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Abstract 
 

To date, the Covid-19 epidemic has produced tremendous cost and harm. However, to 
date, many epidemic models are not calibrated to seroprevalence survey(s).  This paper 
calibrates a relatively simple, SIR plus confirmed cases ("SIRX") model against 
seroprevalence survey data released by the State of New York. The intention of this 
paper is to demonstrate a potentially new technique of calibration for epidemic models 
used by scientists, public health officials and governments.  The technique can then be 
incorporated in other more complex models. Open source code is included to assist 
model developers. 
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Introduction 
 
The intention of this paper is to provide a calibration technique, applied to a relatively simple SIR plus 
cases model ("SIRX") using seroprevalence data.  This paper is an attempt to communicate to 
epidemiologists and other modelers within a timeframe that is useful to managing the current epidemic.  
Numerous simplifications are made to concentrate this communication.  Hence additional detail and 
accuracy are explicitly beyond the scope of this paper. 
 
All code and data are available at [1]. This calibration technique was independently developed by the 
author. An extensive search for other similar techniques which may have existed in the literature was 
beyond the time scope of this paper. Such techniques will be credited in subsequent revisions of this paper 
as they come to the attention of the author. 
 
Generalizing an Antibody Test 
 
As will be explained in detail below, in this paper the New York State "Wadsworth" Antibody 
Seroprevalence Survey will be used to calibrate a SIRX model. 
 
In the attached appendix, a simplified antibody test is used to demonstrate via linear algebraic 
manipulations how both sensitivity and specificity would interact with different (perfectly) known 
seroprevalence time series, assuming that the test is sampled at a fixed time relative to the time series 
independent variable t.  Antibody test sensitivity and specificity curves were rounded from the 
Wadsworth test in the Appendix so that the arithmetic can be checked by inspection.  In the Appendix, 
and summarized in Figures 1, 2, and 3 below, three different assumed time series are put forward as 
examples: Figure 1: a cumulative infection growth rate doubling every 3 days (newly infected doubling 
every 3.64 days), representing an epidemic’s typical exponential growth before the introduction of social 
distancing measures; Figure 2: a flat (constant) infection rate per day; and Figure 3: an exponential 
decrease in the number of new infections at the same 3.64 halving rate as Figure 1, created by "playing 
backwards time" from the example Figure 1.   
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The three different types of new infected time series are shown above. 
 
In each time series chart, the X's connected with the black line represent the number of new infected each 
day t.  The bars represent the cumulative infected.  Of note is that once infected, in the time series 
members of the subpopulation are always counted as positive whether they remain infectious, or have 
recovered or died and are no longer infectious.  The cumulative infected total represents the true total 
percentage of the tested population who are positive for the condition of ever having been infected. 
 
Given a known true infected time series, using algebra and arithmetic the test results have been computed 
and presented in Table 1 as the ratio of Test Positive to True Positive. (Please see the Appendix for the 
calculations.) In the time series charts, these ratios are expressed as the red horizontal line, and compared 

Infected plus Recovered 
Time Series 
Characteristic 

Test Positive / 
True Positive 

Ratio 
Exponential Increase 20.9% 
Flat 50.5% 
Exponential Decrease 88.0% 
Comparison to: 
Naive Use of Test Final 
Sensitivity and Specificity 
Instead of Test Curve 

89.0% 

Naive Assumption of 
Perfect Test 

100% 

Table 1 
Time Series Characteristic vs Test Positivity 
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Figure 2 − Flat New Infected Time Series
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Figure 1 − Exponential Increase of New Infected Time Series

t (Time in Days)

X'
s 

= 
N

ew
 T

ru
e 

Po
si

tiv
es

, B
ar

s 
= 

C
um

ul
at

ive
 T

ru
e 

Po
si

tiv
es

 

0.
01

%
0.

10
%

1.
00

%
10

.0
0%

10
0.

00
%

X X X X X X X

X
X

X
X X X

X X
X

X X X
X X X

X X X
X X

X
X X

X
X

X
X

X
X

X X

0 10 20 30 40

Figure 3 − Exponential Decrease of New Infected Time Series
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to a "perfect" test in the blue horizontal lines. The charts y axis are logarithmic -- and understate the true 
significance of the undercount. The results clearly show that the ratio of test positive (test infected) to 
total infected is significantly reduced, in the exponential growth and the flat examples, compared to both 
(a) the actual number of infected using an accurate calculation; and (b) the naively computed number of 
infected using a single final sensitivity.  This is because the Wadsworth Test, like most antibody tests, 
increases in sensitivity as the immune system responds to the infection over time.  Therefore, if an 
analysis uses only an antibody test's peak sensitivity (measured three or more weeks after infection), it 
would significantly underestimate the true infected rate.  Further, there is a risk, particularly in test results 
that do not have their adjustments published, that public health officials, government executives, or the 
general public will assume naively that seroprevalence test results presented in summary form at press 
conferences represent an unbiased estimated of the population's true cumulative infection percentage, 
when instead it is likely significantly higher. Therefore it is clear that care must be taken by the modeler 
in using test results, particularly those without published detail as to their calculation method or 
sensitivity and specificity. 
  
The SIRX Model 
 
This paper will use a modified SIR model to demonstrate calibration. The model utilized for this example 
is a simplification of the SIR-X model of Maier and Brockmann [2], itself a generalization of the SIR 
model.  In addition to the three basic SIR compartments of S (susceptible), I (infected), and R (recovered 
or deceased), there is an additional compartment X (confirmed and reported cases), which allows the 
model to connect to the confirmed cases reported by public health authorities.3 
 
The model is defined by the following differential equations describing the flow between the 
compartments: 
 

 𝑑𝑆/𝑑𝑡	 = 	−𝛽𝐼	𝑆/𝑁	 Eq. 1  

 𝑑𝐼/𝑑𝑡	 = 	𝛽𝐼	𝑆/𝑁	 − 	𝛾𝐼 − 	𝑘-.𝐼	 Eq. 2  

 𝑑𝑋/𝑑𝑡	 = 	𝑘-.𝐼	 Eq. 3  

 𝑑𝑅/𝑑𝑡	 = 	𝛾𝐼	 Eq. 4  

With the constraint:   

 𝑁	 = 	𝑆	 + 	𝐼	 + 	𝑅	 + 	𝑋 Eq. 5  

With definitions: 
 

S, I, R º Susceptible, Infected, or Recovered4 Population 
X º Confirmed Cases Population5 (assumed quarantined and thus unable to infect Susceptible 

Population) 
N º Total Population 
β º Transition rate from the Susceptible to the Infected compartment 
γ º Transition rate from the Infected to the Recovered compartment 
𝑘-. º Transition rate from the Infected to Confirmed Cases compartment 

                                                   
3 Note that Maier and Brockmann provide for a direct transition between the S and the R compartment to explain 
subexponential growth.  This S to R transition is not used in this paper's model. 
4 Note that the Recovered Population includes those who have died.  This population had been infected but is no 
longer infectious. 
5 Similarly the (Confirmed) Case Population includes those who had been confirmed as positive but subsequently 
died or have recovered, so that they are no longer infectious to the Susceptible population. 
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t º Time, in units of days for convenience 
 
This model is a SIR model [3] with an extra compartment for the Confirmed cases and where the 
Confirmed cases are isolated until no longer infectious. 
 
Because this paper's purpose is to demonstrate calibration, for brevity the inherent weaknesses in the SIR 
model are immaterial and therefore ignored. Regardless, the calibration technique can be applied to more 
accurate and more complex models, including SEIR models, models that use gamma distributions for 
compartment distributions vs time, models that use or incorporate directly mortality, models that network 
individual infections, and so on. Examples include the Imperial College Model [4] and the IHME Model 
[5]. However, all models would benefit from more accurate calibration with seroprevalence data of which 
this simplified SIRX model is a mere example. 
 
