
 

 

Title 
 
Lessons from movement ecology for the return to work: modeling contacts and the spread of COVID-19 
 
 

Authors 
 
Allison K. Shaw1*, Lauren A. White2, Matthew Michalska-Smith3,4, Elizabeth T. Borer1, Meggan E. 
Craft3, Eric W. Seabloom1, Emilie Snell-Rood1, Michael Travisano1,5 
 
1. Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA 
2. National Socio-Environmental Synthesis Center, Annapolis, Maryland, USA 
3. Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA 
4. Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA 
5. BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA 
 
* corresponding author: ashaw@umn.edu 
 
 
 

Abstract 
 
Human behavior (movement, social contacts) plays a central role in the spread of pathogens like 
SARS-CoV-2. The rapid spread of SARS-CoV-2 was driven by global human movement, and recent 
lockdown measures aim to localize movement and contact in order to slow spread. Thus, movement and 
contact patterns need to be explicitly considered when making reopening decisions, especially regarding 
return to work. Here, as a case study, we consider the initial stages of resuming research at a large 
research university, using approaches from movement ecology and contact network epidemiology. First, 
we develop a dynamical pathogen model describing movement between home and work; we show that 
limiting social contact, via reduced people or reduced time in the workplace are fairly equivalent 
strategies to slow pathogen spread. Second, we develop a model based on spatial contact patterns within a 
specific office and lab building on campus; we show that restricting on-campus activities to labs (rather 
than labs and offices) could dramatically alter (modularize) contact network structure and thus, potentially 
reduce relative risk of pathogen spread. Here we argue that explicitly accounting for human movement 
and contact behavior in the workplace can provide additional insights to be used in conjunction with 
ongoing public health efforts.  
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Introduction 
 

The global connectivity of modern society has facilitated the rapid spread of SARS-CoV-2 
around the globe (Kraemer et al 2020). The rate at which any pathogen spreads depends critically on host 
movement behavior (Keeling and Rohani, 2008). Indeed, estimates of key epidemiological parameters 
like the basic reproduction number (R0) are highly variable in part because they are context-specific and 
are a function of behaviors like movement and heterogenous contact structure (Keeling and Grenfell 
2000; Hébert-Dufresne et al. 2020). Although most cases of COVID-19 (the disease caused by 
SARS-CoV-2) seem to be mild or even asymptomatic (Mizoumoto et al. 2020; Wu et al 2020), the sheer 
number of cases to date means that limited personnel, hospital beds and ICU equipment can be rapidly 
overwhelmed, increasing mortality (Moghadas et al 2020; IHME 2020-Mar). Thus, continuing our normal 
movement patterns, unmitigated, is not a viable strategy. Without a vaccine or widespread immunity to 
SARS-CoV-2, our best defense to slow pathogen spread has been restricting movement and contacts 
through physical distancing (Lewnard and Lo 2020) and testing for SARS-CoV-2 when available (Balilla 
2020). Lockdown measures have drastically reduced human movement (Clark 2020, Klein et al 2020) and 
consequently have reduced the effective reproduction number, Re (Zhang et al 2020 Science). However, 
such measures have had a shocking impact on the economy, so individual regions are considering best 
practices for the reopening of businesses, schools, and other places where people gather (e.g.,Viner et al 
2020). Decisions regarding next steps can be informed by recognizing that not all movement patterns nor 
all contact behaviors are equal in terms of pathogen spread. 

 
Concepts from movement ecology and contact network epidemiology can provide helpful 

frameworks for understanding the nuanced interactions between movement, contacts and infection. 
Increased movement does not always mean increased transmission risk (Binning et al. 2017); for 
example, movement that either takes individuals away from infected areas or reduces contact with 
infected conspecifics can reduce transmission risk (migratory escape; Loehle 1995, Shaw and Binning 
2020). Increased movement can even increase some aspects of infection risk while decreasing others, 
simultaneously (Shaw et al. 2018). Thus, explicitly considering how movement relates to transmission 
can help us understand what effect different movement patterns have on infection dynamics (Boulinier et 
al. 2016; Daversa et al. 2017). Similarly, from disease ecology and contact network epidemiology, we 
know that structured contacts among individuals in a population have different effects on disease spread 
than random contacts. For example, long-range connections in otherwise locally-connected small world 
networks can have dramatic effects on disease spread at a population level (Keeling and Eames 2005). 
 

Individual movement across multiple scales — from occasional global movements to 
smaller-scale daily patterns — is critical for shaping contact and thus the spread of pathogens. To date, 
models of SARS-CoV-2/COVID-19 spread have focused on comparing patterns of spread across 
countries, states and counties (Alteri et al 2020, Woody et al 2020). Indeed, a plethora of epidemiological 
models have proven useful in generating recommendations for reducing the virus spread rate, from 
understanding the role of contact-tracing and society-wide physical distancing (Kissler et al 2020, Koo et 
al 2020), to travel restrictions, and region-wide lockdowns (e.g., Chinazzi et al 2020, Kucharski et al 
2020, Prem et al 2020, IHME 2020-Apr). However, few if any offer guidance at scales as fine as 
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individual workplaces, despite the fact that this local scale is where individual decisions are made and 
where most transmission occurs. Furthermore, apart from time at home, the most predictable component 
of many people’s days is time spent in the workplace. Thus, knowledge of work commute patterns, 
contact networks of individuals in the workplace, and related workplace-specific factors could help 
mitigate pathogen spread during the period that total population immunity remains low. In many cases, 
the movement and context involved in going to work and back is not random but involves regularity in 
timing, location, and encounters with other individuals along the way (e.g., on public transport). Here, we 
consider the implications for mitigating COVID-19 transmission using a case study of the initial stages of 
resuming research at a large research university. 

