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Abstract 

 

Background: An artificial intelligence (AI) system capable of predicting patient needs in the prehospital phase 

would be instrumental. We sought to develop a neural network (NN) model capable of predicting various care 

needs at initial contact by emergency medical service (EMS) using multimodal input data. 

Methods: We used EMS records of a single emergency department (ED). We implemented two attention-based 

NN model (I and P) differing only by how they use contextual information. The models predict multiple events, 

including hospital admission, endotracheal intubation, mechanical ventilation, vasopressor infusion, cardiac 

catheterization, surgery, intensive care unit (ICU) admission, and cardiac arrest. The input features include both 

unstructured data (chief complaints, injury summary, past medical history, history of present illness) and 

structured data (age, sex, pupil status and initial vital signs, level of consciousness, and O2 saturation on pulse 

oximetry). We applied multi-task learning for training. We evaluated the relative performance of the models 

compared with a human expert, an emergency physician with 10-year experience as an EMS medical director. 

Results: The study population included 42,073 cases. The receiver operating characteristics (ROC) area under 

the curve (AUC) values of the models I and P ranged from 0.793 to 0.929 and 0.812 to 0.934, respectively. The 

precision-recall (PR) AUC values ranged from 0.149 to 0.673 and 0.156 to 0.683, respectively. With decision 

thresholds set to achieve equivalent recall levels, our AI models achieved precision levels not significantly 

different from those of a human expert except in prediction of mechanical ventilation and ICU admission, where 

the models achieved superior performance (p=0.030 [model I] and p=0.015 [model P], respectively). 

Conclusions: AI models using multimodal input data can predict medical resource requirements at initial 

contact by EMS with high accuracies. 
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1. Introduction 

 

Accurate prediction of patients’ needs is critical in prehospital care because the type of hospitals and subsequent 

cares are dependent on it1,2. Erroneous ones may lead to inefficient care delivery after transport and, ultimately, 

poor outcomes. However, the task is not easy. It requires an accurate assessment of both the current condition 

and the possible future events of a patient, which needs significant knowledge and experience in medicine. 

Direct medical control by emergency medical services (EMS) directors has been providing essential clues in 

challenging cases3–6. However, it means an increased workload for the directors, and maintaining such support 

24/7 is sometimes impossible. Therefore, artificial intelligence (AI) system capable of doing the task with 

similar performance as a human expert will be a useful resource.  

Achieving human expert-level performance requires being able to process unstructured natural language data 

efficiently as well as structured tabular data. Also, the system should be able to focus on relevant information 

because natural language data have diverse information.  

In this study, we present our self-attention based AI system, EMSNet. It encodes natural language data with 

contextual information and applies a self-attention mechanism to focus on relevant information. Using the 

encoded representation and tabular form data, it jointly predicts various hospital resource requirements of a 

patient. We trained the system using multi-task learning (MTL) methods, and the system achieved human 

expert-level performance in our experiment. 

 

2. Materials and methods 

 

2.1. Study setting and population 

 

The study is a single-center observational study utilizing EMS records of the patients who visited the emergency 

department (ED) using public EMS from 2011 to 2015. The study facility is a tertiary academic hospital located 

in South Korea with an annual ED visits greater than 80,000 patients a year. We excluded out-of-hospital 

cardiac arrest (OHCA), dead on arrival (DOA), and transferred-out cases. Recurrent visits were treated as 

independent cases. The institutional review boards of the study site approved the study and provided a waiver of 

informed consent.  

 

2.2. AI tasks 

 

We applied multi-task learning with one main task and five auxiliary tasks7. The main task is a multiple binary 

prediction problem with its targets include hospital admission, endotracheal intubation, mechanical ventilation, 

vasopressor infusion, cardiac catheterization, surgery, ICU admission, and cardiac arrest within 24 hours of ED 

arrival. The auxiliary tasks include the prediction of primary ED diagnosis and ED disposition using the final 

output of the shared portion of the network (auxiliary task group 1) and performing the main task and the two 

auxiliary tasks using the intermediate output of the shared network (auxiliary task group 2). The detailed 

description of the tasks is in supplementary table 1. 
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2.3. Datasets 

 

We used EMS records of the study facility from 2011 to 2015. We used features obtainable at the initial 

encounter by EMS to make the AI system to be able to predict the resource needs and thus the destination of 

transport as soon as possible. The features were age, sex, chief complaints (CC), injury summary (if injury-

related), past medical (and surgical) history (PMH), history of present illness (HPI), pupil status (size and reflex), 

systolic blood pressure (SBP, mmHg), diastolic blood pressure (DBP, mmHg), pulse rate (PR, beats per minute), 

respiratory rate (RR, breaths per minute) and body temperature (BT, measured in Celsius), level of 

consciousness (AVPU: Alert, Verbal, Pain and Unresponsive), initial O2 saturation (SpO2 on pulse oximetry, %). 