To simplify this example the γ transition factor has not been calibrated, but is simply assumed to be a 
constant of 1/8 representing an 8 day mean infectious period.   1/γ is equivalent to the mean time (in this 
case 8 days) in an exponential distribution for an infected individual to pass from the Infected 
compartment to the Recovered compartment (which included mortalities which are assumed to be no 
longer infectious). The 8 day mean time is both reasonable and sufficient to illustrate calibration to 
seroprevalence. 
 
Within the SIRX model, as pointed out by Maier and Brockmann, the probability 𝑄3456  of a case ending 
up in the X Confirmed Cases compartment instead of the R compartment is: 
 

 𝑄3456 	= 	𝑘-./(𝑘-. 	+ 	𝛾	)	 Eq. 6  

This is roughly equivalent but not the same as the ascertainment fraction, i.e. the ratio of confirmed cases 
to total infected plus recovered -- differing because of the delay of the infected from entering the 
Confirmed or Recovered compartments.  Regardless, by adjusting 𝑄3456  (or equivalently 𝑘-. through the 
linear relationship in Equation 6 above, the model may be calibrated to match seroprevalence as 
determined by survey. 
 
The Example Case Data 
 
Daily Confirmed Case data was originally obtained from the New York City Department of Health by 
manually typing in the data in the daily reports [6], but that has been subsequently discontinued and does 
not make corrections for past reported data. NYC updated to a time series file [7] which has the advantage 
that past data are added as delayed reports are processed.  The date used in the new NYC time series is the 
"date of diagnosis" which is presumably the same or slightly delayed from the date of a positive (PCR 
type) test being received by the medical practitioner.  These data are then corroborated against data from 
the New York State Department of Health [8] by adding up the cases in the 5 counties comprising New 
York City (Kings, Queens, New York, Bronx, and Staten Island).  Of note is that the NYS data's date is 
"the date the test result was processed by the NYS Clinical Laboratory Reporting System". All three case 
data sets are contained in the online code and data files for convenience. Visual observation shows that 
the NYS data are generally one day delayed from the NYC data; and that the NYC data have a larger 
weekly periodicity "noise" likely due to a relative lack of PCR testing or processing on Saturday and 
Sunday.  The regression technique used in this paper largely averages out such noise, although a more 
sophisticated technique, based on either day of the week or tests on a day, could correct for the periodic 
weekly noise. The population for NYC was rounded to 8.623 mm from [9]. 
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The Computational Model 
 
The model was built in the R Programming Language[10].  The SIRX model is encapsulated in a function 
sirX3() which when given initial conditions of 𝑁, 𝐼:	;	:<	, 𝑑𝐼/𝑑𝑡	(𝑎𝑡	𝑡 = 𝑡0), 𝑘-.	, 𝛽, and	𝛾, will solve the 
differential equations (1) through (4) computationally for any number of days going forward using the 
Dormond-Prince Runge-Kutta 4th order method R method from the package deSolve as described in 
Soetaert et al [11].  This computational solution was checked by using a discrete numerical integration 
where each day is broken into 500 (arbitrarily small) timesteps (i.e. Euler's method) as inspired by 
Anastassopoulou et al [12]).   
 
The sirX3() function has an optional parameter which linearly changes the initial 𝛽< by a multiplicative 
change factor 𝐹CD (i.e. 0.5) over the fit interval from t< to tF: 
 

 𝛽(𝑡) = (𝑡	 − 𝑡<)/(𝑡F	 − 	𝑡<)	𝐹𝛽𝛥	𝛽0	 Eq. 7  

 
This is useful in fitting the data when a public health policy may have changed social distancing and self-
isolation behavior as will be seen below. 
 
Fitting Case Data to Model 
 
A relatively simplistic and (usually) stable method of fitting data is the least squares method. While there 
are essentially closed form solutions that produce an exact answer for linear models, non-linear models 
like SIRX cannot be solved using a linear regression. The problem is compounded when when 𝑆/𝑁 is 
significantly less than 1 or when a non-constant susceptible to infection transition rate (i.e. 𝛽) is assumed. 
(A changing 𝛽	 is equivalent to a changing effective reproduction number, 𝑅HII  because 𝑅HII = 	𝛽/𝛾 in 
the SIR framework, and must be fit computationally by an algorithm). 
 
Fortunately, Elzhov et al [13] has created within R an excellent Levenberg-Marquant least square fitting 
within the package minpack.lm called thru the nlsLM() function. The author has been iteratively 
improving the code algorithmically utilizing these functions for several weeks and has thus experienced 
and debugged multiple edge cases.  In the interest of brevity, the code has been distilled down to a 
minimum example based around a calling function, runSIRX2, called from the command line.6 An 
example of running the code is contained in the function genFiguresAndTables() which will generate the 
figures and tables used in this paper. 
 
In fitting the data, the algorithm fits the error of the model's estimate against the logarithm of the total 
cases.  This has some desirable computational properties: 1) same weighting of percentage error on large 
case count data points vs small case counts, i.e. 10,000 vs 500; 2) reducing to the common log-linear least 
square regression solution if S/N	=1.  The author has shown (but it is beyond the scope of this paper) that 
a regression of  
 

 𝑙𝑜𝑔(𝑋	 −	𝑋<) 	= 		𝑟	𝑡	 + 	𝑐< 	+ 	𝜖	 Eq. 8  

 

                                                   
6 An example of running the code is contained in the function genFiguresAndTables() which will generate the 
figures and tables used in this paper.  
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is the general "closed form" symbolic solution when S/N		=	1 thereby giving the more complex SIRX 
non-linear least squares optimizer a computationally "nearby" starting set of parameters to bootstrap the 
regression.  Where: 
 

r º the log linear regression's coefficient on t, equivalent to the exponential growth rate 
𝑐< º the log linear regression's constant 
𝜖 º the log linear regression's residual error term 
𝑋< º the number of cases at t=0 in the regression. 

 
If 𝑋< is approximately known, for example in the initial growth phase of an epidemic as 1, Equation 8's 
log-linear regression will produce a reasonable result.  However, if 𝑋< is unknown, for example when an 
epidemic's new cases are declining exponentially, the regression cannot be formulated in a (log) linear 
form.  In that event, to solve for the parameters 𝑋<,𝐴	and 𝑟, Equation 8 must be rearranged to a non-linear 
regression.7 
 

 𝑙𝑜𝑔(𝑋) 	= 	𝑙𝑜𝑔(𝑋< 	+ 	𝐴		𝑒4(:	U	:V)) 	+ 	𝜖	 Eq. 9  

 
After this non-linear regression, with X0, A, and r  estimated, the run on the SIRX model has good starting 
parameters and will normally converge to a solution.  
 
The essential functional flow of the algorithm is: 
 
1) Fetch the data; 
2) Use simpler linear models (with S/N	=	1 leaving purely exponential results) to guess initial 

parameters for the non-linear nlsLM model that will not result in a gradient singularity, thereby 
causing the model to fail; 

3) As desired by the modeler, either use explicit inputs for 𝑘-. (equivalent to setting 𝑄3456) and the beta 
Change Factor to find the best fit for the current beta from the subset of the data.   

4) If the modeler should so desire, the algorithm can find the best fit for 𝑘-. and/or the Beta Change 
Factor 𝐹CX	 in addition to 𝛽 or 𝛽< (the latter if using the Beta Change Factor 𝐹CX	).  