 
Implicit in this analysis is that COVID-19 is currently spreading in local communities around the 

world, and every individual in a workplace is part of a home community. Even under many weeks of 
extreme restrictions with only society’s most essential employees present in workplaces (i.e., Stay at 
Home orders), the number of new cases have continued to rise in most locations. For example, even after 
three weeks of a Stay at Home order and extreme physical distancing in Minnesota, a state with moderate 
spread and commendable compliance with the order, the number of new cases confirmed each day had 
tripled (MN Department of Health 2020). With community spread of this pathogen, it is unrealistic to 
expect zero workplace infection or widespread virus containment primarily through workplace practices. 
Any return-to-work plan, therefore, must include the explicit expectation that new infections may arise 
while concurrently prioritizing worker safety and optimizing the work that can be done. Thus, reopening 
businesses requires an evidence-based plan to reduce contacts through time to minimize new infections at 
the workplace, when an infected individual, presumably pre-symptomatic (Wei et al 2020), brings the 
virus to a workplace.  
 

Here we develop a pair of models to understand how movement and contact structure shape 
infection spread. As a case study, we consider the context of moving from full-time work at home to 
part-time resumption of research at a university, however results from this model are general to many 
social settings. We take a dual modeling approach by developing a general movement model and a 
network case study of one academic laboratory and office building. We explore tradeoffs between 
limiting contact, people, or time on campus. We find that moving back to work on campus does not 
necessarily speed up infection spread, and depends particularly on the extent of physical distancing 
maintainable on campus and the infection risk associated with commutes. Thus our findings allow us to 
set evidence-based expectations and generate specific behavioral recommendations for a safer return to 
work. 

 
 
 

 
 
 

3 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.27.20114728doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20114728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Materials and Methods 
 

Methods: movement model 
 
Setup 

 
Our first model explores infection dynamics as individuals move between home, commuting, and 

work environments. Universities (and other work environments) face a number of different strategies for 
how to slowly ramp up work following easing of lockdown. Here, we simulate three sets of strategies: (i) 
allowing people to return while maintaining physical distancing, (ii) limiting the number of people 
returning to campus during the work day, and (iii) limiting the time each person spends on campus. For 
each strategy combination, we simulate infection dynamics and quantify two output metrics: (1) the ‘final 
epidemic size’ (cumulative fraction of the population infected, in the long-term), and (2) the ‘epidemic 
peak size’ (maximum fraction of the population infected at any time). The aim of this type of conceptual 
model is to clarify the connections between assumptions and outcomes, and contrasts with predictive 
models which would contain an abundance of empirical data and aim to generate forecasts for a specific 
system (Servedio et al. 2014). 
 
Daily cycle 

 
Our model dynamics have a combination of continuous and discrete time (e.g., Johns and Shaw 

2016), where each day is broken into discrete phases (T h spent at home, T w spent at work, and T c spent 
commuting each way, with T h + Tw + 2Tc = 1) and infection dynamics occur continuously during each 
phase (Fig. 1, see Tables 1-2 for model variables and parameters). All individuals start at home and spend 
a fraction of their day (of length T h) there and not working. During this time, the infection dynamics are 
given by 

dS/dt = -𝛽h S (I/N) 
dI/dt = 𝛽h S (I/N) -𝛄 I [eqn. 1] 
dR/dt = 𝛄I 

where S  is the number of susceptible individuals, I  is the number of infected individuals, R  is the number 
of recovered individuals, N  is the total number of individuals in the population (N  = S + I + R), 𝛽h is the 
rate of transmission while at home, and 𝛄 is the rate of recovery from infection. 

 
Here, the rate at which new susceptible individuals (S ) are infected depends on three components 

(Begon et al. 2002). First is the rate of contact between two individuals in a location. Here we assume this 
contact rate is constant (does not change with population density) but can differ across environments 
(home vs work vs commuting). Critically, we assume that 𝛽h accounts for transmission not just in an 
individual’s actual home, but transmission that occurs during other essential activities during lockdown 
(e.g., grocery store trips). Second is the probability that the contact for each susceptible individual is with 
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an infected individual; this is given by the proportion of infected individuals in the local population (I /N). 
Third is the probability that contact with an infectious individual results in transmission. In equation 1 
above (and the other equations below), we have combined the first and third factors into a single term, 𝛽, 
while the second factor is given by I /N. Overall, this gives us frequency-dependent transmission 
(transmission rate depends on the frequency — not density — of infected individuals in the population); 
an appropriate assumption for spatially structured environments (Keeling and Rohani, 2008; Begon et al. 
2002). 

 
After the period of time at home (T h), a fraction, 𝜃, of all individuals commute to work while the 

remaining (1-𝜃) stay to work from home. At this point we subdivide the population based on the number 
of individuals of each type and fraction commuting. We denote location by subscripts (h  for home, c  for 
commute), so the number of individuals of each type are 

S c(Th) = 𝜃 S(Th) 
Ic(Th) = 𝜃 I(Th) 
Rc(Th) = 𝜃 R(Th) [eqn. 2] 
S h(Th) = (1 - 𝜃) S(Th) 
Ih(Th) = (1 - 𝜃) I(Th) 
Rh(Th) = (1 - 𝜃) R(Th)  . 