Free-text data (CC, injury summary, PMH, HPI) were cleaned, lower-cased (for alphabet words), and space-

corrected. The target variables of the primary and auxiliary tasks were extracted from the electronic health 

record (EHR) database. 

The dataset was randomly split into training, validation, and test sets with the ratio of 6:2:2. The training dataset 

was used to develop preprocessing pipelines and to train models. The validation dataset was used to evaluate 

candidate models and their hyperparameters. The test dataset was used to measure the performance of the final 

models. 

 

2.4.1. AI system: preprocessing pipelines 

 

The preprocessing pipelines for the multimodal input data are developed using the training dataset and include 

the following procedures: 1) The NLP pipeline tokenizes and index natural language data using a Korean natural 

language processing (NLP) tool, soynlp8; 2) The pipeline then embeds the tokens using FastText algorithm 

(implemented in Gensim library) and inhouse-corpus based mainly on Korean Wikipedia and the HPI part of the 

training dataset9. 3) The non-NLP pipeline does the other common preprocessing procedures where categorical 

features are one-hot encoded, and numerical features are standardized by removing their means and scaling to 

their unit variances. Missing values are imputed by the means or the modes as appropriate with adding missing 

indicators to the datasets.  

 

2.4.2. AI system: NN architecture 

 

We assumed a typical healthcare provider would read a medical note in the following sequence, which our 

EMSNet architecture tries to mimic: First, the reader will briefly look at the contextual information, such as 

chief complaints, demographics, and underlying conditions. Then the reader will read the whole HPI using the 

contextual information. Lastly, the reader will interpret various measurements, such as vital signs, exam 

findings, and test results. If the reader wants to predict a specific health outcome event, he or she can go back to 

the note and reread the data, focusing on specific parts of the text relevant to the outcome event. 
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Fig. 1. Network schematics of EMSNet. The model I (A) and P (B) are differed by where the contextual information is incorporated into the 

computational graph; CC, chief complaint 

 

Figure 1 visualizes the computational graph of EMSNet, which follows a similar process. Briefly, the 

demographic information (age and sex) and other contextual information (CC, injury summary, and PMH) are 

concatenated and then transformed by two consecutive fully-connected (FC) layers to output a latent contextual 

vector 𝒄. This vector is fed into a 𝑙-layer bidirectional gated recurrent unit (GRU) network with a self-attention 

mechanism where HPI is fused with the contextual information and turned into a sentence embedding. In this 

process, the contextual information is used in two different ways, either by being overwritten on the initial 

hidden states of GRUs (model I) or being concatenated with each word embedding vectors of HPI (model P). 

Then the 𝑑ℎ-dimensional hidden state vectors ℎs of the GRUs are concatenated at each timestep forming an 

output matrix 𝐻 with 𝑛-by-2𝑙𝑑ℎ shape (2 for bidirectional), which is then processed by an attention mechanism 

proposed by Lin et al.10 where attention weights 𝒂 for 𝐻 is derived from the same 𝐻 using the following formula:  

𝒂 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒘𝒔𝟐tanh(𝑊𝑠1𝐻
𝑇)) 

Here 𝑊𝑠1 is a weight matrix with a shape of 𝑑𝑎-by-2𝑙𝑑ℎ and 𝒘𝒔𝟐 is a vector of size 𝑑𝑎 where 𝑑𝑎 is a 

hyperparameter we can optimize. With 𝒂, the hidden state matrix 𝐻 is summed up to obtain a representational 

vector 𝒎 of HPI. To obtain multiple representations from a sentence, we extend 𝒘𝑠2 into a 𝑟-by-𝑑𝑎 matrix 𝑊𝑠2  

resulting in the attention weight vector 𝒂 becoming an attention matrix 𝐴. Finally, we obtain a sentence 

embedding matrix of HPI, 𝑀 by multiplying 𝐴 and 𝐻, which is then flattened and concatenated with the final 

hidden state vectors of the GRU network and the standardized measurements (vital signs, consciousness, 
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pupillary status, and SpO2) and fed into a sequence of FC layers. Also, there are six task-specific networks with 

two FC layers, one for the main task and five for the auxiliary tasks. 

