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We introduce a deterministic model that partitions the total population into the susceptible,

infected, quarantined, and those traced after exposure, recovered and the deceased. We introduce

the concept of ’accessible population for transmission of the disease’, which can be a small fraction

of the total population, for instance when interventions are in force. This assumption, together with

the structure of the set of coupled nonlinear ordinary differential equations for the populations,

allows us to decouple the equations into just two equations. This further reduces to a logistic type

of equation for the total infected population. The equation can be solved analytically and therefore

allows for a clear interpretation of the growth and inhibiting factors in terms of the parameters

in the full model. The validity of the ’accessible population’ assumption and the efficacy of the

reduced logistic model is demonstrated by the ease of fitting the United Kingdom data for the

total number of infected cases. The model can also be used to forecast further progression of the

disease. The approach further helps us to analyze the original model equations. We show that the

original model equations provide a very good fit with the United Kingdom data for the cumulative

number of infections. The active infected population of the model is seen to exhibit a turning point

around mid-May, suggesting the beginning of a slow-down in the spread of infections. However,

the rate of slowing down beyond the turning point is small and therefore the cumulative number

of infections is likely to saturate to about 3.8 × 105 only towards the end of July or beginning of

August, provided the lock-down conditions continue to prevail. Noting that the fits obtained from

the reduced logistic equation and the full model equations are equally good, the underlying causes

for the limited forecasting ability of the reduced logistic equation is elucidated. The model and

the procedure adopted here are expected to be useful in fitting the data for other countries and

forecasting the progression of the disease.

I. INTRODUCTION

The highly contagious SARS-CoV-2 has infected more

than five million people worldwide since its first detection

in China on December 31 [1]. The novel coronavirus is

the fourth wave in the class of coronaviruses. In less than

two months, the virus has spread all over the world, pos-

ing serious threats to health care systems and economies.

The alarming speed of transmission, the virulence of the

disease, and the unprecedented high proportion of fatal-

ities even in countries with high healthcare indices have

raised questions about what kind of interventions are ap-

propriate for a given setting. The wide variability in

infected numbers and fatalities in different counties and

settings has also brought into sharp focus a debate about

the underlying causes of the variability. In the absence

of any treatment for the disease and non-availability of

vaccines in the near future, policy makers have resorted

to standard epidemiological interventions, such as social

distancing, isolation, contact tracing, and quarantining,

and more recently a complete lock-down.

At a basic level, the purpose of all non-pharmacological

interventions is to control disease transmission by limit-

ing the proportion of population exposed to the virus as

much as possible. Furthermore, inherent in the process of

implementation of these interventions are delays at each

stage. The delay time-scales are specific to the particular

intervention.

The importance of mathematical models describing the

spreading dynamics of infectious diseases has been rec-

ognized since early days [2]. In particular, the fact that

timely models that include realistic features have often

been helpful in decision making on health care issues is

well recognized [2–4]. In the short period since the emer-
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gence of the coronavirus, there have been several math-

ematical models [5–17], to name a few. Several of these

models attempt to evaluate the contribution from differ-

ent transmission routes, such as contact tracing and isola-

tion [10, 11, 18], travel restrictions [16, 17], social distanc-

ing [19, 20], lock-down measures [16, 21, 22], and a combi-

nation of several of these interventions [12, 23, 24]. These

models broadly fall into three categories, deterministic,

stochastic, and simulations. Several new mathematical

techniques used in different disciplines have been em-

ployed to gain insights, which would not be possible with

the traditional approaches in the field. These include

the human mobility model [16], differential evolution[19],

heuristic optimization technique [19], stochastic agent-

based discrete time simulation [25], supply chain risk sim-

ulations [26], etc.

One class of epidemiological models attempt to de-

scribe the transmission dynamics by partitioning the

population into smaller subsets based on the disease sta-

tus such as the susceptible, exposed, infected, quaran-

tined, recovered, etc [5–9]. Most models of this kind ig-

nore age-dependent infection and fatality rates, and the

heterogeneous spatial distribution of the population. In

a sense, these models describe the evolution of the mean

response of each type of population. Despite these limi-

tations, these models have the ability to include several

realistic features.

In compartment type of models, the disease status of

individuals changes with the development of the disease,

i.e., transitions occur between two compartments either

due to interaction of the infected with the susceptible or

due to interventional actions. These models include de-

lay time-scales inherent in the dynamics of transmission,

for instance, the period spent in quarantine and the time

required for tracing individual exposed to the infected.

These models have the ability to include several realis-

tic features, such as the response of the population to

interventional measures. However, generally, inclusion of

more and more realistic features requires a larger number

of partitions. Then, the number of differential equations

increases and so does the number of parameters, making

calibration of the parameters difficult [5–9, 13].

Motivated by the complexity of such models, we have

devised a compartment-based model having susceptible,

infected, quarantined, traced, recovered, and deceased

populations. The susceptible and the infected form the

core populations in the sense that it is through these

two populations that inward/outward transitions occur

with other populations. We introduce the concept of ’ac-

cessible population for infection’, assumed to be a small

fraction of the total population. The validity of this as-

sumption can be seen by noting that the purpose of in-

terventions is to minimize the exposure of the popula-

tion to virus transmission, thereby limiting the spread

of infection. We further assume that the order of mag-

nitude of the accessible population is similar to that of

the infected population. This, assumption is made more

quantitative. This, together with the structure of the

model equations, allows us to decouple them into two

equations. These two equations further reduce to a lo-

gistic type of equation for the total infected population

with well defined parameters namely, the ’testing rate’

