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Abstract

Malaria, predominantly caused by Plasmodium falciparum, poses one of largest and most durable health threats
in the world. Previously, simplistic regression-based models have been created to characterize malaria infections,
though these models often only include a couple genetic factors. Specifically, the Baker et al., 2005 model uses
two types of particular repeats in histidine-rich protein 2 (PfHRP2) to assert P. falciparum infection [1], though
the efficacy of this model has waned over recent years due to genetic mutations in the parasite.
In this work, we use a dataset of 406 P. falciparum PfHRP2 genetic sequences collected in Ethiopia and derived a
larger set of motif repeat matches for use in generating a series of diagnostic machine learning models. Here we
show that the usage of additional and different motif repeats proves effective in predicting infection. Furthermore,
we use machine learning model explanability methods to highlight which of the repeat types are most important,
thereby suggesting potential targets for future versions of rapid diagnostic tests.
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1 Introduction

Malaria infects over 228 million people and resulted in 405,000 deaths in 2018 [2]. Genomics is beginning to bear fruit in abatement
of malaria but presents analytical challenges due to the complexity of the disease and its components (human, Plasmodium spp.,
and vector mosquitos).
In most developing countries, the detection and diagnosis of malaria infections is often performed using simple rapid diagnostic tests
(RDTs). Specifically, these tests are lateral flow immuno-chromatographic antigen detection tests that are similar in modality to
common at-home pregnancy tests. These tests use dye-labeled antibodies to bind to a particular parasite antigen and display a
line on a test strip if the antibodies bind to the antigen of interest [3]. If patients are properly diagnosed, P. falciparum infections
are can treated using the drug artemisinin. Unfortunately, the efficacy of RDTs and artemisinin treatment are both waning. Our
purpose is to use large datasets and machine learning methods to address the shortcomings in malaria diagnosis.
In 2005, Baker et al. published a simple linear regression-based model that purports to predict the detection sensitivity of RDTs
using a small fraction of genetic sequence variants that code for histidine-rich protein 2 (PfHRP2) [1]. While with the data available
at the time, the accuracy of the Baker model was high (87.5%), the explanation ability of the RDT sensitivity was low (R2 = 0.353).
Enthusiasm for the Baker model has since diminished. In 2010, Baker et al. published a report in which they concluded that they
can no longer correlate sequence variation and RDT failure with their model [4].
Nevertheless, there is no alternative to the Baker model and it is still in use. In this study, our hypothesis is that a model for
understanding the relationship between RDT and sequence variation can be improved by using a larger set of genetic sequence
variants. In this study, we analyze a collection of genetic data and metadata from 406 P. falciparum infections in Ethiopia with the
Baker model along with a sweep of other machine learning models that we generate.
Beyond simply training a better model using more sophisticated algorithms, our research focus is to allow for interpretable insights
of the machine learning models to be derived from the “black box”. We have shown previous success in AI-driven explanations of
gene expression underlying drug resistant strains of Plasmodium falciparum [5, 6]. We apply this model interpretability here to
identify which types of histidine-rich repeats in PfHRP2 are most indicative of malaria infection.
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2 Materials and Methods