 
Of note is that the constants 𝛽 and 𝑘-. are not constant in the real world over relatively long time periods.  
This is because social distancing behavior changes the interaction rate between the infected and the 
susceptible, and hence changes  𝛽; and because changes in screening behavior, contact tracing, or 
reticence to seek healthcare behavior also change with time.  This changing of the 𝛽 and 𝑘-. "constants" 
favors regression over shorter time periods.  However, as was shown by the 3 examples based on a real-
world seroprevalence test (like the Wadsworth test), a longer period is needed to take into account very 
significant changes in the test sensitivity. For the purposes of this calibration demonstration, this paper is 
essentially forced to use at least 30 days preceding the seroprevalence survey.  A more accurate model 
could use more frequent seroprevalence sampling, and perhaps fatality data, to allow a piecewise 
approximation of the 𝛽 and 𝑘-. regression parameters. This is beyond the scope of this paper.    
 
An example of a calibration model run is in the Calibrating the SIRX to the Seroprevalence Survey 
section that will follow. 
 
 
                                                   
7 The reader may note that 𝑡< is not known.  It is set by convenience as the start of the data's interval to be analyzed, 
noting that the regression solved non-linear regression A, and r  constants can compensate for any choice of 𝑡< 
because 𝑒U4	:V is also a constant. 
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The NYS Seroprevalence Data 
 
The seroprevalence data for the example is taken from the Governor of New York, Andrew Cuomo's, 
press conference prepared slides [14, 15, 16]. The final data used from this paper is taken from the slides 
(contained in the YouTubes in the references) which differ due to rounding from the Governor's transcript 
remarks. The data is summarized below: 
 

Table 2 - New York Antibody Survey Results 

Date 22 April 27 April 1 May 
Total NYS Surveyed 2,933 7,397 15,103 
NYC Only Percent 21.2% 24.7% 19.9% 
NYC Percent of Total 43% 43% Not Stated, Assumed 43% 

 
 
Of note is that the 22 April data, released on 23 April is stated as being "collected over two days". It is 
assumed it was collected on 20-21 April.  The 1 May data, released first on 2 May, is assumed collected 
29-30 April.  As it is unlikely that the NYC percentage positive test fraction could have declined by 4.8% 
(from 24.7% to 19.9%) in approximately doubling the sample size over 4 days, it is more likely that there 
was some unpublished adjustment to the serological survey data8. Further, the 2 May press conference 
indicated that the data was collected "over the past two weeks".    
 
Assuming a constant rate of collection, this paper will use the midpoint, 25 April, for calibration.  
However, a more accurate estimate could be obtained using the actual collections on each day for the 
calibration with some type of least squares fit to the data as will be described below. The survey 
administrator (i.e. a government public health authority), would have available any ex-post corrections 
made in the unpublished data.  This author recommends that government and private survey collectors 
fully publish all data. 

                                                   
8 27 April data: 7,397 x 24.7% x 43%= 786 positive. 1 May data: 15,103 x 19.9% x 43% = 1,292 positive.  
Therefore, during the 4 day period from 27 April to 1 May, there would only be 1,292 - 786 = 506 new positives out 
of 43% x (15,103 - 7,397) =  3,314 new tests or 506/3,314=15.3% positives, a decline of 24.7-15.3=9.4% in six 
days.  This is statistically unlikely in such a sample size if the population and test were uniform, and therefore 
indicates a likely undisclosed adjustment to the data. This paper will use the 19.9% midpoint number is throughout. 
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column.  If the model used was a "SEIR" type model (compartments: Susceptible, Exposed, Infectious, 
and Recovered), where onset was being used as a proxy for infectious, this could be adjusted directly. 
Alternatively an additional compartment could be added if infectiousness begins before symptom onset 
but after infection, i.e. a SEIOR model (compartments: Susceptible, Exposed, Infectious, Onset of 
symptoms, and Recovered). Additionally, if the model has direct access to the testing results, additional 
granularity would be available.   
 
The NYS Wadsworth EUA provided sensitivity curve is clearly non-linear between 11 and 20 days after 
onset.  While this could be smoothed out with a curve fitting, if the model has direct access to the 
underlying data, a more accurate sensitivity curve could be constructed.  Such accuracy and confidence 
interval information is beyond the time scope of this paper.   
 
The specificity data (i.e. 100% less the false positive percentage) are given on page 7 of the EUA for a 
variety of sample sera and are reasonably assumed by the EUA to not vary with time since infection with 
SARS-Cov-2. In calibration, the total true positives for all 433 samples in the clinical specificity table 
(Table 5 of the EUA [18]) is used to calculate an average specificity for all 433 samples: 100% - 5/433 = 
98.85%.  Taking sensitivity and specificity together, these are used to make a "test calibration table" 
which is input into the R computational model:  
 

 
t start t end Sensitivity Specificity 

0 11.999... 0.179 0.9885 
12 15.999... 0.313 0.9885 
16 20.999... 0.489 0.9885 
21 25.999... 0.492 0.9885 
26 29.999... 0.793 0.9885 
>=30  0.880 0.9885 

 
Table 5 - Wadsworth Calibration Test Sensitivity and Specificity 

 
Test Calibration Sample Bias 
 
As an additional caveat, please note that the Wadsworth Test clinical sensitivity tables are calibrated 
using 753 subjects from "several US clinical collection sites", and using108 samples from Westchester 
County, collected at undisclosed times in March and April 2020.  As the samples were taken from clinical 
PCR tests at a time when, due to rationing, PCR tests were generally limited to symptomatic individuals 
who sought out medical care presumably due to severity of illness, and where asymptomatic or mild cases 
would have difficulty in obtaining a PCR test; it is likely there is a calibration selection bias which 
increases the relative number of severe cases in the sample.  Further, as the age distribution for those with 
severe disease is clearly biased older as seen in [20] than the general NYC population (seen in [9]), the 
Wadsworth Test calibration samples are likely biased older. If the model has direct access to the 
calibration population data, this bias can be eliminated. 
 
 
Using a SIRX run to Estimate a Seroprevalence Test Result 
 
For a given SIRX model run, a table is generated of the true positives, that is the infected plus recovered 
in the general population that is being sampled in the NYS seroprevalence survey. For a given model run 
containing infected and recovered in the general population who have not been previously PCR (swab) 
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tested positive, each such day has a certain number of newly infected on a given date in that population 
that can be calculated10  as: 

 𝐶Z35[(𝑡) 	= 	𝐼(𝑡) 	+ 	𝑅(𝑡)	 Eq. 10  
 𝐶Z35[(𝑡) 	= 	𝑁	 − 𝑆(𝑡) 	− 	𝑋(𝑡)	 Eq. 11  

 
where the function at time notation 𝐼(𝑡) indicates the value is a time series taken from the SIRX model 
and 
 

𝐶Z\]^(𝑡) 	≡ the cumulative total infected at time t in the non "Confirmed-Case" population 
 
Then, a careful application of Equation 33A from the Appendix11 yields the percentage that is tested 
positive and presumably reported by the Governor during the press conference.  This is done by assuming 
that the entire non-Case Confirmed population is tested at the test date, so that 
 

 𝑁`5`. 	= 	𝑁	 −	𝑋:;aHb:	 Eq. 12  
 
is used as the denominator in Equation 33A. While 𝑋𝑡=𝑇𝑒𝑠𝑡 is typically a small fraction of the total 
population 𝑁, it is somewhat significant.  Therefore, Equation 33A becomes: 
 

 
𝜃Z 	= [	1/𝑁`5`. g(𝑝: 		+ 	𝑞	 − 	1)𝐶:Z		] + 	(1	 − 	𝑞)

:klm

:;<

	 Eq. 13  

 
The 𝜃Z is thus the fraction that would test positive if the survey encompassed the entire non-Confirmed 
Population and the test performed precisely as specified in Table 5. Of course, the actual test is a sample 
and the test is statistically described to have confidence intervals, so that statistical methods could be 
applied to derive a confidence interval on the test results.  The fitting of the case data (using the least 
squares technique on a limited sample set) is itself subject to statistical estimation errors.  But again, this 
paper is simply demonstrating the technique to derive a mean "point estimate" and the estimation of 
statistical error is beyond its (already lengthy) scope. 
 