and ’contact rate’ transmission parameters [27, 28]. The

equation can be solved analytically, thereby allowing for

a clear interpretation of the parameters controlling the

growth and inhibiting factors. The validity of the ’ac-

cessible population’ assumption and the efficacy of the

reduced model is demonstrated by the ease of fitting the

cumulative number of infections for the United Kingdom

(UK). The procedure further allows us to forecast the

progression of the disease. Using this information and

calibrating the relative importance of various transition

rates (equivalently the associated parameters), we opti-

mize the parameter values specific to the UK. Using this,

we numerically solve the full model equations. The cal-

culated total infected population fits very well with the

available data for the UK [29]. (UK does not publish data

on the recovered and the active populations.) The model

exhibits a turning point in the active infected population

around May 15. However, since the rate of slowing down

beyond the turning point is poor, the projected end time

of the epidemic would be around late July or early August

and the predicted saturation level of the total number of

infections is ∼ 3.8 × 105 assuming lock-down conditions

continue.
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II. THE MODEL

The total population N is partitioned into the suscep-

tible S, active infected I, quarantined Q, those traced T

after being exposed to the infected, recovered R, and the

deceased D. The respective populations are denoted by

Ns, Ni, Nq, Nt, Nr and Nd.

Testing is one of the standard protocols used for iden-

tifying the infected. If αs is rate of testing per day per

million and ps is the probability of testing positive, then

αspsNs is the transition rate from S to I. Infected In-

dividuals coming into contact with the susceptible class

can transmit the virus. If βi is the transmission rate per

contact, pi is the probability of transmission of the dis-

ease, F (di) is a distance dependent interaction, and fi

the proportion of the susceptible coming in contact with

the infected, then, fipiβiF (di)NiNs is the transition rate

from S to I. Considering the fact that one of the primary

routes of transmission is through airborne aerosols gen-

erated by the infected, a larger separation is known to re-

duce the risk of transmission [19, 20, 30]. This distance

dependence of F (di) is generally expressed as F (di) ∝
1/d2 or 1/d3i . However, in the present context where we

will be dealing with a lock-down situation for most part

of the progression of the disease, we set F (di) = 1.

During testing, some individuals would always exhibit

mild or ambiguous symptoms. These are identified as

pre-symptomatic. If the probability of finding the pre-

symptomatic is pq, then, αspqNs transition out of S to

Q. Subsequently, when tested again, say after a quaran-

tine duration [5, 31, 32], some of them may either test

positive with a probability q1 or negative with a proba-

bility (1− q1). If positive, the transition out of Q (to I)

is q1λqNq. Here, 1/λq is the quarantine duration, usually

of the order of the incubation period [31, 32]. Similarly,

if tested negative, the transition rate out of Q into S is

(1− q1)λqNq. The total loss rate to Ṅq is λqNq.

Tracing those exposed to the infected and testing to

find if they are infected, are important steps in control-

ling the spread of the disease. Inherent in tracing such

individuals are delays in tracing. Such delays cause in-

creased transmission of the disease. If pt is the prob-

ability of tracing such individuals, then, αtptNs is the

transition rate from S to T . Subsequently, individuals

testing positive will move to the infected compartment

I with a probability q2 and the rest with a probability

(1− q2) move to S. The total transition out of T is equal

to λtNt, where 1/λt is the time taken to trace the indi-

viduals. (There is also another possibility, namely, some

individuals may show mild symptoms. Then, there would

be a transition into Q. For the sake of simplicity, we have

ignored this route.) Finally, the outward transitions from

I are the recovery and death rates respectively, γrNi and

κdNi.

Collecting these terms, we have the following set of

coupled nonlinear ordinary differential equations

Ṅs = −(αsps + αspq + αtpt)Ns − fipiβiNiNs
+ (1− q1)λqNq + (1− q2)λtNt, (1)

Ṅi = αspsNs + fipiβiNiNs

+ q1λqNq + q2λtNt − (γr + κd)Ni, (2)

Ṅq = αspqNs − λqNq, (3)

Ṅt = αtptNs − λtNt, (4)

Ṅr = γrNi, (5)

Ṅd = κdNi. (6)

(Here, we have suppressed F (di) factor since it has been

set equal to unity.) Note that the total infected popula-

tion is given by Nt = Ni +Nr +Nd.

To begin with, we highlight a few features of the model

equations. Our model, much as other compartment-type

models, has several parameters. However, several of these

are directly measurable and therefore can be obtained

from the literature. A few others are related to test-

ing protocols and again can be obtained from the liter-

ature or from relevant open sources [29]. For instance,

αsps, αspq and αtpt are directly related to testing rates

and therefore, these are known for a given situation. A

few other rate parameters such λq, λt, γr and κd, are in-

versely related measurable time-scales, such as the dura-

tion of quarantine τq, time required for tracing τt, time

for recovery starting from illness τr and the time from

illness to death τd respectively [32, 33].

The present model includes two delay loops defined by

Eqs. (3) and (4). These delays are natural to the im-

plementation of the protocols. For instance, once quar-

antined subsequent tests are conducted after quarantine

duration to identify if quarantined individuals test posi-

tive or negative. Similarly, delays in tracing individuals
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are common. A more transparent way to describe these

delay loops is through the integral representation of Eqs.

(3) and (4), which forms the definitions of the two popu-

lations Nq and Nt, respectively. For instance,

Nq(t) = αsps

∫ t

0

dt′Ns(t
′)K(t− t′). (7)

When the kernel K(t) is modeled using an exponential

form with a single time scale 1/λq, i.e., K(t) = e−λqt, one

can easily verify that differentiating Eq. (7) (using the

Leibniz rule) leads to Eqs. (3). The convoluted nature

of the integral physically implies that those quarantined

earlier will leave the quarantine sooner than those quar-

antined later.