2.1 Data Collection

Blood samples and demographic data were collected from suspected malaria patients greater than five years of age in various
health clinics during both the low and high transmission seasons in different regions of Assosa, Ethiopia. Microscopy and rapid
diagnostic testing were performed within the health clinics, and drops of blood spotted on Whatman 3MM filter paper were kept in
sealed pouches for later analyses. CareStartTM malaria combination RDTs (lot code 18H61 from Access Bio Ethiopia) were used to
diagnose P. falciparum and to evaluate their performance against microscopy as a reference test.
The P. falciparum DNA concentration in dried blood spot samples was analyzed using real-time quantitative PCR (RT-PCR). The
P. falciparum DNA was extracted using phosphate buffered saline, Saponin, and Chelex [7] and confirmed P. falciparum positive
samples as those whose RT-PCR values were less than or equal to 37 [8]. The null hypothesis was that RDT testing and the
detection of P. falciparum by RT-PCR will have a strong correlation (e.g., positive RDT samples will lead to positive RT-PCR and
negative RDT samples will lead to negative RT-PCR). However, early findings have shown incongruence between the RDT results
and RT-PCR [9].
Using the primers listed in Table 1, two amplicons were sequenced, including a 600 to 960-bp fragment for Pfhrp2 Exon 2 [1] and a
294 to 552-bp fragment for Pfhrp3 Exon 2 [4]. Polymerase Chain Reaction (PCR) conditions for Pfhrp2 Exon 2 and Pfhrp3 Exon 2
are shown in Table 1. The DNA amplicon quality was observed by means of agarose gel electrophoresis and the bands visualized in a
UV transilluminator. PCR products were cleaned with 10 units of Exonuclease I (Thermo Scientific) and 0.5 units of shrimp alkaline
phosphatase (Affymetrix) at 37 ◦C for 1 h followed by a 15 min incubation at 65 ◦C to deactivate the enzymes. PCR products were
sequenced with ABI BigDye Terminator v3.1 (Thermo Fisher Scientific) following the manufacturer’s protocol using the conditions
of (1) 95 ◦C for 10 s, (2) 95 ◦C for 10 s, (3) 51 ◦C for 5 s, (4) 60 ◦C for 4 min, and (5) repeat steps 2-4 for 39 more cycles. The
samples were cleaned using Sephadex G-50 (Sigma-Aldrich) medium in a filter plate and centrifuged in a vacufuge to decant.
The samples were reconstituted with Hi-Di Formamide (Thermo Fisher Scientific) and the plates were placed on the ABI 3130
Sequencer. Sequence trace files from all samples and repeat samples were imported into CodonCode Aligner (CodonCode Corporation).
The bases were called for each sample. The ends of the sequences were trimmed by the application when possible and manually
when necessary. All sequences were examined and evaluated on both the forward and reverse strands, with manual base corrections
and manual base calls occurring when necessary.

Gene Primer Direction Sequence ’5—–3’ PCR Program
Pfhrp2 Exon2 pfhrp2_ex2_F_Parr Forward ATTCCGCATTTAATAATAACTTGTGTAGC 95◦C×15 min; 40 cycles of 94◦C×1 min,

59◦C×1 min, 72◦C×1 min; 72◦C×10 minpfhrp2_ex2_R_Parr Reverse ATGGCGTAGGCAATGTGTGG

Table 1: PCR Conditions and Primer Sequences from Parr et al., 2018 [10].

2.2 Data Preparation

All Pfhrp2 exon 2 nucleotide sequences were exported from CodonCode Aligner (CodonCode Corporation) and individually pasted
into the ExPASy Translate tool (Swiss Institute of Bioinformatics Resource Portal). Both forward and reverse DNA strands were
translated using the standard NCBI genetic code. The six reading frames of the amino acid sequence produced were examined.
For each nucleotide sequence, the amino acid sequence presenting the fewest number of stop codons was selected for further analysis.
If two or more of the reading frames appeared to produce sequences with an equally minimal number of stop codons, the reading
frame that produced a sequence exhibiting the previously recognized pattern in prior sequences was selected for further analysis.
While most of the sequences had a clear, single best translation, 11 of the sequences required further editing. In these 11 sequences,
the sequence portion before or after the stop codon which exhibited a pattern similar to prior sequences was used in analysis, while
the portion of the sequence preceding or following the stop codon, which did not exhibit the recognized pattern, was discarded.
Nucleotide sequence input into the ExPASy Translate Tool (Swiss Institute of Bioinformatics Resource Portal) was repeated and
verified for accuracy of amino acid sequences. The verified sequences were compiled.