Calibrating the SIRX to the Seroprevalence Survey 
 
As a final step, the modeler flips a switch to get the runSIRX2() algorithm to calculate the seroprevalence; 
asking the model to adjust inputs for 𝑘-. (i.e. 𝑄3456)  and the Beta Change Factor 𝐹CX	; or alternatively 
asking the non-linear least squares algorithm to find a best fit to a seroprevalence that matches the survey 
data simultaneously with finding the best fit for the daily new cases X and the change in daily new cases 
Δ𝑋.   To do this in a single non-linear "regression" the weighting factor is increased for the 
seroprevalence target least squares error so that it is large enough to act as a constraint -- forcing the least 
squares algorithm to converge to a solution with seroprevalence very near (within 0.1%) of the survey 
                                                   
10 This estimate may be slightly inaccurate as some of the 𝑋(𝑡) may have a different time series distribution vs. the  
𝐼(𝑡) 	+ 	𝑅(𝑡)	distribution -- because 𝑅(𝑡) and 𝑋(𝑡) are delayed compared to 𝐼(𝑡).		This	in	turn	is	due to the fact that 
the SIRX population must flow thru I to get to R and X compartments.  However, to the extent that the ratio of 
𝑋(𝑡)/[𝐼(𝑡) 	+ 	𝑅(𝑡)] is small and the percentage variation between ∆X(t)/X(t) is essentially by definition similar to 
∆𝑅(𝑡)/𝑅(t) (because ∆𝑋(𝑡) is proportion to 𝐼(𝑡), as is ∆𝑅(𝑡)), this effect is likely to be small. Calculation of this 
value is beyond the time scope of this paper. 
 
11 Please see the Appendix for the variable definitions. 
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result target. This yields a minimum least squares fit to the case data while simultaneously fitting the 
seroprevalence data, thereby calibrating the model. An example of this calibration is shown in Figure 4 
below. 

 
Figure 4 - Calibrated to 19.9% Seroprevalence Survey SIRX using NYC Case Data 

The black lines are the actual data with the upper black line (the O's) being the reported cases in the data 
set (in this case NYC's data from [7]), and the lower black line (the X's) is the daily change in cases. The 
blue lines are the calibrated fit to the data.  The red line is the 𝑆/𝑁, i.e. the percentage still susceptible in 
the population reusing the 1 to 100 scale on the left Y axis.   
 
The calibration needs additional inputs: 1) The mean "effective" date the seroprevalence data are 
collected (April 25th, the black vertical line), 2) the range of data for which to do the calibration 
(represented by the vertical blue lines from March 7th to May 16th) -- a section of time for which the data 
appear to be clean except for the weekly periodic (7 day) variation in tests12; and 3) the range of data for 
which 𝛽(𝑡) is adjusted as per Equation 7 being also from March 7th and running until March 23rd (16 
days = ∆𝑡wxy from the start of the calibration range). This 𝛽(𝑡) range brackets the Governor's "lockdown" 

                                                   
12 The daily data in this NYC test are "by date of diagnosis" which is presumably closer to the date the test is taken 
than the original (older) NYC data series (total confirmed by NYC DOH as of a certain date), or the NYS data series 
(total reported to the NYS system as of the date).  New York State has total number of PCR tests by County which 
could be used to adjust the reported NYC data as if testing was done at a constant rate, but this adjustment is beyond 
the scope of this tutorial. 
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social distancing order (March 20th).  By manually varying ∆𝑡wxy in integer units, starting at the 
lockdown date, the minimum residual standard error may be found, so that the optimal ∆𝑡wxy is that date 
that has the minimum residual error. This may be done algorithmically, but is beyond the time scope of 
the code development associated with this paper. 
 
Note that there may be timing differences of a few days between reporting of the PCR Swab Test data 
represented by the NYC times series data (the black lines) and the seroprevalence test dates which 
reported in the during the Governor's press conferences. Also note that the change in 𝛽(𝑡) is fit as if it is 
linear in the  ∆𝑡wxy time interval and that this is an approximation to the hidden underlying process. 
Additional code could add a start date immediately before and after the lockdown date. 
 
What can be seen is that 1) the SIRX model visually does a good job of fitting both the daily change in 
cases (lower blue line) and the cumulative daily cases (the upper blue line); and 2) the percent still 
susceptible is around 70% compared with the serological survey showing around 80%.  The actual 
numbers can be seen in Table 6 below. 
 
The model text output in Table 6 shows that a perfect seroprevalence test would show 28% positive13 in 
the total population on April 25th, and with 163,000 PCR reported infected (about 2%, presumed not in 
the seroprevalence survey) there are only about 71% remaining susceptible in the population.  This 
continues to decrease slowly to around 67%.  
 

Table 6 - Model Run Data and Calibration 

 Date t C(Cases) 𝚫C I(Model) X(Model) ∆𝑿(Model) S%(Model) 
1 2020-02-29 60 1 NA NA NA NA NA 
2 2020-03-01 61 2 1 NA NA NA NA 
3 2020-03-02 62 2 0 NA NA NA NA 
4 2020-03-03 63 4 2 NA NA NA NA 
5 2020-03-04 64 9 5 NA NA NA NA 
6 2020-03-05 65 12 3 NA NA NA NA 
7 2020-03-06 66 19 7 NA NA NA NA 
8 2020-03-07 67 26 7 1556.4 27.2 13.9 99.98 
9 2020-03-08 68 47 21 3275.0 47.9 20.7 99.95 
10 2020-03-09 69 104 57 6567.3 90.2 42.3 99.91 
11 2020-03-10 70 174 70 12547.5 172.9 82.6 99.82 
12 2020-03-11 71 328 154 22834.3 326.6 153.7 99.68 
13 2020-03-12 72 684 356 39563.7 598.9 272.3 99.44 
14 2020-03-13 73 1304 620 65229.9 1058.2 459.3 99.06 
15 2020-03-14 74 1947 643 102272.0 1795.3 737.1 98.50 
16 2020-03-15 75 2980 1033 152387.4 2919.9 1124.6 97.72 
17 2020-03-16 76 5103 2123 215676.0 4550.5 1630.6 96.71 
18 2020-03-17 77 7557 2454 289882.2 6796.4 2245.9 95.45 
19 2020-03-18 78 10534 2977 370090.3 9734.9 2938.5 94.01 
20 2020-03-19 79 14241 3707 449146.0 13388.9 3654.0 92.46 
21 2020-03-20 80 18251 4010 518806.8 17711.6 4322.8 90.90 
22 2020-03-21 81 20886 2635 571301.3 22583.9 4872.2 89.44 
23 2020-03-22 82 23461 2575 600808.1 27824.8 5240.9 88.18 
24 2020-03-23 83 27019 3558 604447.0 33214.3 5389.5 87.20 
25 2020-03-24 84 31514 4495 594742.4 38557.7 5343.4 86.38 
26 2020-03-25 85 36348 4834 584540.7 43812.3 5254.6 85.59 
27 2020-03-26 86 41371 5023 573901.2 48974.1 5161.8 84.81 
28 2020-03-27 87 46463 5092 562870.7 54039.3 5065.2 84.05 
29 2020-03-28 88 49919 3456 551495.4 59004.6 4965.3 83.32 
30 2020-03-29 89 53442 3523 539820.6 63867.1 4862.6 82.61 
31 2020-03-30 90 59543 6101 527890.6 68624.5 4757.4 81.92 
32 2020-03-31 91 64971 5428 515748.4 73274.6 4650.1 81.25 