 

2.4.3. AI system: loss function 

 

The loss function has two terms. The first one is the weighted sum of cross-entropy losses from the task-specific 

networks with a weight distribution of 0.5 for the main task and 0.1 for each of the auxiliary tasks. The error 

signals from auxiliary task group 1 were intended to be used to improve the generalization of the whole network, 

while those from auxiliary task group 2 were explicitly intended to improve the generalizability of the GRU 

layers. The other term is a penalizing term 𝑃 introduced by Lin et al10.  

𝑃 = ‖𝐴𝐴𝑇 − 𝐼‖𝐹
2
 

where 𝐴 is the attention matrix whose rows are attention vectors 𝒂 as introduced earlier, 𝐼 is an identity matrix 

and ‖∙‖𝐹 stands for the Frobenius norm of a matrix. This term encourages the diversity of the attention vectors 𝒂 

and is multiplied by a hyperparameter we can set arbitrarily. 

 

2.5. Training  

 

The models are trained with Adam optimizer with an early stopping rule requiring five consecutive failures to 

reduce the minimum loss of the main task. We applied multiplicative learning rate decay after 5th, 10th, 15th and 

30th epoch with its decay rate parameterized for optimization. Supplementary Table 2 shows all the 

hyperparameters we used. They were optimized using tree-structured Parzen estimation with over 500 trials for 

each model11.  

 

2.6. Performance evaluation 

 

We assessed the performance of our AI systems measuring receiver operating characteristic (ROC) and 

precision-recall (PR) area under the curve (AUC) values. We used bootstrap resampling (N=2000) to calculate 

the 95% confidence intervals (CI) of the AUC values and to test the statistical significance of their differences. 

We set up a human expert vs. AI competition to evaluate the performance of our models. For this competition, 

we randomly sampled up to 10 cases without replacement from each outcome combination stratum (N=313), 

and then we added 200 additional cases sampled without stratification and replacement from the rest finalizing 

our final competition dataset (N total=513). The stratified sampling procedure was to increase the proportion of 

positive outcome cases, which will increase the statistical power of later comparison tests. A board-certified 

emergency medicine (EM) physician with 10-year experience as an EMS director predicted outcomes using the 

competition dataset. Using the results, we calculated recall (sensitivity) levels of the human expert and set the 

threshold levels of our models to achieve the same recall levels as the human expert. Lastly, we calculated and 

compared precision (positive predictive value, PPV), negative predictive value (NPV), and specificity levels of 

the models and the human expert. Their 95% confidence intervals and the significance of difference was 

assessed using bootstrap resampling. 
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2.7. Visualization and quality assessment of attention mapping 

 

We visualize where our models are focusing on by drawing a heatmap over the tokens of the HPI sentences. The 

values of the heatmap are obtained by summing over all the attention vector 𝒂 and rescaling the vector using 

min-max normalization (ranging 0 to 1).  

A separate reviewer (a board-certified EM physician with two years of EMS director experience) rated the 

clinical relevance of the attention patterns in one hundred random samples from the test dataset using a 5-point 

Likert scale (Perfect, Good, Fair, Poor, Random). The reviewer was instructed to determine the quality based on 

general clinical relevance without being instructed for what purpose the models are used. 

 

2.8. Statistical analysis 

 

Categorical variables are reported using frequencies and proportions. Continuous variables are reported using 

the median and interquartile range (IQR). T-test, Wilcoxon’s rank-sum test, chi-square test, or Fisher’s exact test 

are performed as appropriate for comparison between groups.  

P-values < 0.05 were considered significant. Neural network models were developed and tested using PyTorch 

package version 1.4 running on Python version 3.712. Statistical analyses were performed on R-packages version 

3.5.1 (R Foundation for Statistical Computing, Vienna, Austria).  

 

3. Results 

 

45,396 ED visits using the national EMS were identified. After the exclusion of OHCA, DOA, and transfer-out 

cases, 42,073 cases were included as the study population (Table 1). The median age of the population was 58.0 

(43.0-73.0), and female cases were 21,023 (50.0%). The main outcome events including hospital admission, 

endotracheal intubation, mechanical ventilation, pressor infusion, surgery, cardiac catheterization, ICU 

admission and cardiac arrest occurred in 10,689 (25.4%), 915 (2.2%), 808 (1.9%), 1402 (3.3%), 1472 (3.5%), 

783 (1.9%), 2226 (5.3%) and 310 (0.7%) cases, respectively. The number of cases in train, validation, and test 

dataset was 25,242, 8,414, and 8,414, respectively with no significant difference among the groups. 