Equations (1-6) constitute a set of coupled nonlinear

differential equations. A standard procedure for further

analysis of such equations is through numerical integra-

tion. Recall that our model is devised in such a way that

there are two main populations, namely, the susceptible

(Eqs. 1) and the infected (Eq. 2). Furthermore, Eqs.

(5,6) are essentially decoupled from the rest (transitions

to R and D are from I). These two features suggest

that Eqs. (1,2) can be decoupled from the rest of the

equations. We refer to the decoupled equations as the

reduced model equations. Since the two equations can

be further reduced to a logistic-type equation (referred

to as the reduced logistic equation), it can be analyti-

cally solved. As we shall see, analysis of this equation

provides insights that prove to be useful for the analysis

of the full model Eqs. (1-6). (We shall often refer to Eqs.

(1-6) as full model equations to avoid confusion.)

III. CONCEPT OF ACCESSIBLE

POPULATION: THE REDUCED MODEL

We now introduce the concept of ’accessible population

for transmission of the disease’. To appreciate this con-

cept, consider the spreading dynamics of a contagious

disease in the absence of any interventions. Then, in

principle, the entire population is exposed to the disease,

and it may spread to the entire population (barring the

possibility of population acquiring herd immunity). In

this case, the entire population is the accessible popula-

tion. However, since no Government would like to see

the entire population infected, interventional measures

are enforced precisely to mitigate the risk of transmis-

sion and limit the population exposed to the disease to

a minimum. In this case, the accessible population is

expected to be a small fraction of the total population.

Consider dropping all terms except αspsNs and

fipiβiNiNs in Eqs. (1,2). Then, these two equations get

decoupled from the rest of the equations. Further, be-

cause all other inward/outward transitions are removed,

the character of the compartment I changes from the

active infected to the cumulative infected It with Nt de-

noting the corresponding population. Then, we have

Ṅs = −αspsNs − fipiβiNtNs, (8)

Ṅt = αspsNs + fipiβiNtNs. (9)

Noting that

d

dt
(Ns +Nt) = 0, (10)

we have Nt +Ns = constant. Without loss of generality,

we set Nt +Ns = Ns(0), the total population. Then, we

get a single equation governing the cumulative infected

population, given by

Ṅt = c+ bNt − aN2
i , (11)

a = fipiβi, (12)

b = fipiβiNs(0)− αsps, (13)

c = αspsNs(0). (14)

Equation (11) has the well known form of logistic equa-

tion extensively studied in the context of population dy-

namics [34], with a notable difference, namely, the pa-

rameters a, b, and c have a well defined interpretation as

discussed above. We refer to Eq. (11) as the reduced

logistic equation. (For brevity we often refer to αsps and

fipiβi as testing and contact transmission rates respec-

tively.)

We begin with a few observations on the relative mag-

nitudes of the model parameters in the absence and pres-

ence of interventions. Consider a situation when there are

no constraints. Then, one should expect that the testing

rate (αsps) to be low due to absence of any guidelines

from policy makers. Similarly, since infected individuals

carry on with their routine activity, the number of con-
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tact transmissions is high and hence, the contact trans-

mission rate (fipiβi) is expected to be high (compared to

when interventions are in place). Then, the total accessi-

ble population denoted by Na(0) is the entire population

of the region or the country, i.e., Na(0) = Ns(0). In con-

trast, when interventions are in place, testing rates are

high to ensure identification of the infected, therefore,

αsps is high. In this situation, since the mobility of in-

dividuals is restricted, the number of contacts is severely

limited, i.e., fipiβi will be small. Therefore, the accessi-

ble population Na(0) is expected to be small compared to

the total population Ns(0). These qualitative statements

about the accessible population will be made quantitative

by carrying out a detailed analysis of Eq. (11).

Consider the initial growth of Eq. (11) by dropping

the quadratic term. Then, we have

d

dt
Nt = c+ bNt. (15)

The solution is given by

Nt =
c

b

(
ebt − 1

)
+Nt(0)ebt, (16)

where Nt(0) is the initial number of infections. As can

be seen, the growth rate given by b ≈ fipiβiNs(0) de-

pends on Ns(0), the total population. Therefore, the

growth rate can be high. In addition, the prefactor for

the exponential growth term (in Eq. 16) depends not

only on Nt(0) but also on c/b = αsps/fipiβi. Thus, the

initial growth depends on relative magnitudes of Nt(0)

and αsps/fipiβi.

It is straightforward to obtain the solution of Eq. (11).

(See Appendix for details.) Here it is adequate to con-

sider the solution in terms of the parameters a, b, and c,

given by

Nt =

(
b
aNi(0) + c

a

)
e bt + c

a + ac
b

(Nt(0) + ac
b

)
e bt −Nt(0) + b

a

. (17)

We now examine two limiting cases. For short times, Nt

tends to (Nt(0) + c
b )e

bt (since the denominator is dom-

inated by b/a = Ns(0)), consistent with the short time

solution given by Eq. (16). For long times however, Nt

tends to b/a = Ns(0), the total population.

The self-limiting nature of Eq. (17), a characteristic

feature of logistic equations, is evident from the fact that

Nt tends to Ns(0). In other words, the entire popula-

tion becomes accessible for transmission of the disease.

Clearly, the situation can only represent the growth of

infection in the absence of any kind of interventions.

