent worldwide epidemic of Covid-19 disease, for which there is no vaccine or medications to prevent or cure it, led to the adoption of public health measures by governments and populations in most of the affected countries to avoid the contagion and its spread. These measures are known as nonpharmaceutical interventions (NPIs) and their implementation clearly produces social unrest as well as greatly affects the economy. Frequently, NPIs are implemented with an intensity quantified in an ad hoc manner. Control theory offers a worth-while tool for determining the optimal intensity of the NPIs in order to avoid the collapse of the healthcare system while keeping them as low as possible, yielding in a policymakers concrete guidance. We propose here the use of a simple proportional controller that is robust to large parametric uncertainties in the model used.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No funding has been received to suport this research

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

there is no IRB/oversight aproval or exemption

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

all the data used in the article are available in https://www.worldometers.info/coronavirus/

https://www.worldometers.info/coronavirus/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted May 30, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A control approach to the Covid-19 disease using a SEIHRD dynamical model
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A control approach to the Covid-19 disease using a SEIHRD dynamical model
Fernando Pazos, Flavia E. Felicioni
medRxiv 2020.05.27.20115295; doi: https://doi.org/10.1101/2020.05.27.20115295
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A control approach to the Covid-19 disease using a SEIHRD dynamical model
Fernando Pazos, Flavia E. Felicioni
medRxiv 2020.05.27.20115295; doi: https://doi.org/10.1101/2020.05.27.20115295

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (228)
  • Allergy and Immunology (504)
  • Anesthesia (110)
  • Cardiovascular Medicine (1238)
  • Dentistry and Oral Medicine (206)
  • Dermatology (147)
  • Emergency Medicine (282)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (531)
  • Epidemiology (10021)
  • Forensic Medicine (5)
  • Gastroenterology (499)
  • Genetic and Genomic Medicine (2453)
  • Geriatric Medicine (238)
  • Health Economics (479)
  • Health Informatics (1643)
  • Health Policy (752)
  • Health Systems and Quality Improvement (636)
  • Hematology (248)
  • HIV/AIDS (533)
  • Infectious Diseases (except HIV/AIDS) (11864)
  • Intensive Care and Critical Care Medicine (626)
  • Medical Education (252)
  • Medical Ethics (75)
  • Nephrology (268)
  • Neurology (2280)
  • Nursing (139)
  • Nutrition (352)
  • Obstetrics and Gynecology (454)
  • Occupational and Environmental Health (536)
  • Oncology (1245)
  • Ophthalmology (377)
  • Orthopedics (134)
  • Otolaryngology (226)
  • Pain Medicine (157)
  • Palliative Medicine (50)
  • Pathology (324)
  • Pediatrics (730)
  • Pharmacology and Therapeutics (313)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2280)
  • Public and Global Health (4833)
  • Radiology and Imaging (837)
  • Rehabilitation Medicine and Physical Therapy (491)
  • Respiratory Medicine (651)
  • Rheumatology (285)
  • Sexual and Reproductive Health (238)
  • Sports Medicine (227)
  • Surgery (267)
  • Toxicology (44)
  • Transplantation (125)
  • Urology (99)