 

 
    Total (N=42073) Train (N=25245) Validation (N=8414) Test (N=8414) p 

Demographics Age 58.0 (43.0-73.0) 58.0 (43.0-73.0) 58.0 (43.0-73.0) 58.0 (43.0-73.0) 0.638  

 Sex      0.745  

   - Female 21023 (50.0%) 12635 (50.0%) 4215 (50.1%) 4173 (49.6%)  

   - Male 21050 (50.0%) 12610 (50.0%) 4199 (49.9%) 4241 (50.4%)  

Initial 

measurements 
SBP 130.0 (116.0-150.0) 130.0 (116.0-150.0) 130.0 (117.0-150.0) 130.0 (116.0-149.0) 0.620  

 DBP 80.0 (70.0-90.0) 80.0 (70.0-90.0) 80.0 (70.0-90.0) 80.0 (70.0-90.0) 0.050  

 Pulse rate 82.0 (72.0-95.0) 82.0 (72.0-95.0) 82.0 (72.0-95.5) 82.0 (72.0-96.0) 0.475  

 Respiratory rate 18.0 (16.0-20.0) 18.0 (16.0-20.0) 18.0 (16.0-20.0) 18.0 (16.0-20.0) 0.236  

 Body temperature 36.5 (36.2-36.9) 36.5 (36.2-36.9) 36.5 (36.2-36.9) 36.5 (36.2-36.9) 0.692  

 SpO2 98.0 (96.0-99.0) 98.0 (96.0-99.0) 98.0 (96.0-99.0) 98.0 (96.0-99.0) 0.407  

 BST 132.0 (104.0-182.0) 132.0 (104.0-181.0) 133.0 (104.5-181.5) 134.0 (105.0-186.0) 0.606  

 Pupil size (left) 3.0 (3.0-3.0)  3.0 (3.0-3.0)  3.0 (3.0-3.0)  3.0 (3.0-3.0) 0.295  

 Pupil size (right) 3.0 (3.0-3.0)  3.0 (3.0-3.0)  3.0 (3.0-3.0)  3.0 (3.0-3.0) 0.203  

 Pupil status (left)      0.112  

   - Normal 40427 (96.1%) 24303 (96.3%) 8053 (95.7%) 8071 (95.9%)  

   - Dilated 190 (0.5%) 115 (0.5%) 33 (0.4%) 42 (0.5%)  

   - Constricted 270 (0.6%) 156 (0.6%) 65 (0.8%) 49 (0.6%)  

   - Missing 1186 (2.8%) 671 (2.7%) 263 (3.1%) 252 (3.0%)  

 Pupil status (right)      0.044  

   - Normal 40381 (96.0%) 24290 (96.2%) 8037 (95.5%) 8054 (95.7%)  
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   - Dilated 189 (0.4%) 111 (0.4%) 35 (0.4%) 43 (0.5%)  

   - Constricted 272 (0.6%) 153 (0.6%) 67 (0.8%) 52 (0.6%)  

   - Missing 1231 (2.9%) 691 (2.7%) 275 (3.3%) 265 (3.1%)  

 Light reflex (left)      0.807  

   - Reactive 40439 (96.1%) 24285 (96.2%) 8075 (96.0%) 8079 (96.0%)  

   - Unreactive 297 (0.7%) 172 (0.7%) 58 (0.7%) 67 (0.8%)  

   - Unmeasurable 799 (1.9%) 464 (1.8%) 169 (2.0%) 166 (2.0%)  

   - Missing 538 (1.3%) 324 (1.3%) 112 (1.3%) 102 (1.2%)  

 Light reflex (right)      0.382  

   - Reactive 40375 (96.0%) 24267 (96.1%) 8049 (95.7%) 8059 (95.8%)  

   - Unreactive 301 (0.7%) 167 (0.7%) 64 (0.8%) 70 (0.8%)  

   - Unmeasurable 789 (1.9%) 453 (1.8%) 169 (2.0%) 167 (2.0%)  

   - Missing 608 (1.4%) 358 (1.4%) 132 (1.6%) 118 (1.4%)  