On the other hand, the effect of all interventions is

to limit the transmission rate of transmission, thereby

limiting the proportion of the exposed population to the

disease to a small fraction. It is this that we call the ac-

cessible population. In other words, the accessible pop-

ulation Na(0) is of the same order as the infected pop-

ulation. This can be written as Nt ∼ Na(0) ≈ FNs(0),

where F is a small fraction.

However, within the scope of the reduced logistic

model, the evolution of Nt is independent of the val-

ues of the parameters αsps and fipiβi during the ab-

sence or presence of interventions. As a consequence, the

asymptotic value of the cumulative infected population

is always Nt = Ns(0), the entire population. Therefore,

demonstrating the accessible population is a small frac-

tion of the total population is outside the scope of Eq.

(11) and the full model Eqs. (1- 6). An independent way

of demonstrating Na(0) = FNs(0) is desirable.

A. Quantitative estimate of the accessible

population

Since the factor F is not well determined, there is a ne-

cessity to get a better estimate of Na(0). This is done by

numerical evaluation of the dependence of Nt on the pa-

rameters Na(0), αsps, and fipiβi. Given the fact that the

disease evolves, Na(0) also evolves with time. This can

be seen by the fact that in the early stages of evolution,

Na(0) will be small, even in the absence of interventions.

Consider the dependence of Nt on Na(0), keeping

αsps and fipiβi fixed. In addition, since the disease

evolves with time, the accessible population also evolves

with time. We find that even for relatively large values

Na(0), Nt grows exponentially; for intermediate values,

a near saturation value is reached in relatively short du-

ration of 10-15 days; and for small values, the satura-

tion value is not reached even after 100 days. These fea-

tures are illustrated in Fig. 1 in plots (i-iii) for Na(0) =

8 × 105, 2.8 × 105 and Na(0) = 1.45 × 105 respectively,

keeping fipiβi = 3.3913 × 10−7 and αsps = 1.0 × 10−4.

We have also examined the influence of fipiβi, keeping
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FIG. 1. (Color online) Plots for the total infected population

Nt for decreasing values of Na(0) as a function of time (in

days) : (i) Na(0) = 8 × 105, (ii) 2.8 × 105, and (iii) 1.45 ×
105 respectively, keeping fipiβi = 3.3913 × 10−7 and αsps =

1.0 × 10−4 fixed. The curve (ii) shows decreasing Na(0) by

a factor of 5.51 leads to slow increase in Nt. (iv) Plot of Nt

for fipiβi = 4.752 × 10−7, keeping Na(0) = 2.8 × 105 and

αsps = 1.0 × 10−4. Smaller values of fipiβi take longer time

for Nt to grow as is clear. See (ii) and (iv). (v) Plot of

Nt for αsps = 1.1 × 10−3, keeping Na(0) = 2.8 × 105 and

fipiβi = 3.3913 × 10−7 fixed. Increase in αsps leads to a

faster initial growth seen in (v) and (iii). Also show is the

cumulative number of infections (•) for the UK.

Na(0) = 2.8 × 105 and αsps = 1.1 × 10−3. We find

that smaller values of fipiβi, it takes a longer time for

the infection (Nt) to grow. This feature can be seen

from the curves (iv) for fipiβi = 4.7522× 10−7 and (iii)

for fipiβi = 3.3913 × 10−7. We have also examined the

growth dependence of Nt on αsps, keeping the other two

parameters fixed. The dependence of Nt on this param-

eter is similar to that on fipiβi. The curve (v) taken

together with (ii) shows that increasing αsps also leads

to faster initial growth of Nt. In the same plot, we have

also plotted the total number of infected cases • for the

UK.

A careful scrutiny of the total coronavirus cases (•)
in the UK shows that it is similar both in magnitude

and shape to the plot of Nt corresponding to Na(0) =

0.28 × 106 marked (ii) shown in Fig. (1). This similar-

ity suggests two important points. First, noting that the

UK is under lock-down, one expects that the accessible

population is a small fraction of the total population,

and therefore we see that the order of magnitude of the

accessible population Na(0) used is comparable to that of

the infected population Nt shown in curve (ii). The figure

also shows that as much as all populations evolve dynami-

cally during the development of the pandemic, Na(0) also

keeps evolves with time. Second, the similarity in shape

of the UK data (•) with the sigmoidal shape of the lo-

gistic solution raises a question whether the similarity is

accidental. If not, can this be used to fit the UK data?

B. Data Assimilation

However, considering the complex dynamics of the

highly contagious virus and the fact that logistic equation

can at best represent simple situations, any attempt to

fit the data appears ambitious. Even so, it is tempting to

examine if Eq. (17) could be used to fit the coronavirus

data for some country/region. To do this, we first note

that the reduced model equation contains just three pa-

rameters and the dependence of Nt on these parameters

has already been examined [see Fig. 1].

In most countries, the development of the disease falls

into two phases, namely, the initial period when Govern-

mental constraints are absent, referred to as phase one

and the period beyond the lock-down date, called phase

two. In the case of the UK, the first case was reported

on January 31, 2020. Subsequently, the lock-down was

imposed on March 23. Thus, we need to fit the data for

the period January 31 to March 23 and then the rest.

Consider the period between January 31 and March

23, 2020. Briefly, the fitting procedure adopted here is

to equate the initial growth rate of infections obtained

from the coronavirus data with the model growth rate

given by Eq. (16) (or Eq. 17). Using the fact that the

accessible population is of the order of the total number

of infections, we use a trial value of Na(0) (assumed to

be a few times larger than the infected population) to fix

the parameter βi. Then, the correct value of Na(0) that

provides the best fit for the entire data is found iteratively

by decreasing Na(0) so as to fit increasing number of data

points. The procedure is illustrated below.