                                                   
13 These figures in this paragraph are arbitrarily rounded to 1%. Also note that the precise calculation of a perfect 
seroprevalence test requires both the numerator and denominator be adjusted, i.e. (Σ𝐼	 − 	𝑋)	/	(N		 − 	X)	where Σ𝐼 is 
the total cumulative infected. 𝑆	 = 	𝑆[w: N and Σ𝐼	 = 	𝑁	 − 	𝑆. For NYC 𝑁 ≅ 8,623,000. In numbers carrying extra 
precision to make the arithmetic clear (Σ𝐼	 − 	𝑋)	/	(N		 − 	X) 	≅	2599527/8468394 ≅ 28% for April 25th. 
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 Date t C(Cases) 𝚫C I(Model) X(Model) ∆𝑿(Model) S%(Model) 
33 2020-04-01 92 70403 5432 503435.2 77815.7 4541.1 80.60 
34 2020-04-02 93 76156 5753 490990.9 82246.4 4430.8 79.97 
35 2020-04-03 94 81803 5647 478453.2 86565.8 4319.4 79.37 
36 2020-04-04 95 85651 3848 465858.2 90773.2 4207.4 78.78 
37 2020-04-05 96 89420 3769 453239.9 94868.3 4095.1 78.21 
38 2020-04-06 97 95773 6353 440630.0 98850.9 3982.6 77.66 
39 2020-04-07 98 101822 6049 428058.4 102721.3 3870.4 77.13 
40 2020-04-08 99 107374 5552 415552.7 106480.0 3758.7 76.62 
41 2020-04-09 100 112403 5029 403138.4 110127.6 3647.6 76.13 
42 2020-04-10 101 116833 4430 390839.0 113665.1 3537.5 75.66 
43 2020-04-11 102 120540 3707 378675.9 117093.5 3428.5 75.20 
44 2020-04-12 103 123406 2866 366668.6 120414.3 3320.8 74.76 
45 2020-04-13 104 126693 3287 354834.4 123628.8 3214.5 74.34 
46 2020-04-14 105 130813 4120 343189.0 126738.7 3109.9 73.93 
47 2020-04-15 106 134681 3868 331746.2 129745.7 3007.0 73.54 
48 2020-04-16 107 138199 3518 320518.1 132651.7 2906.0 73.17 
49 2020-04-17 108 141767 3568 309515.1 135458.7 2806.9 72.80 
50 2020-04-18 109 143930 2163 298746.2 138168.6 2709.9 72.46 
51 2020-04-19 110 146277 2347 288218.9 140783.7 2615.0 72.12 
52 2020-04-20 111 150046 3769 277939.2 143306.0 2522.3 71.80 
53 2020-04-21 112 153106 3060 267912.2 145737.9 2431.9 71.49 
54 2020-04-22 113 156565 3459 258141.3 148081.5 2343.6 71.20 
55 2020-04-23 114 159396 2831 248629.3 150339.2 2257.7 70.92 
56 2020-04-24 115 161858 2462 239377.8 152513.3 2174.1 70.64 
57 2020-04-25 116 163447 1589 230387.4 154606.2 2092.8 70.38 
58 2020-04-26 117 164455 1008 221657.9 156620.1 2013.9 70.13 
59 2020-04-27 118 166759 2304 213188.5 158557.4 1937.3 69.90 
60 2020-04-28 119 169472 2713 204977.5 160420.3 1862.9 69.67 
61 2020-04-29 120 171806 2334 197022.8 162211.2 1790.9 69.45 
62 2020-04-30 121 173809 2003 189321.5 163932.4 1721.2 69.24 
63 2020-05-01 122 175674 1865 181870.3 165586.1 1653.7 69.03 
64 2020-05-02 123 176722 1048 174665.7 167174.4 1588.4 68.84 
65 2020-05-03 124 177499 777 167703.4 168699.7 1525.2 68.66 
66 2020-05-04 125 179043 1544 160979.1 170164.0 1464.3 68.48 
67 2020-05-05 126 180552 1509 154488.1 171569.3 1405.4 68.31 
68 2020-05-06 127 181951 1399 148225.4 172917.9 1348.6 68.15 
69 2020-05-07 128 183191 1240 142186.0 174211.7 1293.8 67.99 
70 2020-05-08 129 184276 1085 136364.5 175452.6 1240.9 67.84 
71 2020-05-09 130 184944 668 130755.6 176642.6 1190.0 67.70 
72 2020-05-10 131 185403 459 125353.7 177783.5 1140.9 67.56 
73 2020-05-11 132 186622 1219 120153.2 178877.3 1093.7 67.43 
74 2020-05-12 133 187885 1263 115148.6 179925.5 1048.2 67.31 
75 2020-05-13 134 189189 1304 110334.2 180930.0 1004.5 67.19 
76 2020-05-14 135 190123 934 105704.4 181892.4 962.4 67.08 
77 2020-05-15 136 190761 638 101253.5 182814.4 922.0 66.97 
78 2020-05-16 137 191327 566 96976.0 183697.5 883.1 66.86 
79 2020-05-17 138 NA NA 92866.4 184543.2 845.7 66.76 
80 2020-05-18 139 NA NA 88919.2 185353.0 809.8 66.67 
81 2020-05-19 140 NA NA 85129.0 186128.4 775.4 66.58 
82 2020-05-20 141 NA NA 81490.5 186870.7 742.3 66.49 
83 2020-05-21 142 NA NA 77998.4 187581.2 710.5 66.41 
84 2020-05-22 143 NA NA 74647.8 188261.2 680.0 66.33 
85 2020-05-23 144 NA NA 71433.6 188911.9 650.8 66.25 
86 2020-05-24 145 NA NA 68350.8 189534.6 622.7 66.18 
87 2020-05-25 146 NA NA 65394.8 190130.5 595.8 66.11 
88 2020-05-26 147 NA NA 62738.0 190717.6 569.2 65.90 

Table 6 - Model Run Data and Calibration (Continued) 
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Run 1 - R Model Run Output14 
                                                   
14 The statisticians and R programmers will recognize that the Model Run Output includes output of the summary() 
function applied on nlsLM() and lm() functions.  The statistical estimates (i.e. standard errors, t-values and 
probabilities) have not been reviewed in this paper and their use may cause the user to draw non-factual conclusions 
about accuracy. 