During the commute phase, the infection dynamics for those commuting are given by 
dS c/dt = -𝛽c S c (Ic/Nc) 
dIc/dt = 𝛽c S c (Ic/Nc) -𝛄Ic [eqn. 3] 
dRc/dt = 𝛄 Ic 

where Nc is the total number of individuals commuting (N c = Sc + Ic + Rc), and 𝛽c is the rate of 
transmission while commuting. Similarly, during the commute phase, the infection dynamics for those 
still at home are given by 

dS h/dt = -𝛽h S h (Ih/Nh) 
dIh/dt = 𝛽h S h (Ih/Nh) -𝛄 Ih [eqn. 4] 
dRh/dt = 𝛄 Ih 

where Nh is the total number of individuals at home (N h = Sh + Ih + Rh). 
 

After the commute phase (of length T c), comes a work phase. Here, the population continues to be 
subdivided into six types, where the number of individuals of each type are 

S w(Th+Tc) = S c(Th+Tc) 
Iw(Th+Tc) = Ic(Th+Tc) 
Rw(Th+Tc) = Rc(Th+Tc) [eqn. 5] 
S h(Th+Tc) = S h(Th+Tc) 
Ih(Th+Tc) = Ih(Th+Tc) 
Rh(Th+Tc) = Rh(Th+Tc) 

where the subscript w  denotes work. During the work phase, the infection dynamics in the workplace are 
given by 

dS w/dt = -𝛽w S w (Iw/Nw) 
dIw/dt = 𝛽w S w (Iw/Nw) -𝛄Iw [eqn. 6] 
dRw/dt = 𝛄 Iw 
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where Nw is the total number of individuals at work (N w = Sw + Iw + Rw), and 𝛽w is the rate of transmission 
while at work. During the work phase, the infection dynamics for those working at home are given by 
[eqn. 4] above. 
 

After the work phase (of length T w), we describe a second commute phase. The population 
continues to be subdivided into six types, where the number of individuals of each type are 

S c(Th+Tc+Tw) = S w(Th+Tc+Tw) 
Ic(Th+Tc+Tw) = Iw(Th+Tc+Tw) 
Rc(Th+Tc+Tw) = Rw(Th+Tc+Tw) [eqn. 7] 
S h(Th+Tc+Tw) = S h(Th+Tc+Tw) 
Ih(Th+Tc+Tw) = Ih(Th+Tc+Tw) 
Rh(Th+Tc+Tw) = Rh(Th+Tc+Tw) . 

During this second commute phase (also of length T c), the infection dynamics for those commuting are 
given by [eqn. 3] above, and the infection dynamics for those still at home are given by [eqn. 4] above. At 
the end of the second commute phase, all individuals are back in the home environment (no longer 
subdivided) and the number of individuals of each type are 

S(Th+2*Tc+Tw) = S w(Th+2*Tc+Tw) + S h(Th+2*Tc+Tw) 
I(Th+2*Tc+Tw) = Iw(Th+2*Tc+Tw) + Ih(Th+2*Tc+Tw) [eqn. 8] 
R(Th+2*Tc+Tw) = Rw(Th+2*Tc+Tw) + Rh(Th+2*Tc+Tw) . 

This ends the cycle for a single day; the next day starts the cycle again. 
 
Model Parameters 

 
We used a fixed population size (N ) of 3,000 individuals. We did not include births or deaths, or 

movement in and out of the population. These are reasonable assumptions given the scope of our 
simulations: a work population that is not hiring new employees and has few retirements or actual deaths. 
Because we assumed a frequency-dependent transmission function, the relative fraction of the population 
infected is the same regardless of population size. 

 
Recovery rate was calculated as the inverse of the infectious period. We used 9.5 days as the 

infectious period, the estimated length of viral shedding for SARS-coV-2 (Ling et al. 2020). The recovery 
rate (𝛄) was then calculated as one over the infection duration: 𝛄 = 1/9.5 = 0.105 per day. We did not 
include a loss of immunity in our model. Our framework is an SIR model, which assumes no delay 
between exposure and infectiousness (i.e., no incubation period). Adding an incubation period (i.e., 
turning this into an SEIR model) would slow down the dynamics but should not change the qualitative 
outcomes. 

 
Infection rate was calculated based on the basic reproductive number, R0. We assumed a 

‘baseline’ R0 (unmitigated; no behavioral changes like physical distancing) of 2.5 based on current 
estimates (Zhang et al. 2020 IJID), although some estimates put R0 as high as 5.7 (Sanche et al. 2020). To 
quantify how behavioral changes to movement and contact affect transmission we defined ‘effective’ R0 
parameters (Re) for each of the environments (home, work, commute). We assumed that stay-at-home 
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measures to reduce pathogen spread in the community halved the rate of contacts at home (e.g., Enns et al 
2020), that is R e-h = 0.5*R0. We assumed that infection at work could be anywhere between current 
infection rates at home (R e-w = 0.5*R0) and unmitigated rates (R e-w = R0). To facilitate interpretation of our 
results, we also describe infection at work in terms of the fraction increase in transmission compared to 
home, where 0 indicates transmission is the same at work and home, 0.5 indicates transmission at work is 
50% higher than at home and 1 indicates transmission at work is 100% higher than at home (i.e., double). 
Finally, we assumed that infection while commuting spanned a broader range of possible value than either 
home or work. At one extreme, commuting by private transport effectively has no risk of transmission 
from others (R e-c = 0). At the other extreme, commuting by crowded public transport can reduce feasible 
physical distancing (R e-c = 2*R0), both because individuals have a greater number of contacts while 
commuting and because these contacts potentially act for longer than normal. Transmission rates (𝛽) were 
back-calculated from Re values, based on rearranging the expression Re = 𝛽 /𝛄 to 𝛽 = 𝛄 Re. 
 