Here, we use the analytical solution given by Eq. (17)

(or solving Eqs. 8-9) with parameters and initial condi-

tions appropriate for the unconstrained growth. Recall
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that the testing rate parameter αsps is low during the ini-

tial period and the contact transmission rate parameter

fipiβi would be high. The values of these two parameters

in the lock-down period are just the opposite.

FIG. 2. Figure shows the two-phase evolution of the dis-

ease. The inset shows the good fit using Eq. (17) with the

cumulative infected cases for the UK • prior to March 23,

2020. Parameter values used are Na(0) = 1.86× 105, Nt(0) =

13, αcpc = 9.0 × 10−6, fipiβi = 1.205 × 10−6. Post lock-down

period: The four curves (i-iv) correspond to the four itera-

tions of Na(0) values. (i) Na(0) = 5.0 × 105, αsps = 0.0,

(ii) Na(0) = 4.0 × 105, αsps = 1 × 10−3, (iii) Na(0) = 3.0 ×
105, αsps = 2.8 × 10−3, and (iv) Na(0) = 2.70 × 105, αsps =

2.8 × 10−3. The initial value of Nt(0) = 5687 on March 23,

2020.

Consider the first phase where virus transmission is

unconstrained. A careful perusal of the UK data shows

that a smooth increase in the infected numbers starts

on Feb. 26, 2020, when the number infected was Nt =

13. The local growth rate obtained from the data over

7 days was found to be 0.4820/day. Equating this with

the model growth rate given by fipiβiNa(0) (in Eq. 16),

with a trial value of Na(0) = 4.0 × 105 fixes a value of

βi = 1.205 × 10−5. The solution of Eq. (17) (or Eqs.

8-9) obtained using the initial condition Nt = 13 keeping

αsps = 0, passes through several more data points than 7.

In the next iterations, we reduce Na(0), keeping in mind

that the solution should pass through larger number of

data points. In addition, since the initial growth rate

(Eq. 16) depends on c/b = αsps/fipiβi also, a proper

value of αsps is required for a good fit. For the initial

phase (of short duration), we find that just one iteration

of reducing Na(0) to Na(0) = 1.86 × 105 with αsps =

9× 10−6 fits the data well for the period from Feb. 27 to

March 23, 2020, as shown in the inset of Fig. 2.

Fitting the data for the second phase follows the same

iterative procedure except that the number of iterations

is greater for the second phase due to the large number

of data points. The number of infections as on March 23

stood at Nt = 5687. This number matches with the pre-

dicted value of Nt as on March 23, 2020, obtained from

Eq. (17) for the first phase. (See the inset in Fig. 2.)

The local slope over 13 points from the lock-down day is

0.16383/day. This slope is equated with model growth

rate using a trial value of Na(0) = 5.0 × 105 (αsps = 0)

to obtain βi = 3.2766 × 10−6. Using the initial condi-

tion Nt = 5687 in Eq. (17) (or solving Eqs. 8-9), we

find that the solution (i) (with αsps = 0) passes through

a few more than 13 points. In the next iterations, we

reduce Na(0) = 4.0× 105 and compute the solution tak-

ing into account the contribution from αsps = 1× 10−3.

The solution (ii) passes through several more data points.

Two further iterations for successively smaller values of

Na(0) = 3.00 × 105 and Na(0) = 2.70 × 105 are used to

obtain the solution marked (iii) and (iv), respectively.

(The corresponding value of αsps = 2.8 × 10−3, and

αsps = 2.8 × 10−3 respectively.) This is shown in Fig.

2. As is clear from the Fig. 2, solutions (ii) and (iii)

are seen to pass through successively larger number of

points. Surprisingly, the solution curve labeled (iv) with

Na(0) = 2.70×105 fits the entire data very closely. (The

overall accuracy of the fit is not less than 99.95%.) Note

the increasing trend of the values of αsps for successive

iterations. This feature is consistent with the steadily in-

creasing testing rates routinely used for proper enforce-

ment of lock-down. This feature is easily incorporated

by parameterizing αsps with time.

Unexpectedly, apart from providing a good fit for the

entire data, the method appears to have a predictive

power, as is clear from the curve (iv) which shows that

the rate of slowing of the total number of infections is de-

creasing. The predicted saturation value is ∼ 2.75× 105.

A near saturation value is likely to be seen by the first

week of June. These results suggest that the reduced

logistic model can be used for obtaining a fit for the

COVID-19 data for other countries as well. The good

fit however is attributable to fact that the total infected
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population Nt does not carry any information about the

recovered and the dead. On the other hand, Eq. (17)

does not include outward transitions (the recovered and

the dead), and the inward quarantine and tracing tran-

sitions. Therefore, the estimated saturation value and

the projected future development should be taken with

some reservation. This will be clear once the full model

equations is analyzed and a fit with COVID-19 data for

the UK is accomplished. Despite these limitations, be-

cause the reduced logistic equation retains basic growth

contributions to the cumulative infected Nt, the fit with

the data appears reasonable.

There are attempts to use logistic equations to get

insights into the dynamics of COVID-19 transmission

[27, 28]. For instance, a five-parameter hierarchical logis-

tic model has been used to fit the observed data to project

the cumulative number of cases for several countries [28].

The parameters entering in the model are determined by

the fitting procedure.

IV. THE FULL MODEL

One of the challenges of compartmental models is

the difficulty associated in making accurate predictions,

mainly attributable to the uncertainties in obtaining

proper estimates of the parameters [13–15, 32, 33]. For

the same reason, forecasting is even more challenging.