 Initial Consciousness      0.489  

   - Alert         39339 (93.5%) 23593 (93.5%) 7849 (93.3%) 7897 (93.9%)  

   - Verbal         1656 (3.9%) 1010 (4.0%) 337 (4.0%) 309 (3.7%)  

   - Pain         904 (2.1%) 543 (2.2%) 194 (2.3%) 167 (2.0%)  

   - Unresponsive         174 (0.4%) 99 (0.4%) 34 (0.4%) 41 (0.5%)  

 MEWS 1.0 (1.0-2.0)  1.0 (1.0-2.0)  1.0 (1.0-2.0)  1.0 (1.0-2.0) 0.483  
Hospital outcomes Admitted 10689 (25.4%) 6434 (25.5%) 2111 (25.1%) 2144 (25.5%) 0.757  

 Endotracheal intubation 915 (2.2%) 538 (2.1%) 175 (2.1%) 202 (2.4%) 0.272  

 Mechanical ventilation 808 (1.9%) 476 (1.9%) 151 (1.8%) 181 (2.2%) 0.197  

 Pressor infusion 1402 (3.3%) 811 (3.2%) 298 (3.5%) 293 (3.5%) 0.240  

 Surgery 1472 (3.5%) 857 (3.4%) 328 (3.9%) 287 (3.4%) 0.083  

 Cardiac catheterization 783 (1.9%) 489 (1.9%) 150 (1.8%) 144 (1.7%) 0.348  

 ICU admission 2226 (5.3%) 1327 (5.3%) 447 (5.3%) 452 (5.4%) 0.915  

 Cardiac arrest in 24 hours 310 (0.7%) 185 (0.7%) 60 (0.7%) 65 (0.8%) 0.897  

 ED Disposition     0.509  

   - Discharge 31831 (75.7%) 19096 (75.6%) 6388 (75.9%) 6347 (75.4%)  

   - Ward 7839 (18.6%) 4739 (18.8%) 1528 (18.2%) 1572 (18.7%)  

   - ICU 1724 (4.1%) 1027 (4.1%) 351 (4.2%) 346 (4.1%)  

   - OR 463 (1.1%) 255 (1.0%) 107 (1.3%) 101 (1.2%)  

    - Death  216 (0.5%) 128 (0.5%) 40 (0.5%) 48 (0.6%)   

 

Table 1. Study population 

 

Figure 2 and 3 shows ROC and PR curves of the models, respectively, assessed in the test dataset. The ROC 

AUC values of the model I and P ranged from 0.793 to 0.929 and 0.812 to 0.934. respectively, both of which 

were higher to those of modified early warning score (MEWS) in every aspect (all p < 0.001, supplementary 

Table 3). PR AUC values ranged from 0.149 to 0.673 and 0.156 to 0.683, respectively, and were higher to those 

of MEWS (all p < 0.001). The model P generally performed better with significantly higher ROC AUC in the 

prediction of admission (p=0.017), mechanical ventilation (p=0.028), surgery (p=0.011), and cardiac arrest 

(p=0.006) and with significantly higher PR AUC in the prediction of admission (p<0.001), intubation (p=0.010), 

mechanical ventilation (p=0.005), and ICU admission (p=0.010). 
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Fig. 2. Receiver operating characteristic (ROC) curves of the model I (blue lines) and P (red lines) plotted against those of modified early 

warning score (MEWS, gray dashed lines) and their area under the curve (AUC) values; ICU, intensive care unit 
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Fig. 3. Precision-recall (PR) curves of the model I (blue lines) and P (red lines) plotted against those of modified early warning score 

(MEWS, gray dashed lines) and their area under the curve (AUC) values; ICU, intensive care unit 

 

Figure 4 shows the results of a human expert vs. AI competition test. Our AI models achieved precision levels 

not significantly different from those of a human expert except in prediction of mechanical ventilation and ICU 

admission, where they achieved superior performance (p=0.030 [model I] and p=0.015 [model P], respectively, 

supplementary Table 4). 
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Fig. 4. Precision comparison in the human expert vs. AI competition;  

MV, mechanical ventilation; CAG, coronary angiography; ICU, intensive care unit 

 

Another human expert with two years of EMS director experience rated the quality of attention mappings in one 

hundred random samples from the test dataset (Figure 5). Only 10 percent of the cases were rated poor or worse 

(poor: 8, random: 2). Supplementary figure 1 shows the representative samples of attention maps chosen from 

the perfect/good/fair category cases. 
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Fig. 5. Quality ratings of attention mappings by a human expert in sample cases (N=100) 

 

4. Discussion 

 

In this study, we designed AI models that can jointly predict various hospital care needs using multimodal data 

at initial contact by EMS. The self-attention based-models were trained with multi-task learning methods. Our 

experiment showed that AI models could achieve similar or better performance than a human expert in this 

domain. 