Simulations 
 

Since our aim was to understand the relative importance of model parameters on infection 
dynamics (rather than try to forecast outcomes), we started each simulation with 1 individual infected 
(I(t=0)=1) , zero recovered (R (t=0)=0), and the rest susceptible (S (t=0)=2,999). Each simulation was run 
until it reached equilibrium (where the fraction of the population recovered did not change from one day 
to the next). We defined a baseline set of values for each parameter (see Table 2). Then we ran the 
following simulations that varied some parameters while holding others constant: 

 
(i) Varying transmission while at work (𝛽w) and during the commutes (𝛽c). We considered three 

scenarios that differed in the degree of risk of a commute to work and back. For low risk, we assumed 
low contact both during commutes and on campus (R e-w = 0.5*R0 = 1.25, equivalent to at home). For 
moderate risk, we assumed unmitigated contact during commute (R e-c = R0 = 2.5, shared transport) 
and partial physical distancing at work (R e-w = 0.75*R0 = 1.875, intermediate between home and 
unmitigated). For high risk, we assumed elevated contact during commute (R e-c = 2*R0 = 5, crowded 
shared transport), and unmitigated contact at work (R e-w = R0 = 2.5). These results are presented in 
Fig. 2. 

(ii) Varying the fraction of the population commuting (𝜃) and fraction of the day spent on campus (T w). 
We considered eleven values of the fraction of the population commuting (𝜃 = 0,0.1,...,0.9,1) and 
eleven values of the fraction of an 8-hour workday spent on campus (T w = x*8/24 where x = 
0,0.1,...,0.9,1). These results are presented in Fig. 3a. 

(iii) Varying the fraction of the population commuting (𝜃) and fraction increase in transmission at work 
compared to home (R e-w). We considered eleven values of the fraction of the population commuting (𝜃 
= 0,0.1,...,0.9,1) and eleven values of the fraction increase in transmission at work compared to at 
home (R e-w = (1+x)*Re-h where x = 0,0.1,...,0.9,1). These results are presented in Fig. 3b. 

(iv) Varying the fraction of the day spent on campus (T w) and fraction increase in transmission at work 
compared to home (R e-w). We considered eleven values of the fraction of an 8-hour workday spent on 
campus (T w = y*8/24 where y = 0,0.1,...,0.9,1), and eleven values of the fraction increase in 
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transmission at work compared to at home (R e-w = (1+x)*Re-h where x = 0,0.1,...,0.9,1). These results 
are presented in Fig. 3c. 

Movement model simulations were conducted in Matlab 2018b. 
 
Sensitivity Analysis 

 
Finally, we performed a sensitivity analysis to determine how sensitive the two model output 

metrics (final epidemic size, epidemic peak size) were to each of the model parameters, using a 
combination of Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC). The 
LHS/PRCC sensitivity analysis is appropriate when the relationship between model output and each 
model parameter is monotonic and nonlinear (Marino et al. 2008). For our model, this relationship was 
monotonic for all eight parameters considered (N , Tc, Tw, 𝜃, 𝛄, Re-c, Re-h, and R e-w) and nonlinear for most 
(Fig. S1-S2). The LHS/PRCC sensitivity analysis has two steps. 

 
First, we used Latin Hypercube Sampling (LHS; Mckay et al. 1979), a Monte Carlo approach, to 

generate sets of parameter value combinations from preset ranges of parameter values. LHS has a 
minimum required sample size (n ) which is given by: n ≥ k +1 or n ≥ k *4/3 where k  is the number of 
parameters included in the LHS (Blower 1994), eight for our analysis. We chose the number of samples 
(see below) to meet these criteria. Each of the eight model parameters considered was sampled from a 
uniform probability density function based on the ranges given in Table 2. The model was run for each 
parameter value set, and the final epidemic size (cumulative fraction of the population infected, in the 
long-term) and epidemic peak size (maximum fraction of the population infected at any time) were both 
saved as output metrics. 

 
Second, we measured the sensitivity of the output metrics to each parameter using Spearman 

Partial Rank Correlation Coefficients. To determine how many samples of each parameter was needed to 
generate stable PRCC value, we calculated PRCC value for an increasing number of samples (Fig. S3) 
and noted that the PRCC values were relatively stable past 1000 samples. Thus, we used 1000 samples of 
each parameter value for our final PRCC analysis. A positive PRCC value indicates that increasing the 
value of that parameter increases the output metric while a negative PRCC value indicates that increasing 
the value of that parameter decreases the output metric. PRCC values that were not significant at the 0.05 
level are marked with ‘ns’ in Fig. 4 (not corrected for multiple comparisons). Finally, we used a z-test to 
rank significant model parameters in terms of their relative importance, since larger PRCC values do not 
always indicate more important parameters (Marino et al. 2008). For our results (Fig. 4), model output 
sensitivity was indeed given by the size of PRCC values. 
 

 
Methods: network model 
 

Our second model explores infection dynamics as individuals work on campus either in both 
office and lab spaces or just in lab spaces. We created a network map of all the individuals housed in the 
Ecology building on the St Paul campus of the University of Minnesota. We created our dataset by 
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merging information on the office and lab room assignments for each individual with an office or lab in 
the building. (The methods for this data collection were reviewed by IRB and determined to be not human 
research.) Work in the Ecology building is structured by two primary space types, laboratories that can 
include one to three research groups, each associated with a single faculty member, and offices which can 
be single-occupancy or shared. Office space is generally shared by groups of graduate students and 
postdoctoral scholars, often from different lab groups. Because undergraduates are generally not 
permitted to work on campus during the resumption of research, we included faculty, staff, postdocs, and 
graduate students, but excluded all undergraduates from this visualization.  