Often, several factors may also contribute to the same

parameter, making it difficult for proper interpretation.

In our model however, several parameters in Eqs. (1-

6) are related to measurable quantities. For instance,

the parameters αsps, αspq and αtpt respectively rep-

resent rates of testing positive, rates identified as pre-

symptomatic, and tracing rate of those exposed to the

infected. Similarly, parameters λq, λt, γr and κd are in-

versely related to quarantine duration τq = 1/λq and

time required for tracing τt = 1/λt, time from illness

to recovery τr = 1/γr, and time from illness to death

τd = 1/κd. Though these quantities are country/region-

specific, their values have been estimated in the literature

[5, 6, 8, 32, 33, 35, 36]. Some values are also available in

the public domain [29, 37]. One parameter that is hard

to estimate is the contact transmission rate βi, which has

is already estimated in the context of the reduced logistic

FIG. 3. (Color online) Calibration of parameters for iden-

tifying the relative importance of transitions contributing to

Ni by varying one parameter, keeping all others parameters

fixed at reference values listed in Table I. The dotted curve

is the reference plot for the active infected population Ni cor-

responding to the values in the Table I. (i) Plot of Ni for

a 20% increase in fipiβi, showing a shift and increased peek

height. (ii) Similar effect is observed when αsps is increased

by a factor 2. (iii) Decrease in the peak height when αspq

is increased. (iv) Peak height decreases as κd is increased

by 30%. (v) Similar effect is seen when the recovery rate is

increased.

equation.

TABLE I. Post lock-down period: Select st of parameter val-

ues serving as a reference set. used for identifying the relative

importance of the transition rates. fipi = 0.1.

αsps αspq αtpt fipiβi q1

2.9× 10−3 1.15× 10−2 5.8× 10−3 2.3014× 10−7 0.1

q2 λq λt γr κd

0.1 1/14 1/3 1/42 1/56

A. Calibration of relative strengths of the

parameters

However, the dynamical evolution of a nonlinear cou-

pled set of equations such as Eqs. (1- 6) is necessarily

complex. Therefore, in the absence of appropriate values

relevant for the country/region, a systematic method of

finding optimized values of parameters that fit the data
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under considerations requires calibration of all the pa-

rameters in the model. Following the method developed

recently in the area of plasticity [38–40], we investigate

the influence of the parameters on the growth of Ni to

identify the relative importance of the transition rates.

Since it is a multi-parameter space, we vary each param-

eter, keeping all other parameters fixed at a reference set

of values listed in Table I. The results are illustrated

using plots of the active infected population Ni. The

dotted curve shown in Fig. 3 is the reference curve cor-

responding to the reference set of parameters given in

Table I. As in the case of the reduced logistic model, the

growth of Ni sensitively depends on fipiβi. Even a 20%

increase induces a substantial increase in the peak height

and position, as is clear from the curve (i). A similar

effect is seen when testing rate αsps is increased by a

factor two seen in (ii). In contrast, an increase in quar-

antining rate by a factor two decreases the peak height

marginally, as shown in curve (iii). We have also investi-

gated the dependence of the recovery (γr) and death rate

(κd) parameters on Ni. An increase in the death rate by

30% decreases the peak height marginally as is clear from

(iv). A Similar effect is seen when the recovery rate γr

is increased (see (v)). We have also investigated the in-

fluence of other parameters and find that Ni is relatively

insensitive. Noting that any change in the parameter val-

ues relative to those corresponding to the reference curve

changes the peak position and height, we conclude that

the parameters listed in Table I are close to the optimized

values.

B. Data assimilation and forecast

Having demonstrated that the two direct transition

rates fipiβi and αsps are the dominant contributions to

the growth of Ni and having assessed the relative impor-

tance of other transitions, we now consider the solution

of the full model Eqs. (1- 6) with a view to obtaining

the best possible fit with the COVID-19 United King-

dom data. Attempt will also be made to forecast the

future progression of the disease.

Recall that the spread of coronavirus in the UK falls

into two phases of development. During the first phase

prior to the lock-down on March 23, 2020, there were no

FIG. 4. (a) Inset: Plot of the total infected population (con-

tinuous curve), along with the UK data • from February 27,

2020 till March 31. Also shown is the active infected Ni

(dotted curve). Post Lock-down period: Plots of the total

infected population (curve marked i) along with the corre-

sponding data for the UK • from March 23, 2020. Curve

marked (ii) shows the active infected. (b) Plots of the in-

fected (i), quarantined (ii), traced (iii), recovered (iv) and

deceased (v), starting from March 23, 2020. The values of

αsps = 2.9× 10−3, αspq = 1.15× 10−2 and αtpt = 5.8× 10−3

Other parameter values are the same as given in Table I.

constraints and the disease transmission was free. After

the lock-down date, the transmission is restricted. There-

fore, the model parameters and the initial conditions rel-

evant for the two phases are different. As in the reduced

model, we assume that the dynamics of the disease trans-

mission is limited by the accessible population Na(0) and

not by the total population Ns(0), i.e., Na(0) ≈ FNs(0).

Consider the period between January 31 and March 23

corresponding to the initial phase. For further analysis,
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it is useful to begin with a few observations. First, re-

call that our analysis in the previous Section showed that

the parameters corresponding to the reference curve Ni

(dotted curve) in Fig. 3 are close to the optimized values

(listed in Table I). In addition, the parameters fipiβi

and αsps are different in the two phases. Second, prior

to the lock-down date, there would be no quarantining

and tracing procedures. Considering this, it is adequate

to solve Eqs. (1,2,5,6) for the first phase (by ignoring

delayed inward transitions into I). Furthermore, in the

first few days of the development of the disease, we may

assume that the total number of the infected cases Nt is

equal to the active infections Ni. Finally, since, we plan

to fit the model solution with the UK data [29], publicly

available coronavirus data for the total number infected,

active infected, recovered and the dead are useful in fur-

ther optimizing the parameters. Unfortunately however,

only the total numbers of the infected and the dead are

made available in the UK.