Country/State: NYC Data Source: NYC 
---------------Log-Linear Bootstrap Model DC---------------- 
lm(formula = log(dC) ~ t, data = six[iData & six$dC > 0, ]) 
      Min       1Q   Median       3Q      Max  
 -5.16660 -0.64413  0.45806  0.84863  1.37365  
                   Estimate Std. Error t value  Pr(>|t|)     
 Intercept        6.4423764  0.7791232  8.2688 6.445e-12 *** 
 r  from dC       0.0100020  0.0074888  1.3356    0.1861     
 --- 
 Residual standard error: 1.2932 on 69 degrees of freedom 
 Multiple R-squared:  0.025201, Adjusted R-squared:  0.011073  
 F-statistic: 1.7838 on 1 and 69 DF,  p-value: 0.18607 
---------------Log-Linear Bootstrap Model DC3--------------- 
lm(formula = C ~ I(sign(rDC) * exp(rDC * (t - tMin))), data = six[iData,  
     ]) 
      Min       1Q   Median       3Q      Max  
 -40301.8 -15257.9  -1676.1  17422.4  24536.2  
                   Estimate Std. Error t value  Pr(>|t|)     
 Co from dC       -222728.8    10551.8 -21.108 < 2.2e-16 *** 
 A  from dC        225595.8     7134.2  31.622 < 2.2e-16 *** 
 --- 
 Residual standard error: 17782 on 69 degrees of freedom 
 Multiple R-squared:  0.93545, Adjusted R-squared:  0.93451  
 F-statistic: 999.94 on 1 and 69 DF,  p-value: < 2.22e-16 
---------------Closed Form Solution Exponential Model------- 
Formula: log(C) ~ logOrNA(A * sign(r) * exp(r * (t - tMin)) + Co) 
       Estimate  Std. Error t value  Pr(>|t|)     
 r   5.2479e-02  6.5355e-03  8.0299 1.933e-11 *** 
 Co -1.1680e+04  3.5215e+03 -3.3169  0.001464 **  
 A   1.1702e+04  3.5210e+03  3.3235  0.001434 **  
 --- 
 Residual standard error: 0.84497 on 68 degrees of freedom 
 Number of iterations to convergence: 22  
 Achieved convergence tolerance: 1.4901e-08 
---------------SIRX Model Bootstrap W/Preset Qprob----------- 
Formula: log(C * isC + dC * isDC) ~ log(sirX3(retX = isC, retDX = isDC,  
     tABtest = dTABcal, ABcurve = ABcurve, Tmax = dTmax, kIX = kIX,  
     N = N, errorRetVal = (isC * C + isDC * dC), tChg = tChg,  
     gamma = gamma, X0 = X0, dX0 = dX0, beta = beta, betaChgFact = betaChgFact)) 
               Estimate Std. Error t value  Pr(>|t|)     
 X0          25.4161165  7.6503598  3.3222  0.001141 **  
 dX0         18.3063212  2.4859080  7.3640 1.431e-11 *** 
 beta         0.8070939  0.0190606 42.3435 < 2.2e-16 *** 
 betaChgFact  0.1774649  0.0065004 27.3006 < 2.2e-16 *** 
 --- 
 Residual standard error: 0.34113 on 139 degrees of freedom 
 Number of iterations to convergence: 30  
 Achieved convergence tolerance: 1.4901e-08 
---------------SIRX Model Calibration Run----------- 
Formula: log(C * isC + dC * isDC) ~ log(sirX3(retX = isC, retDX = isDC,  
     tABtest = dTABcal, ABcurve = ABcurve, Tmax = dTmax, N = N,  
     errorRetVal = (isC * C + isDC * dC), tChg = tChg, gamma = gamma,  
     X0 = X0, dX0 = dX0, beta = beta, kIX = kIX, betaChgFact = betaChgFact)) 
               Estimate Std. Error t value  Pr(>|t|)     
 X0          2.7233e+01 5.4125e+00  5.0315  1.49e-06 *** 
 dX0         1.3869e+01 1.3579e+00 10.2136 < 2.2e-16 *** 
 beta        9.0210e-01 1.5296e-02 58.9773 < 2.2e-16 *** 
 kIX         8.9110e-03 2.1672e-04 41.1178 < 2.2e-16 *** 
 betaChgFact 1.5034e-01 4.0232e-03 37.3672 < 2.2e-16 *** 
 --- 
 Residual standard error: 0.23429 on 138 degrees of freedom 
 Number of iterations to convergence: 30  
 Achieved convergence tolerance: 1.4901e-08 
------------------------ 
Calibration Run Summary: 
Location=NYC N=8.623e+06 tMin=67 tMax=137 tBetaChange=83 tSeroTest=116 CasesDataSource=NYC 
Gamma=0.125000 Beta0=0.902095 BetaChgFactor=0.150338 Beta1=0.135619 kIX=0.008911 Qprob=0.066544 
Perfect/Predicted Test Results = 0.283305 / 0.199044 vs Calibration Target=0.199000 
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Discussion and Conclusion 
 
Why is the model's estimate of true infected plus recovered 40% higher than in the reported data? 
 
The difference is due to a calibration with the FDA's published sensitivity table from the NYS Wadsworth 
Lab test against a modelled slowly growing total number of infected plus recovered in the general 
population.  While it is not known if this seroprevalence data were already calibrated (i.e. adjusted to 
present the population true infected plus recovered percentage) when presented by the New York 
Governor, it is important for modelers to ask the question.  It is important to ask for full disclosure of the 
method of calibrating the test. If the test was not calibrated, a large underestimation of the seroprevalence 
would result, and hence getting to and achieving so called herd immunity would appear to be a more 
difficult task that must be more slowly approached. 
 
Further, this implies that the infection fatality ratio (the IFR) may be overestimated by a similar factor of 
around 40% if the calibration is accurate.  It is important for our public health leadership to have such 
information to make accurate estimates of the effects of various strategies.  As other models use IFR as an 
input together with mortality data to estimate the current state and future evolution of the epidemic, it is 
important to estimate more accurately these data, suitably adjusted for delayed sensitivity, so as to draw 
more accurate conclusions from those models. 
 
This paper does not purport to be an accurate estimate of seroprevalence, true cumulative infected or IFR.  
It serves to technically assist other modelers who may incorporate its techniques to understand the 
epidemiological situation. This paper's seroprevalence calibration technique, especially after refinement, 
checking for inaccuracies, and integration into more advanced models, is applicable in cities, smaller 
states, and smaller countries where seroprevalence data is available, and where the epidemiological 
parameters like social interaction are fairly uniform.  Epidemiologically heterogenous geographic units 
would necessarily need to be subdivided into more homogenous subunits for analysis. 
 
As of the date of this writing, in the opinion of the author, it is of utmost urgency to continue 
seroprevalence survey collection and to use it for model calibration, so that we can better understand, 
collectively, where we are now, and where the epidemic will likely take us. 
 
Weaknesses 
 
1) Instability of 𝑘-. and 𝛽 over time.  
2) There is bias in the sample used to produce the seropositivity test compared to the survey population. 
3) Too many degrees of freedom in the regression may require additional seroprevalence data points, or 

incorporation of mortality data to determine both 𝑘-. and 𝛽. 
4) Inaccurate estimation of sensitivity and specificity increases error. 
5) Non-uniform subpopulations would need to be subdivided into multiple uniform analyses. 
6) Noise in the case data, for example from different rates of testing, needs to be mitigated further 
7) Lack of confidence intervals would allow naive application of this model to draw significantly 

inaccurate conclusions. 
8) This paper was written by one person and published without peer review -- there may be significant 

errors. 
9) This paper should not be used directly to support any epidemiological conclusion without 

professional review.  It is designed to be an element that can be incorporated into other 
professional models. 
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Math Appendix: 
Calculating Test Results from the 3 S's: Seropositivity, Sensitivity and Specificity 

 
Let  

𝑁	 ≡	Total number tested 
𝑥	 ≡	Number of tested positives that are condition positive (true positives) 
𝑦	 ≡	Number of tested negatives that are condition negative (true negatives) 
𝑥′	 ≡	Number of tested positive that are condition negative (false positives) 
𝑦′	 ≡	Number of tested negative that are condition positive (false negatives) 
𝑝	 ≡	Sensitivity of the test 
𝑞	 ≡	Specificity of the test 
𝑇Z ≡	Total number tested positive (regardless of the true condition) 
𝑇U 	≡	Total number tested negative (regardless of the true condition) 
𝑆Z 	≡	Fraction of tested who are (true condition) seropositive 
𝐶Z 	≡	number of tested who are condition positive (regardless of the test result) 
𝐶U 	≡	number of tested who are condition negative (regardless of the test result) 