2.2.1 Motif Search

A motif search was performed across 24 different types of histidine-based repeats. These repeat types, listed in Table 3, were
originally defined by Baker et al, (2010) [4]. This search was completed using the motif.find() function in the bio3d package in
R [11]. Specifically, each amino acid sequence was searched for each of the 24 repeat motifs and the count of matches was reported
back into the data. See Table 2. The breakdown of match frequencies by location is shown in Figure 4.

id dna_sequence aa_sequence Type_1 Type_2 . . . Type_24 PfHRP2
HAss14 AATAAGAGAT. . . NKRLLHETQA. . . 9 9 . . . 0 1
HAss42 ATAAGAGATT. . . KRLLHETQAH. . . 0 0 . . . 0 2
. . . . . . . . . . . . . . . . . . . . . . . .
LShr5 TATTACACGA. . . LHETQAHVDD. . . 0 0 . . . 0 1

Table 2: Example data format with counts of Types 1 through 24 matches in the amino acid sequence.
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Total no. of samples collected=812
(406 high transmission, 406 low transmission)

Total no. examined via microscopy=812
(406 high transmission, 406 low transmission)

Total no. examined via qPCR=498
(406 high tranmission, 93 low transmission)

Pf + samples=150 Pf - samples=662
CT value <34 (Pf +)

173 samples
CT value >37 (Pf -) 

332 samples
CT value 35-37 (Pf -)

52 samples

PCR/ gel electrophoresis
on pfHRP2 exon 2

Bands displayed 
for Pfhrp2 exon 2

191

Bands not 
displayed for 
Pfhrp2 exon 2

34

DNA sequencing

Successful DNA 
sequences

102

Unsuccessful DNA 
sequences

89

Translation

Successful amino 
acid sequences

102

Used for analysis

Figure 1: Breakdown of P. falciparum samples used in this study.

2.3 Machine Learning

In this work, three machine learning experiments were created on different sets of features: 1.) using only the types that are in the
original Baker model (Types 2 and 7), 2.) using all motif repeat type counts (Types 1 through 24), and 3.) using only the features
found to be important in the experiment with all motif repeat types (Types 3, 5, and 10). Note that the PfHRP2 column in Table 2
is treated as the dependent variable in which "1" represents a positive case of malaria and "2" represents a negative case of malaria.
We used the Microsoft Azure Machine Learning Service [12] as the tracking platform for retaining model performance metrics as the
various models were generated. For this use case, multiple machine learning models were trained using various scaling techniques
and algorithms. Scaling and normalization methods are shown in Table 5. We then created two ensemble models of the individual
models using stack ensemble and voting ensemble methods.
The Microsoft AutoML package [13] allows for the parallel creation and testing of various models, fitting based on a primary metric.
For this use case, models were trained using Decision Tree, Elastic Net, Extreme Random Tree, Gradient Boosting, Lasso Lars,
LightGBM, RandomForest, and Stochastic Gradient Decent algorithms along with various scaling methods from Maximum Absolute
Scaler, Min/Max Scaler, Principal Component Analysis, Robust Scaler, Sparse Normalizer, Standard Scale Wrapper, Truncated
Singular Value Decomposition Wrapper (as defined in Table 5). All of the machine learning algorithms are from the scikit-learn
package [14] except for LightGBM, which is from the LightGBM package [15]. The settings for the model sweep are defined in
Table 4.
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For the experiment using only Types 2 and 7, 35 models were trained. For the experiment using Types 1 through 24, 35 models
were trained. For the experiments using Types 3, 5, and 10, 31 models were trained.
Once the individual models were trained, two ensemble models (voting ensemble and stack ensemble) were then created and tested
for each experiment. The voting ensemble method makes a prediction based on the weighted average of the previous models’
predicted classification outputs whereas the stacking ensemble method combines the previous models and trains a meta-model
using the elastic net algorithm based on the output from the previous models. The model selection method used was the Caruana
ensemble selection algorithm [17].

Figure 2: Analysis process flow.

Type Sequence PfHRP2 PfHRP3
1 AHHAHHVAD + +
2 AHHAHHAAD + +
3 AHHAHHAAY + -
4 AHH + +
5 AHHAHHASD + -
6 AHHATD + -
7 AHHAAD + +
8 AHHAAY + -
9 AAY + -
10 AHHAAAHHATD + -
11 AHN + -
12 AHHAAAHHEAATH + -
13 AHHASD + -
14 AHHAHHATD + -
15 AHHAHHAAN - +
16 AHHAAN - +
17 AHHDG - +
18 AHHDD - +
19 AHHAA + -
20 SHHDD + +
21 AHHAHHATY + -
22 AHHAHHAGD + -
23 ARHAAD + -
24 AHHTHHAAD + -

Table 3: PfHRP2 and PFHRP3 repeat motif types as defined by Baker et al., 2010 [4].
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Parameter Value
Task Classification
Training Time (hours) 3
Primary Metric Precision score weighted
Validation type Monte Carlo cross validation

Table 4: Parameter settings for the model searches.