Now we are in a position to solve the relevant equa-

tions for the first phase. As discussed in Section III B,

we use February 27, 2020 as the starting day for the first

phase evolution of Eqs. (1,2,5,6). The local growth rate

(on the starting day) over 12 days obtained from the log-

linear plot of the cumulative infected cases for the UK is

equated with the model growth rate given by fipiβiNa(0)

to fix βi = 6.118 × 10−6 by using the initial value of

Na(0) = 4.0 × 105. Further, using the initial conditions

for Nt(0) = Ni(0) = 13, Nr(0) = 0 and Nd(0) = 0, we

solve Eqs. (1,2,5,6) from February 27 to March 23 by

choosing a value for αsps that gives the best fit to the

data for the period. (Here, αsps = 7.2 × 10−7 and the

values of other relevant parameters are those listed Ta-

ble .I.) The model-predicted total infected population

Nt (continuous curve) along with the data points (•) is

shown in the inset of Fig. 4. Clearly, the match is seen

to be very good. Also shown is a plot of active infections

Ni (dotted curve). Equations (1,2,5,6) also provide the

values of Ni, Nr and Nd on March 23, 2020. These are

Ni = 5407, Nr = 400, Nd = 285.

Now we consider the solution of Eqs. (1- 6) in an

effort to obtain the best fit for the UK data for the pe-

riod starting from March 23, 2020. Here again, we first

find the growth rate from the data and equate it with

the model growth rate. Using the 13-point slope in the

log-linear plot, we get the rate of 0.1638/day. Equating

this with fipiβiNa(0) and using Na(0) = 4× 105 we get

βi = 2.3014 × 10−6. The initial values used for evolv-

ing Eqs. (1- 6) are Ni(0) = 5407, Nq(0) = 0, Nt(0) =

0, Nr(0) = 0, Nd(0) = 0. (The reason for using zero ini-

tial conditions for Nq(0), Nt(0), Nr(0) and Nd(0) is that

the initial values would not be recorded during the first

phase. However, using the values obtained from the first

phase for Nr and Nd makes little difference. Note that

Ni(0) = 5407 is smaller than the total number of infected

cases. Again, using Ni(0) = 5687 does not alter the re-

sults.) The values of the parameters are those listed in

Table I. Figure 4(a) shows plots of the calculated total

infected population Nt and and the total infected cases

in the UK (•). Clearly, the fit is very good. Also shown

is the active infected Ni labeled (ii). To the best of our

knowledge, we are not aware of any model that fits the

COVID-19 data over such a long periods (with the in-

tention of forecasting the future) for any country as has

been done here, although there have been some efforts to

fit data for initial periods [8, 21, 22, 24, 35, 41],

More importantly, the plot of model predicted active

infected population Ni (ii) shows a peak around May

15. Subsequent decrease in Ni is seen to be slow. At

this rate of slowing-down, the model predicts that a near

saturation value (of 3.8× 105) would only be reached by

the beginning of August. Strictly, the end time of the

epidemic, i.e., with no new infected cases, appears to be

even farther. Further, the model can be used to fit the

COVID-19 data for other countries and also to forecast

the progression of the disease.

Within the scope of the model, the slowing down pace

is captured by the relative magnitudes of the contact

transmission rate parameter βi before and after the lock-

down date. The value of βi prior to the lock-down pe-

riod (βi = 6.118 × 10−6) is just 2.65 times that during

the lock-down period (βi = 2.3014× 10−6). These num-

bers have been obtained purely fitting the initial growth

rate for the phases as explained earlier. However, an in-

dependent estimate obtained for the Wuhan case shows

that this factor should be close to 5 [6]. If we take the

small ration of 2.65 seriously (which is questionable), it

might reflect that the lock-down efforts have not been

fully effective. However, similar independent estimate of

the contact rate transmission parameter for the uncon-
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strained and constrained growths is not available for the

UK.

V. SUMMARY, DISCUSSION AND

CONCLUSIONS

Recent literature has focused on abstracting the effect

of various types of interventions through epidemiological

models to make projections of how the disease progresses

under different conditions. Recall that one limitation

particularly applicable to the deterministic compartmen-

tal models is the difficulty in getting proper estimates of

the parameters, particularly when the number of com-

partments is large. In this respect, simpler models with

fewer compartments have an advantage. However, sev-

eral factors may contribute to a single parameter and

therefore the ability of such parameters to represent the

mitigating efficacy of interventions appears limited. Fur-

thermore, the number of parameters in such models is not

small, making numerical solution often the only choice.

Therefore, any method - whether mathematical or con-

ceptual - which simplifies analysis and easy interpretation

is welcome.

Motivated by this, we have introduced the concept of

accessible population for transmission of the virus, which

is taken to be a small fraction of the total population.

Indeed, the effect of lock-down interevention is evident

in all counties where the disease has been controlled or

restricted. At the mathematical level, we introduce a de-

coupling scheme to aid mathematical analysis that also

helps easy interpretation. The model equations have

been devised in such a way that the susceptible and active

infected populations form the main populations. The de-

coupling is effected by dropping all inward and outward

transitions excepting the direct transitions (fipiβiNa(0)

and αspsNa(0)). Because, all outward transitions from

I are ignored under this decoupling, the active infected

population Ni takes the role of the cumulative infected

population Nt. The simplicity of the reduced logistic

equation (11) allows easy identification of the growth and

inhibiting factors in terms of the dominant growth factors

(direct inwards transitions or parameters). Surprisingly,

this simple equation provides a good fit to the reported

cumulative number of infections for United Kingdom, as

is clear in Fig. 2. The fits for the period till March 23

and thereafter are clearly good.