 
We considered two types of bipartite networks: shared office space and shared lab space. 

Individuals sharing an office or a lab all had an edge with that location node. We then consider the 
one-mode projection of each network, creating a weighted unipartite network connecting individuals 
according to their shared spaces. The binary representation of these networks was used to create static 
network visualizations of connections among individuals using the igraph, tidygraph, and ggraph libraries 
in R (Csardi and Nepusz 2006, Pedersen 2019, Pedersen 2020), shown in Fig. 5a and b. Animations of 
disease progression through the networks were produced using the gganimate library in R (Fig. S5; 
Pedersen et al 2020). For each network, we computed the distribution of shortest paths between each pair 
of nodes (Fig. 5c) and for each distinct component of the networks, we noted its size (number of nodes), 
diameter (longest shortest path), and mean path length (average shortest path length; Fig. S6). 

 
For the network simulations, we used an SIR model framework, starting with a randomly selected 

index case to serve as the first infected individual in an entirely susceptible population (Fig. 6). 
Simulations proceeded in discrete time. At each time step, currently infectious individuals were removed 
(i.e., recovered and immune or deceased) based on the result of a Bernouli trial using the recovery rate as 
the probability of success. Similarly, one Bernouli trial using the transmission rate as probability of 
success was conducted for each edge connecting a susceptible individual to an infectious one. Susceptible 
individuals were infected if at least one such trial resulted in success. At the end of each simulation, we 
took note of the epidemic peak size, the final epidemic size, and the time needed to read the epidemic 
peak (Fig. 7). Network analysis and simulations were conducted in R (Version 3.6.3). 
 
 

Results 
 

Results: Movement model 
 
Whether returning to work on campus affects the epidemic outcomes (measured as final epidemic 

size and epidemic peak size) depends critically on the degree of physical distancing maintained both on 
campus and during the commute between home and campus (Fig. 2). If the current degree of physical 
distancing that is achieved while working from home can be maintained while on campus, then working 
from campus will not speed up infection dynamics compared to working from home (Fig. 2a). However, 
if physical distancing on campus or during the commute is less successful than current physical distancing 
at home, then returning to work on campus will both increase the epidemic peak size in the short-term and 
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increase the final epidemic size in the long term (Fig. 2b-c). When physical distancing cannot be 
maintained on campus or during the commute, then infection dynamics can be kept slower by limiting the 
fraction of workers on campus and the amount of time workers are on campus (Fig. 3a). 

 
Intriguingly the three strategies we considered (limiting contact, people, or time on campus) are 

interchangeable with approximately equivalent effects on both the long-term metric, final epidemic size 
(Fig. 3) and the short-term metric, epidemic peak size (Fig. S4). That is, in situations where one of these 
strategies cannot be fully implemented, a different strategy can be used in its stead. For example, if 
individuals need to be on campus for an extended period of time to run an experiment (thus limiting time 
on campus is not a feasible strategy), this can be compensated for by limiting the number of other 
individuals on campus at the same time. However, of the three strategies, reducing the fraction of the 
population on campus had a bigger impact than reducing either time or contact on campus, due to the 
effect of commuting to and from campus. Regardless of time or physical distancing on campus, more 
people working on campus is associated with more people commuting. Thus, if commuting increases 
transmission risk at all compared to staying at home (i.e., any form of shared transport), reducing the 
number of people commuting will be a more effective strategy than reducing either time or contact while 
on campus. 

 
The sensitivity analysis revealed that both model metrics (final epidemic size, epidemic peak 

size) were most sensitive to transmission at home (R e-h), since most of the day is spent in that 
environment, as well as the fraction of the population commuting (𝜃) to campus (Fig. 4). Transmission on 
campus (R e-w) and transmission during commutes (R e-c) were the next most influential; the first because 
most time during the workday is spent on campus and the second because we allowed transmission to 
vary across a wider range during commuting than on campus. The time spent on campus (T w) and time 
commuting (T c) were somewhat influential. For each of these parameters, increasing the parameter value 
increased the final and peak epidemic sizes. Finally, population size (N ) did not significantly affect either 
metric (but would be critical for the total number of individuals infected). Similarly, recovery rate (𝛄) on 
its own had little impact, presumably because increasing gamma increases both the rate of recovery and 
the rate of infection (since 𝛽 depends on both 𝛄 and R e). 
 

Results: Network model 
 
The mixing of researchers from different labs in shared office spaces had a substantial impact on 

the modularity of the network. In particular, when people do not use shared office spaces (i.e., work from 
home if they share an office), but work on campus only in labs, the network is far more modular, with 
smaller, more densely connected groups and few connections among groups (Fig. 5b, S6). In this case, 
most individuals are connected to all other members of their group (i.e., “shortest path”, Fig. 5c); however 
the absence of connections between groups means that, on average, an infected individual lacks a path of 
connections to 95% of the rest of the population. In contrast, when individuals share both lab and office 
space, the connectedness of the network is relatively high because students, staff, and postdocs that share 
offices are often from different labs. For this combined case, most individuals are four or fewer 
connections from one another (Fig. 5c) and the largest component contains nearly 90% of all individuals 
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in the network (Fig. 5a, S6). Thus, in the case where an infected individual (presumably pre-symptomatic 
or asymptomatic) came to work, the combined lab and office network has the potential for greater disease 
incidence than in the lab-only networks, where the infection could be constrained to a single lab (Figs. 
6-7, S5). In general, when compared to the combined network, the lab-only network had outbreaks that 
were less explosive (i.e., had less variance and a lower mean number of individuals infected at any one 
time), fewer individuals infected overall, and a shorter time until the peak number of infectious 
individuals (Fig. 7).  
 