Accurate prediction of patients’ needs for hospital resources is critical because the type of hospitals and 

subsequent cares are dependent on it. 2,13Direct medical control can improve the quality of the prediction. 

However, it requires 24/7 access to EMS directors and may lead to increased workload. Several tools have been 

developed to help the decision process where a single yes or no type event (i.e., mortality or ICU admission) is 

predicted based on limited types and number of variables14–16. In this approach, one can achieve near-maximum 

performance allowed by the dataset using shallow algorithms (i.e., logistic regression with polynomial and 

interaction terms or other non-deep learning-based ML methods) if developed in a principled way17,18.  

This approach, however, has obvious limitations. First, in many medical emergencies, a patient commonly has 

multiple care needs that cannot be predicted by a single output. Also, some of these predictions (i.e., surgery or 

coronary angiography) require target-specific features often scattered around in natural language data or in other 

unstructured data forms. In short, we need multiple outputs, each of which focusing on relevant information 

from both structured and unstructured data. This requirement motivated our adoption of self-attention 

mechanism. In the self-attention mechanism, the focus of attention is not hard-coded and determined by the 

input representation and queries. Through training, the mechanism learns to generate multiple attention patterns, 

each conditioned by each of the queries. The queries are also learnable and were parameterized by the W matrix 

in our models. How many queries a model needs for optimal performance would be task- and data-specific. The 

Bayesian hyperparameter optimization procedure suggested models with relatively many queries (eleven for 

both of the model types). 

The size of our training dataset was relatively small. Considering the rare occurrence of the outcome events, it is 

surprising that our models achieved performance similar to a human expert. One of the possible reasons could 
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be the use of multi-task learning. Health outcomes are often highly related to one another. One can take 

advantage of this by using multi-task learning, where a shared intermediate representation is used for multiple 

tasks. Possible benefits have been suggested7: 1) It has implicit data augmentation effect; 2) It helps the models 

to focus more on relevant features rather than noises; 3) It allows a task to use the features developed by another 

task; 4) It biases a model to prefer representations that other tasks also prefer which will help the model to be 

generalized to new tasks; 5) It acts as a regularizer by introducing an inductive bias which reduces the risk of 

overfitting. In our study, the feature-rich natural language input data could have made the models very prone to 

overfit. Our extensive application MTL may have provided significant benefits, probably in data augmentation 

and model regularization. 

The model P performed better than model I. This suggests the contextual information should be repeatedly 

provided with each new input vector rather than being used once at the beginning of the unrolling of GRUs. 

This could be explained by that the contextual information encoded in the initial hidden state will degrade as the 

unrolling progress and be “forgotten” eventually. 

This study has several limitations. Firstly, the models were developed and tested using EMS records of a single 

hospital. The way of using natural language, as well as the population characteristics and clinical environment, 

can change by time and space. Therefore, we cannot guarantee the generalizability of our models. Second, only 

one human expert was compared to the AI models. We chose to use the performance scores of the most 

experienced EMS director as a comparator rather than averaged scores. Third, the role of direct medical control 

is much wider rather than some predictions of hospital care needs. Developing a system capable of providing all 

the expertise of an EMS director would be much more challenging.  

Despite these limitations, our study has several strengths. This is the first study developing AI systems capable 

of jointly predicting multiple outcomes using only prehospital information. The system achieved human expert-

level performance and provided interpretable outputs. Also, this is the first attempt to apply modern NLP 

techniques on EMS records. The models extract distributed sentence representations from unstructured real-

world free text data were used for predictions. We also presented some clues on how contextual information can 

be incorporated into the computational graphs to improve prediction performance. Lastly, we also showed how 

multiple auxiliary tasks can be utilized in model development. 

 

5. Conclusion 

 

Our models with a self-attention mechanism trained using a multi-task learning method achieved similar (or 

superior) performance compared to an experienced human expert. Our study shows that AI models can be used 

to predict various medical resource requirements at initial contact by EMS.  
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Supplementary Fig. 1. Examples of attention mappings generated by the models 
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