The full model Eqs. (1- 6) contain several param-

eters whose range has been estimated in a number of

studies[8, 21, 22, 24, 35, 41]. However, when it comes

to explaining or capturing the growth characteristics for

a specific country, optimized parameters suitable for the

situation are required. Following [38–40], we have deter-

mined the relative importance of the various transition

rates (equivalently the associated parameters) subject to

the constraint that the parameter values provide the best

fit for the given data. In this work, we have made use of

publicly available data on the total infected cases for the

United Kingdom.

Figure 4(a) shows the fit obtained for the period till

March 23, 2020 (shown in the inset) and for the period

beyond. Clearly, the fit is seen to be very good for both

the initial period till the lock-down date and the period

thereafter. Comparing Fig. 4(a) with Fig. 2 for the

reduced logistic map, we see that while the fit in both

cases is equally good, the projections of the future evo-

lutions are significantly different. The saturation value

predicted by the full model (shown in Fig. 4(a) is close to

3.8× 105, whereas that predicted by the reduced logistic

equation in Fig. 2 is ∼ 2.75 × 105. Conventionally, the

end time of epidemic is defined as the day on which no

new infections are reported. However, approach to the

end point is generally slow. For this reason, we use a

working definition of the end time of the epidemic as the

time required to reach 5% of the saturation level. Then,

the end time of the epidemic predicted by the full model

turns out be late July or early August (see Fig. 4a). In

contrast, the end time for the epidemic predicted by the

reduced logistic model is late June. Clearly, the results

obtained from the full model emphasize the limitations

of the reduced model. A natural question is: what are

the underlying causes?

The fact that the reduced logistic model provides a

good fit also means that the major contributing factors

for the growth of infection are included in Eq. (2). To

see this, consider Eqs. (1-6). The growth of Ni(t) has

two types of inward transitions, namely, direct and de-

layed. Note that the direct transition from S to I given

by fipiβiNs(t) controls the growth rate of Ni. Because

of the presence of Ns, the growth rate parameter can be

large, at least during the initial period, and therefore is
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a fast mode [42], meaning that the growth rate of Ni is

faster than the growth of the other populations. This is

also physically clear. The other transition αspsNs into

I contributes only to the pre-exponential factor (see Eq.

16). Now, consider the delayed inward transitions to I

coming from Q and T . These transitions are smaller in

magnitude and contribute to sub-exponential growth of

Ni in time. More importantly, the turning point in Ni

is due to a competition between the growth factors (all

inward transitions) and the outward transitions (recov-

ery and fatality terms). Further, since the time evolution

beyond the turning point is controlled by outward tran-

sitions, the approach towards the state of no infections

or the saturation value of Nt is slow. These features are

clear from Fig. 4(a). Note that the fit till May 25 is

just beyond the turn point of Ni and it has a long way

to evolve to the end point of the epidemic. Therefore,

it would be interesting to see if the long term prediction

of the model would agree with further evolution of the

pandemic assuming the present lock-down continues.

These arguments explain two features of the data fit

obtained using the reduced logistic equation. Because the

total number of infected cases Nt does not have any in-

formation about the recovered and deceased but has the

dominant growth contributions, the good fit is not sur-

prising. On the other hand, growth dynamics beyond the

turning point (of Ni) is controlled by a balance between

growth factors (all inward transitions) and inhibiting fac-

tors (the rate of recovery and dead). However, these

competing time scales are absent in the logistic equation.

Therefore, the projected saturation value of Nt and the

end time of the epidemic is not well captured.

In conclusion, the simple compartmental model not

only provides a good fit to the United Kingdom caron-

avirus data but also makes concrete long term predictions

for the future. We believe that these results have been

made possible due to the reductive approach adopted

here.

Appendix

Recall the equation governing the cumulative infected

population Ns(t) from Eqs. (8-9) is given by

Ṅt = c+ bNt − aN2
t , (A.1)

a = fipiβi, (A.2)

b = fipiβiNs(0)− αsps, (A.3)

c = αspsNs(0). (A.4)

Equation (A.1) has the well known form of the logistic

equation extensively studied in the context of population

dynamics. However, the parameters a, b, and c have a

well defined interpretation.

Now consider the solution of Eq. (A.1). Let α1,2 =
b±
√
b2+4ac
2a be the roots of the quadratic equation. Then,

in terms of a, b and c, the two roots can be written as

α1 ∼ b
a = Ns(0) and α2 ∼ −ac/b < 0, which is small

compared to b. Then the solution is given by

Nt =
Aα1e

a(α1−α2)t − α2

Aea(α1−α2)t − 1
=
Aα1e

bt − α2

Aebt − 1
. (A.5)

The constant A is given by

A =
Nt(0)− α2

Nt(0)− α1
. (A.6)

Then, we have

Nt =

(
b
aNit0) + c

a

)
e bt + c

a + ac
b(

Nt(0) + ac
b

)
e bt −Nt(0) + b

a

. (A.7)

For short times, Nt tends to (Nt(0) + c
b

)
e bt (since the

denominator is dominated by b/a = Ns(0)), consistent

with Eq. (16), the short time solution. For long times

however, Nt tend to b/a = Ns(0), the total population.
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