Scaling and Normalization Description
StandardScaleWrapper Standardize features by removing the mean

and scaling to unit variance
MinMaxScalar Transforms features by scaling each feature

by that column’s minimum and maximum
MaxAbsScaler Scale each feature by its maximum absolute value
RobustScalar This scales features by their quantile range

PCA
Linear dimensionality reduction using
singular value decomposition of the data to
project it to a lower dimensional space

TruncatedSVDWrapper

This transformer performs linear dimensionality
reduction by means of truncated singular value
decomposition.
Contrary to PCA, this estimator does not center the
data before computing the singular value decomposition.
This means it can efficiently work with sparse matrices.

SparseNormalizer
Each sample (each record of the data) with
at least one non-zero component is re-scaled independently
of other samples so that its norm (L1 or L2) equals one

Table 5: Scaling function options in the machine learning model search [16].
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3 Results

Metrics from the three experiments’ machine learning models (one each for the best ensemble model and a best singular model) are
reported in Table 6. The precision-recall curves for these models are shown in Table 8 and the receiver operating characteristic
(ROC) curves are shown in Table 7. The ideal scenario is shown as a dash-dot-dash (-·-) line. The best model overall is the Extreme
Random Trees model using only Types 3, 5, and 10. This was determined by looking at the overall model metrics and the generated
curves. Note that many models were generated for each experiment, some of which has equal overall performed. All model runs can
be found in the Supplementary Data.

Types Algorithm Precision Recall Accuracy AUC F1
Types 2 and 7 Only Voting Ensemble 0.73129 0.68571 0.68571 0.65833 0.64136

Extreme Random Trees 0.73129 0.68571 0.68571 0.65833 0.64136
Types 1 through 24 Voting Ensemble 0.80245 0.82857 0.82857 0.62500 0.79982

Extreme Random Trees 0.80245 0.82857 0.82857 0.61667 0.79982
Types 3, 5, and 10 Voting Ensemble 0.83816 0.85714 0.85714 0.70000 0.82839

Extreme Random Trees 0.83816 0.85714 0.85714 0.70000 0.82839

Table 6: Model metrics for the best singular model and voting ensemble model for each experiment.
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Table 7: ROC Curves for the best singular model and voting ensemble model for each experiment.
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Table 8: Precision-Recall Curves for the best singular model and voting ensemble model for each experiment.
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Feature importance

Feature importances were calculated using mimic-based model explanation of the voting ensemble model for Types 1 through
24. The mimic explainer works by training global surrogate models to mimic blackbox model [18]. The surrogate model is an
interpretable model, trained to approximate the predictions of a black box model as accurately as possible [19].
In the Voting Ensemble model using Types 1 through 24, Types 3, 5, and 10 were found to have non-zero importance. See Figure 3.

Global Importance Local Importance

Type 3 0.15547
Min: -0.22644
Average: -4.14E-19
Std. Dev: 0.16433
Max: 0.22644

Type 5 0.48787
Min: -0.60532
Average: -1.66E-18
Std. Dev: 0.49919
Max: 0.60533

Type 10 0.28736
Min: -0.48132
Average: -2.49E-18
Std. Dev: 0.31516
Max: 0.48132

Table 9: Global and local feature importances of all features with non-zero importance (Types 3, 5, and 10) from the Voting
Ensemble model using Types 1 through 24.

Figure 3: Local feature importance of the top 5 features. Note that only the top 3 have non-zero importances from the Voting
Ensemble model using Types 1 through 24. Class "1" (orange dots) represents positive cases and class "2" (blue dots) represents
negative cases of malaria.