Discussion 
 

Movement and contact behaviors are key drivers of the spread of pathogens like SARS-CoV-2, 
yet not all movement and contacts have the same impact on pathogen spread. However, basic 
compartmental models used to describe SARS-CoV-2 dynamics assume all individuals move and contact 
each other at random (i.e., populations are well-mixed). Our models show how explicitly accounting for 
movement, space use in a building, and contact behaviors can provide a more nuanced understanding of 
relative risk. Our movement model, capturing the predictable movement between home and work/campus 
environments, shows that reducing the number of people, rate of contact, and amount of time spent on 
campus are all equivalently effective strategies for slowing pathogen spread. However, if commutes 
specifically increase transmission risk (i.e., shared transport), reducing the number of people on campus is 
the most effective strategy to reduce the infection spread rate. We also considered heterogeneity in 
contact behavior once at the workplace; our network model captures the regular interactions among 
workers in shared workspaces on campus and shows that restricting building use to lab spaces (rather than 
lab and office space) may reduce pathogen spread. Our results provide a number of tools to distinguish 
among different movement and contact patterns at the scale of individuals and workplace communities. 
 

A number of future directions could be explored, by changing some of our simplifying 
assumptions. First, staying within the broad structure of our model, alternative spatiotemporal strategies 
could be explored including: structured work weeks (e.g., 4 days on-campus and 10 off; Karin et al 2020), 
or further compartmentalizing time (e.g., sequential work shifts) or space (e.g., different buildings on 
campus). For instance, if evidence suggests that infection can occur through air circulation within 
buildings (Lu et al 2020), these models could be altered to account for connections arising from shared 
ventilation systems. These models also could be modified to account for movement and contact behavior 
that explicitly depends on infection status (Narayanan et al. in revision); e.g., splitting infected individuals 
into asymptomatic (who still potentially commute to work) and symptomatic individuals (who stay 
home). Second, one could expand the scale of the model. This could be done foremost by combining the 
movement model (movement between work, commute, campus) with the network model (movement 
while on campus). Further expansions could consider both larger scales (linking in regional patterns) as 
well as smaller ones (allowing contacts within buildings to vary over time). For instance, structuring 
interaction networks with respect to age can greatly reduce deaths (Acemoglu et al 2020) and integrating 
local models such as this with regional variation in disease (Dong et al 2020) could inform 
recommendations as rates of active infection and immunity shift. Third, as contact-tracing data 
accumulate that implicate the most common routes of transmission, we can alter specific players or 
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interactions in the model. For instance, while the virus can survive on surfaces and in aerosols (van 
Doremalan et al 2020), most transmission appears to be mediated by extended person-to-person 
interactions in close spaces (Ghinai et al 2020 MMWR, Ghinai et al 2020 The Lancet, Li et al 2020, Bi et 
al 2020, Park et al. 2020), so minimizing temporal overlap of workers in shared spaces is key (Qian et al 
2020). It may also be possible to further refine risk for certain classes of risk based on age, immune status, 
and pre-existing conditions; for example, current data suggests children can be carriers for COVID-19 (Bi 
et al 2020, Jones et al 2020), although the role of children and school closures in mitigating COVID-19 
spread is a topic of current debate (Viner et al 2020, Zhang et al 2020 Science, Zhu et al 2020). As such 
data emerge, the model could be updated with additional data for individual members that could indirectly 
increase transmission, such as children or elderly family members at home (Chen et al. 2020). 

 
Our findings mesh with concepts in the broader movement and disease ecology literature. Within 

movement ecology, there has long been a distinction between random/undirected movement like dispersal 
versus predictable movements like diel and seasonal migration (Heape 1931). Human movement between 
home and work is often a predictable and daily occurrence and thus is better viewed from the lens of 
predictable migratory movements (as we do here) rather than random dispersive ones (as implicit in basic 
compartmental models). Moving predictably between two environments does not always increase 
infection (either for individuals or at the population level) compared to remaining in a single location; the 
relative transmission in each environment is critical (Shaw et al. 2018). We find that transmission risk 
during a commute is key to infection dynamics when considering the impact of movement between home 
and work, paralleling recent work calling for the explicit consideration of how transient phases of 
movement affect infection dynamics (Daversa et al. 2018) and theory showing that infection dynamics 
during transit can have a similar impact to dynamics in the second environment (Shaw et al. 2019). 

 
There are important insights that emerge from our movement and contact-network models that 

can guide policy. For example, basic disease models assume random movement and equal probability of 
contact, whereas many hosts, including humans, move in directed ways and in very structured social 
networks. For this reason, disease mitigation policies will likely be more effective when they consider 
disease risk in a more holistic way that integrates risk across the various components of a person's daily 
movement. For example, in settings where many people commute by mass transit (e.g., New York City), 
the efficacy of workplace safety protocols may be overwhelmed by transmission during daily commutes 
rather than contacts at work. Careful examination of social network patterns could also  help guide policy 
to provide intermediate scenarios between business as usual and complete lock down. For example, in our 
case study contact rates and potential disease spread were significantly reduced when people’s contacts at 
the workplace were restricted to single lab groups, as opposed to linking separate lab and office networks.  