 
By definition: 

 𝑇Z 	= 𝑥	 + 	𝑥′	 Eq. 1A  

 𝑇U 	= 𝑦	 + 	𝑦′	 Eq. 2A  

 𝐶Z 	= 	𝑥	 + 	𝑦′	 Eq. 3A  

 𝐶U 	= 	𝑦	 + 	𝑥′	 Eq. 4A  

 𝑝	 = 	𝑥/𝐶Z		 Eq. 5A  

 𝑞	 = 	𝑦/𝐶U		 Eq. 6A  

 𝑁	 = 	𝑥	 + 	𝑦	 + 	𝑥′	 + 	𝑦′	 = 	𝑇Z + 𝑇U = 	𝐶Z + 𝐶U	 Eq. 7A  

 
Combining the definitions in Eq. 3A and 4A with 5A and 6A:  

 (𝑥	 + 	𝑦′)	𝑝	 = 𝑥	 Eq. 8A  

 (1	 − 	𝑝)	𝑥	 = 	𝑝	𝑦′	 Eq. 9A  

 (𝑥	 + 	𝑦′)	𝑝	 = 𝑦	 Eq. 10A  

 (1	 − 	𝑞)	𝑦	 = 	𝑞	𝑥′	 Eq. 11A  

 
Combining Eq. 2A and 9A; and 1A and 11A respectively: 

 𝑇U 	= 𝑦	 + (1/𝑝	 − 	1)	𝑥		 Eq. 12A  

 𝑇Z 	= 𝑥	 + (1/𝑞	 − 	1)	𝑦	 Eq. 13A  

Rearranging Eq. 12A: 
 𝑦	 = 	𝑇U 	+ (1	 − 	1/𝑝)	𝑥	 Eq. 14A  

Substituting Eq. 14A into 13A and then expanding, simplifying, rearranging and solving for x: 
 𝑇Z 	= 𝑥	 + (1/𝑞	 − 	1)	[	𝑇U 	+ (1	 − 	1/𝑝)	𝑥	]	 Eq. 15A  

 𝑇Z 	= 𝑥	 + (1/𝑞	 − 	1)(1	 − 	1/𝑝)	𝑥	 + (1/𝑞	 − 	1)	𝑇U		 Eq. 16A  
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 𝑥	 +	(1/𝑞	 + 	1/𝑝	 − 	1/𝑝𝑞	 − 	1)	𝑥	 = 	𝑇Z + (1	 − 	1/𝑞)	𝑇U Eq. 17A  

 (1/𝑞	 + 	1/𝑝	 − 	1/𝑝𝑞)	𝑥	 = 	𝑇Z + (1	 − 	1/𝑞)	𝑇U Eq. 18A  

 𝑥	 = 	 [𝑇Z 	+	(1	 − 	1/𝑞)	𝑇U]	/	(1/𝑝	 + 	1/𝑞	 − 	1/𝑝𝑞) Eq. 19A  

By symmetry: 
 𝑦	 = 	 [𝑇U 	+	(1	 − 	1/𝑝)	𝑇Z]	/	(1/𝑝	 + 	1/𝑞	 − 	1/𝑝𝑞) Eq. 20A  

  Eq. 21A  

By rearranging Eq. 9A to solve for y' and substituting the definition of 𝐶Z from Eq. 3A, and then 
simplifying: 

 𝐶Z 	= 	𝑥	 +	 (1/𝑝	 − 	1)	𝑥 Eq. 22A  

 𝐶Z 	= 	𝑥/𝑝 Eq. 23A  

Substituting Eq. 19A into 23A and multiplying through by 1/p: 
 

 𝐶Z 	= 	 [𝑇Z 	+	(1	 − 	1/𝑞)	𝑇U]	/	(1	 + 	𝑝/𝑞	 − 	1/𝑞) Eq. 24A  

  
Noting the definition of  𝑁 = 	𝑇Z + 𝑇U and rearrange the definition to substitute for T+ in Eq, 24A : 

 𝐶Z 	= 	 [𝑁 − 𝑇− 		+ (1	 − 	1/𝑞)	𝑇−]	/	(1	 + 	𝑝/𝑞	 − 	1/𝑞) Eq. 25A  
 𝐶Z 	= 	 (𝑁 − 𝑇−/𝑞)	/	(1	 + 	𝑝/𝑞	 − 	1/𝑞) Eq. 26A  

Using again the definition 𝑁 = 	TZ + TU and substituting for 𝑇U : 
 

 𝐶Z 	= 	 [𝑁 − (𝑁 −	𝑇+)	/𝑞]	/	(1	 + 	𝑝/𝑞	 − 	1/𝑞) Eq. 27A  

Simplifying and then solving for 𝑇Z 
 

 𝐶Z 	= 	 [	𝑇+ 	+ 	𝑁(𝑞 − 	1)]	/	(𝑞	 + 	𝑝	 − 	1) Eq. 28A  
 𝐶Z(𝑞	 + 	𝑝	 − 	1) 	= 			 𝑇+ 	+ 	𝑁(𝑞 − 	1)]	 Eq. 29A  
 𝑇Z 	= 	 (𝑝		 + 	𝑞	 − 	1)𝐶+ 	+ 	𝑁(1− 	𝑞)]	 Eq. 30A  

Thus, if one knows with certainty the specificity and sensitivity for any test population and the number 
who have been tested and are actually positive, the number that are tested positive are known15. 
 
This can be used to illustrate the difference between naively taking the positive antibody percentage of a 
test as an estimate of the true positive antibody percentage of the same test population. It can also be 
compared to the assumption of a single sensitivity against an actual calibrated test that has increasing 
sensitivity dependent on the number of days since infection.   
 
Note that if the sum of the sensitivity and specificity is less than 1 (i.e. their sum is less than 100%), the 
antibody test is unusable (i.e. bad) as the coefficient on 𝐶Z is negative, so that a higher condition positive 
result would impossibly create a lower test positive result.  This corresponds to a receiver operating 

                                                   
15 For purposes of this paper, which is an example demonstration of the effects of known sensitivity and specificity 
on the naive results, no calculation is made of the inaccuracy due to small sample size (i.e. confidence interval or 
distribution); and no adjustments are made for the known spread or distribution of specificity or sensitivity 
measurements.  They exist and can be statistically computed if the information is available at the cost of added 
complexity. 
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characteristic (ROC) point in the lower right hand half of the plot that is worse than a random guess [21], 
i.e. more wrong than right. 
 
Also note if the specificity is a perfect 100% Eq. 30A reduces to simplified forms: 
 

 𝑇Z 	= 	𝑝	𝐶Z Eq. 31A  

Equation 31A is occasionally useful, but for example in the cases where specificity is even just 5% below 
100% (i.e. 95%), this simplified equation yields significant errors. 
 