3.1 Repeat Type Prevalence

As shown in Figure 4 and Table 10, many of the repeat types described by Baker et al., 2010 [4] (Table 3) are represented in
the sequences analyzed in this study. Specifically, Types 1-10, 12-14, and 19 were found among these isolates. This is in general
agreement to a similar report by Willie et al., 2018 [20] using samples collected from Papua New Guinea. They report that Types 1,
2, 6, 7, and 12 were present in almost all (≥ 89%) sequences, Types 3, 5, 8, and 10 were present in most (≥ 56%) sequences,
and Type 4, 13, and 19 were seen in ≤ 33% of sequences. In contrast, we see a higher prevalence of Types 4 and 19 and a lower
prevalence of Type 12 than in the previous study.
In another study by Bharti et al., 2016 [21] that used samples collected from multiple sites in India reported that Types 1, 2, 7, and
12 were seen in 100% of their sequences. However, in our sequences from Ethiopia, we see multiple examples where these repeats
are not present, especially Type 12.
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Figure 4: Type Frequencies by Location.

Type Asosa Bambasi Kurmuk Sherkole Overall
1 85.71% 97.06% 84.62% 97.92% 95.10%
2 85.71% 97.06% 84.62% 91.67% 92.16%
3 57.14% 61.76% 69.23% 66.67% 64.71%
4 100.00% 100.00% 100.00% 100.00% 100.00%
5 28.57% 50.00% 61.54% 62.50% 55.88%
6 71.43% 97.06% 84.62% 93.75% 92.16%
7 85.71% 100.00% 92.31% 93.75% 95.10%
8 71.43% 82.35% 76.92% 77.08% 78.43%
9 71.43% 82.35% 76.92% 77.08% 78.43%
10 57.14% 67.65% 53.85% 77.08% 69.61%
11 0.00% 0.00% 0.00% 0.00% 0.00%
12 14.29% 8.82% 38.46% 25.00% 20.59%
13 28.57% 55.88% 61.54% 62.50% 57.84%
14 0.00% 8.82% 7.69% 10.42% 8.82%
15 0.00% 0.00% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 0.00%
17 0.00% 0.00% 0.00% 0.00% 0.00%
18 0.00% 0.00% 0.00% 0.00% 0.00%
19 85.71% 100.00% 92.31% 97.92% 97.06%
20 0.00% 0.00% 0.00% 0.00% 0.00%
21 0.00% 0.00% 0.00% 0.00% 0.00%
22 0.00% 0.00% 0.00% 0.00% 0.00%
23 0.00% 0.00% 0.00% 0.00% 0.00%
24 0.00% 0.00% 0.00% 0.00% 0.00%

Table 10: Overall prevalence of each repeat type by location. Values represent the percentage of samples in which the repeat type
was found.
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4 Discussion

Here we show the utility of machine learning in the identification of important factors in malaria diagnosis. Previous modeling by
Baker et al., 2005 [1] had shown that the parasitic infection can be diagnosed by looking at the prevalence of particular types of
amino acid repeats. The original regression-based model is no longer valid and, in this study, we show that the modeling of Types
2 and 7 using more sophisticated machine learning algorithms fail to produce a reliable model. However, the usage of Types 1
through 24 proves to make effective models to characterize malaria infections in our dataset. Furthermore, the usage of machine
learning model explanability helps to pinpoint particular features of interest. In this case, Types 3, 5 and 10 reveal better diagnostic
sensitivity for these malaria isolates collected from regions of Ethiopia.
This work posits the idea that RDTs can be revised to accommodate the genetic differences seen in today’s malaria infections.
Future versions of RDTs may be improved to targets these variants identified in this work to improve sensitivity. While more work
is to be done to empirically validate these findings, this in silico simulation may direct where to take experimental testing next.
Furthermore, training machine learning models on sets of malaria sequences from other areas such as Papua New Guinea, India, or
other areas of Africa may reveal that different repeats are important in those areas, likely suggesting the RDTs may need to be
region-specific due to variations in P. falciparum across the globe.

5 Supplementary Materials

All data, scripts, and model outputs are hosted on GitHub at: github.com/colbyford/pfHRP_MLModel
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