  
The protective effects of heterogeneity in contact structure should not be overemphasized for 

decision making. First, outbreaks on more heterogeneous networks may be less likely, but they can also 
be more explosive (Keeling and Eames, 2005). Second, because SARS-CoV-2 spread is driven primarily 
by aerosolized transmission, the potential contact behaviors needed for transmission are more ubiquitous 
than for pathogens with more specific transmission modes (e.g., sexually transmitted diseases like 
HIV/AIDS). Importantly, the networks presented here consider only the room in which an employee 
works (their office or lab space), explicitly omitting broader workplace considerations like air flow, 

12 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.27.20114728doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20114728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

shared surfaces, entry points, etc., these additional points must be addressed in conjunction with thinking 
about explicit contact behavior when forming a public health strategy. Lastly, these static networks are a 
simplification of an inherently dynamic process of movement, contact, and infection. Using a 
time-ordered or dynamic network approach could provide better insights to actual duration of exposures 
and sickness-induced behavioral changes (Enright and Kao 2018).  

  

Conclusions 
 
Human movement and contact behaviors are critical for the spread of pathogens like 

SARS-CoV-2, yet are rarely addressed explicitly in the current conversations about decision-making in 
the face of relaxing Stay at Home orders. Here we have drawn on movement and network models to 
demonstrate the effect of these behaviors. First, we have shown that regular movement between two 
‘environments’ (i.e., work and home) does not inherently increase infection spread the way random 
dispersive movements might. Rather the outcome depends on the relative degree of transmission (e.g., 
degree of physical distancing) in each environment. Second, we have shown that different contact patterns 
(e.g., space usage) within the work environment could lead to different outcomes in terms of 
SARS-CoV-2 spread. In sum, we advocate for using an understanding of movement and contact patterns 
as an adjunctive approach (alongside widespread testing, contact tracing, vaccine development and other 
tools) to mitigate the effects of SARS-CoV-2 and COVID-19, particularly when considering return to 
work environments. 
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Figure 1. Movement model schematic, showing a daily cycle . All individuals spend part of their day (T h) at 
home. A proportion 𝜃 of individuals move to campus, spending T c time commuting in each direction, and 
work from campus during the workday (time T w), while the others (1 - 𝜃) work from home (T h + Tw + 2 Tc 
= 1). Transmission rates can vary among home (𝛽h; this includes transmission during essential trips e.g., 
to the grocery store), commute (𝛽c; traveling between home and work), and work (𝛽w; campus-based 
interactions) environments, while recovery rates (𝛄) are the same regardless of where individuals are 
located. 
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Figure 2. Movement model: varying the degree of physical distancing on campus and during commutes. 
The fraction of the population that is Susceptible (S), Infected (I), and Recovered (R), when all 
individuals either work from home (solid lines) or commute to work on campus (dashed lines), for 
different degrees of physical distancing both on campus and during the commute: (a) low risk: low 
contact during commute and on campus (R e-c = Re-w = 0.5*R0 = 1.25, equivalent to at home), dashed and 
solid lines are identical, (b) moderate risk: unmitigated contact during commute (R e-c = R0 = 2.5, shared 
transport) and partial physical distancing at work (R e-w = 0.75*R0 = 1.875, intermediate between home and 
unmitigated), (c) high risk: elevated contact during commute (R e-c = 2*R0 = 5, crowded shared transport), 
and unmitigated contact at work (R e-w = R0 = 2.5). 
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Figure 3. Movement model: limiting people, time and contact on campus. The final epidemic size 
(cumulative fraction of the population infected) as a function of (a) the fraction of an 8-hour workday 
spent on campus (x-axis) and the fraction of the population working on campus (y-axis) with no physical 
distancing, (b) the fraction increase in transmission while at work compared to at home (x-axis) and the 
fraction of the population working on campus (y-axis) with an 8-hour work day, (c) the fraction increase 
in transmission while at work compared to at home (x-axis) and the fraction of an 8-hour workday spent 
on campus (y-axis) with 100% of people on campus.  
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Figure 4. Movement model: sensitivity analysis.  The partial rank correlation coefficient (PRCC) values for 
each model parameter (Table 2) for the final epidemic size metric (blue bars) and the epidemic peak size 
metric (orange bars). Positive values indicate parameters that increase epidemic size as they are increased 
(negative values indicate parameters that decrease epidemic size as they are increased). Cases where the 
relationship between the parameter and model output metric was not significant are indicated with 'ns'. 
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Figure 5. Network model structure. Space-sharing, or ‘contact’ (edges) are shown among all individuals 
(nodes) for two scenarios: (a) when individuals at work share either office or lab spaces, or (b) when 
individuals only used shared lab space and not shared offices. (c) Histograms showing the distribution of 
shortest paths between all connected pairs of individuals. Importantly, though all shortest paths between 
nodes in the network containing only links of shared lab spaces are less than or equal to three, the vast 
majority (approximately 95%) of pairwise combinations of individuals actually have no chain of 
interactions connecting them. In contrast, the combined network contains a component consisting of 
almost 90% of individuals in the network, corresponding to nearly 80% of all pairs of individuals having 
a chain of interactions connecting them. 
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Figure 6. Network model simulations.  Networks based on use of (a) both shared lab and office space and 
(c) only shared lab space, showing the outcome of a single simulation of pathogen spread with susceptible 
individuals in blue,infectious individuals in orange, and removed individuals in red. (b, d) the cumulative 
number of susceptible, infectious, and removed individuals over time for each network simulation. 
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Figure 7. Network model simulations.  Outcome of infection simulations on networks: the maximum peak 
number of individuals infected at any one time (epidemic peak size), total number of individuals infected 
(final epidemic size), and time until peak number of individuals infected for simulations of pathogen 
spread on networks based on use of both shared lab and office space (blue) and only shared lab space 
(orange). 
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Table 1. Movement model state variables and their meaning. 

Variable Meaning 

S Total number of susceptible individuals (during the non-work phase) 

I Total number of infected individuals (during the non-work phase) 

R Total number of recovered individuals (during the non-work phase) 

Sc Number of susceptible individuals commuting to campus (during the commute phases) 

Ic Number of infected individuals commuting to campus (during the commute phases) 

Rc Number of recovered individuals commuting to campus (during the commute phases) 

Sw Number of susceptible individuals working from work (during the work phase) 

Iw Number of infected individuals working from work (during the work phase) 
 

Rw Number of recovered individuals working from work (during the work phase) 
 

Sh Number of susceptible individuals working from home (during the commute and work 
phases) 

Ih Number of infected individuals working from home (during the commute and work 
phases) 

Rh Number of recovered individuals working from home (during the commute and work 
phases) 
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Table 2. Movement model parameters, meaning, and default value (with units). References: 
[a] https://en.wikipedia.org/wiki/University_of_Minnesota_College_of_Biological_Sciences 
[b] Zhang et al. 2020 IJID 
[c] https://mn.gov/covid19/assets/MNmodel_tech_doc_tcm1148-427724.pdf 
[d] Ling et al. 2020 
 

Param Meaning Default values 
[Units] 

Sensitivity analysis 
range 

N Population size 3000 [people] [a] (1500 to 6000) 

R0 Basic reproductive number (number of new 
infections that each infection generates) 

2.5 [unitless] [b] fixed 

Re-c Effective reproductive number while 
commuting between work and campus 

R0 [unitless] (1 to 4*R 0) 

Re-h Effective reproductive number while at home 0.5*R0 [unitless] [c] (0.25*R0 to R0) 

Re-w Effective reproductive number while at work at 
campus 

R0 [unitless] (0.5*R0 to 2*R0) 

Tc Fraction of a 24-hour day spent commuting 
each way for those that commute to campus 

1/24 [unitless] (0.5/24 to 2/24) 

Th Fraction of a 24-hour day spent not working 
(everyone is off campus) 

= 1 - 2*Tc - Tw 
[unitless] 

= 1 - 2*Tc - Tw 

Tw Fraction of a 24-hour day spent at work on 
campus for those commuting (some individual 
are on campus) 

8/24 [unitless] (2/24 to 12/24) 

𝛽c Transmission rate while commuting = Re-c 𝛄 [day-1] = Re-c 𝛄 

𝛽h Transmission rate while at home = Re-h 𝛄 [day-1] = Re-h 𝛄 

𝛽w Transmission rate while at work = Re-w 𝛄 [day-1] = Re-w 𝛄  

𝛄 Recovery rate 1/9.5 [day-1] [d] (1/11 to 1/6) 

𝜃 Fraction of the campus population commuting 
to work on campus (instead of continuing to 
work at home) 

1 [unitless] (0.0001 to 1) 

 
SUPPORTING INFORMATION 
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Figure S1. Movement model monotonicity plots.  The relationship between each of the eight model 
parameters (x-axis) and the model output, final epidemic size (y-axis) for (a) population size (N ); (b) 
fraction of a 24-hour day spent commuting each way for those that commute to campus (T c); (c) fraction 
of a 24-hour day spent on campus for those commuting (T w); (d) fraction of the campus population 
commuting to work on campus (𝜃); (e) recovery rate (𝛄); (F) effective reproductive number while at home 
(Re-h); (g) effective reproductive number while commuting between work and campus (R e-c); and (h) 
effective reproductive number while at work on campus (R e-w).  
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Figure S2. Movement model monotonicity plots.  The relationship between each of the eight model 
parameters (x-axis) and the model output, epidemic peak size (y-axis) for (a) population size (N ); (b) 
fraction of a 24-hour day spent commuting each way for those that commute to campus (T c); (c) fraction 
of a 24-hour day spent on campus for those commuting (T w); (d) fraction of the campus population 
commuting to work on campus (𝜃); (e) recovery rate (𝛄); (F) effective reproductive number while at home 
(Re-h); (g) effective reproductive number while commuting between work and campus (R e-c); and (h) 
effective reproductive number while at work on campus (R e-w). 
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Figure S3. Movement model sample numbers.  Absolute value of PRCC for the final epidemic size model 
output and each of the eight model parameters (N , Tc, Tw, 𝜃, 𝛄, Re-h, Re-c, Re-w) as a function of different 
numbers of LHS samples generated. The results seem to stabilize after about 1000 samples. 
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Figure S4. Movement model: limiting people, time and contact on campus. The epidemic peak size 
(maximum fraction of the population infected) as a function of (a) the fraction of an 8-hour workday spent 
on campus (x-axis) and the fraction of the population working on campus (y-axis) with no physical 
distancing, (b) the fraction increase in transmission while at work compared to at home (x-axis) and the 
fraction of the population working on campus (y-axis) with an 8-hour work day, (c) the fraction increase 
in transmission while at work compared to at home (x-axis) and the fraction of an 8-hour workday spent 
on campus (y-axis) with 100% of people on campus. 
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Figure S5. Network model simulations.  Simulations of pathogen spread across networks based on use of 
(top) both shared office and lab space and (bottom) only shared lab space. 
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Figure S6. Component-wise network structural metrics.  Measures of the size (number of individuals), 
diameter (longest shortest path between two individuals), and mean path length (average shortest path 
length between individuals) for each distinct component of networks presented in Fig. 5a,b. The 
combined lab and office network (blue points) has 8 distinct components (8 points for each metric), while 
the shared lab space network contains 31 distinct components (31 points for each metric). 
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