A simple example will show how this information can be used to calculate the test results from known 
seropositivity: 
 
Assumption:  Specificity is known precisely as 0.99 and does not vary with time. Sensitivity is exactly 
according to this table of the time post infection: 
 

Days Since Infection 
Interval Start 

Days Since Infection 
Interval End Sensitivity 

0 11.999... 0.20 
12 20.999... 0.30 
21 25.999... 0.50 
26 29.999... 0.80 
30 No end  0.90 

Table 7A - Simplified (Rounded) Sensitivity Table 

This is a rounded to the nearest 10% version of the NY Wadsworth Test (see this paper's Table 5 - 
Wadsworth Calibration Test Sensitivity and Specificity). When the tested subjects consists of a pool with 
different infection dates, Equation 30A cannot be used to compute the tested positive for the test in 
aggregate.  Instead, each "vintage" of infection must be used to individually calculate the tested positive 
for that vintage, with the total of tested positive for each vintage then summed up to get the total tested 
positive for the survey.  Additionally, the false positives must be included for the cohort of the test that 
has never been infected.  Let 
 

𝜃Z ≡	The percentage of the entire test population that is test positive (of all vintages) 
𝑆Z ≡	The percentage of the entire test population that is condition (truly) positive (of all vintages) 
 

By definition 
 

 
 
 𝜃Z 	= 	1/𝑁 g 𝑇:Z

:klm

:;<

 Eq. 32A  

Or by substitution of Eq. 30A into Eq. 32, and then expanding and simplifying:  
 

 
 
 𝜃Z 	= [	1/𝑁 g(𝑝: 		+ 	𝑞	 − 	1)𝐶:Z		] + 	 (1	 − 	𝑞)

:klm

:;<

 Eq. 33A  

 
The formula in 33A is easy to apply. 1) Use a model to estimate the true infected at each time (in days) 
𝐶:Z. i.e. at the 25 day vintage say there are 4 infected.  2) Multiply that by the coefficient which is the 
sum of the sensitivity 𝑝: for that 25 day vintage, plus the specificity, less 1. 3) Sum that up for all 
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vintages.  Note that for those beyond the maximum (in the table above, 30 or more days), they can be 
included all together.  4) Divide that sum by the total number of tested (regardless of test result or true 
infected or not infected state. 5) Add to the result 1 minus the specificity (which is assumed to be the 
same at all vintages.  The result is the percentage of the entire test population that is expected to test 
positive assuming the specificity and sensitivity is exactly correct. 
 
In the following examples, it will be convenient computationally to split 𝑇Zin Eq. 30A into a left and right 
half, i.e. 
 

 𝑇Z 	= 	𝑇Z�HI:		 +		𝑇Z��yx:		 Eq. 34A  
 𝑇Z�HI: 	= 	 (𝑝		 + 	𝑞	 − 	1)𝐶+ Eq. 35A  
 𝑇Z��yx: 	= 	𝑁(1 − 	𝑞)	 Eq. 36A  

 
By inspection one can see that 𝑇Z�HI:  is the component of the positive tests due to actual condition 
positive, and that 𝑇Z��yx: is the component of the positive tests due to (imperfect) specificity without 
regard for condition. 
 
Similarly, it is convenient to split the percentage test results in Equation 33A into left and right 
component: 
 

 𝜃Z 	= 	𝜃Z�HI:		 + 		𝜃Z��yx:		 Eq. 37A  
 

𝜃Z�HI: 	= 		1/𝑁g(𝑝𝑡 		+ 	𝑞	 − 	1)𝐶𝑡+

𝑡𝑚𝑎𝑥

𝑡=0
	 Eq. 38A  

 𝜃Z��yx: 	= 	1 − 	𝑞	 Eq. 39A  

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.27.20110478doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20110478
http://creativecommons.org/licenses/by/4.0/


 20 

 
An example is below for a cumulative infected population doubling every 3 days arbitrarily cutoff at 
10000 total infected, tested at 40 days since Day 0: 
 
𝑡 ∆𝑡 𝑝: 

g	𝐶𝑡+

:

:;<

 
	𝐶:Z 𝑇Z�HI:   𝑡 ∆𝑡 𝑝: 

g	𝐶𝑡+

:

:;<

 
	𝐶:Z 𝑇Z�HI:  

0 40 0.9 1 1 0.89  21 19 0.3 128 27 7.83 
1 39 0.9 1 0 0.00  22 18 0.3 161 33 9.57 
2 38 0.9 1 0 0.00  23 17 0.3 203 42 12.18 
3 37 0.9 2 1 0.89  24 16 0.3 256 53 15.37 
4 36 0.9 2 0 0.00  25 15 0.3 322 66 19.14 
5 35 0.9 3 1 0.89  26 14 0.3 406 84 24.36 
6 34 0.9 4 1 0.89  27 13 0.3 512 106 30.74 
7 33 0.9 5 1 0.89  28 12 0.3 645 133 38.57 
8 32 0.9 6 1 0.89  29 11 0.2 812 167 31.73 
9 31 0.9 8 2 1.78  30 10 0.2 1024 212 40.28 

10 30 0.9 10 2 1.78  31 9 0.2 1290 266 50.54 
11 29 0.8 12 2 1.58  32 8 0.2 1625 335 63.65 
12 28 0.8 16 4 3.16  33 7 0.2 2048 423 80.37 
13 27 0.8 20 4 3.16  34 6 0.2 2580 532 101.08 
14 26 0.8 25 5 3.95  35 5 0.2 3250 670 127.30 
15 25 0.5 32 7 3.43  36 4 0.2 4096 846 160.74 
16 24 0.5 40 8 3.92  37 3 0.2 5160 1064 202.16 
17 23 0.5 50 10 4.90  38 2 0.2 6501 1341 254.79 
18 22 0.5 64 14 6.86  39 1 0.2 8191 1690 321.10 
19 21 0.5 80 16 7.84  40 0 0.2 10000 1809 343.71 
20 20 0.3 101 21 6.09     Subtotal 10000 1989.00 

          𝜃Z�HI:  19.9% 
      	    𝜃Z��yx: 1.0% 
      	    𝜃Z	 20.9% 

Table 8 - Infections Doubling Every 3 Days Example 

As can be noted, the calculated total test positives 𝜃Zis only 20.89%, whereas the total true positives 
is 100%.  This ratio, of approximate 5x the true positives to test positives is exaggerated because 1) the 
number of infections is rapidly growing; and 2) in the end 100% of this hypothetical test population is 
infected. 
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t	 ∆𝑡 𝑝: 
g	𝐶𝑡+

:

:;<

 
	𝐶:Z 𝑇Z�HI:   𝑡 ∆𝑡 𝑝: 

g	𝐶𝑡+

:

:;<

 
	𝐶:Z 𝑇Z�HI: 

0 40 0.9 244 244 217.16  21 19 0.3 5368 244 70.76 
1 39 0.9 488 244 217.16  22 18 0.3 5612 244 70.76 
2 38 0.9 732 244 217.16  23 17 0.3 5856 244 70.76 
3 37 0.9 976 244 217.16  24 16 0.3 6100 244 70.76 
4 36 0.9 1220 244 217.16  25 15 0.3 6344 244 70.76 
5 35 0.9 1464 244 217.16  26 14 0.3 6588 244 70.76 
6 34 0.9 1708 244 217.16  27 13 0.3 6832 244 70.76 
7 33 0.9 1952 244 217.16  28 12 0.3 7076 244 70.76 
8 32 0.9 2196 244 217.16  29 11 0.2 7320 244 46.36 
9 31 0.9 2440 244 217.16  30 10 0.2 7564 244 46.36 

10 30 0.9 2684 244 217.16  31 9 0.2 7808 244 46.36 
11 29 0.8 2928 244 192.76  32 8 0.2 8052 244 46.36 
12 28 0.8 3172 244 192.76  33 7 0.2 8296 244 46.36 
13 27 0.8 3416 244 192.76  34 6 0.2 8540 244 46.36 
14 26 0.8 3660 244 192.76  35 5 0.2 8784 244 46.36 
15 25 0.5 3904 244 119.56  36 4 0.2 9028 244 46.36 
16 24 0.5 4148 244 119.56  37 3 0.2 9272 244 46.36 
17 23 0.5 4392 244 119.56  38 2 0.2 9516 244 46.36 
18 22 0.5 4636 244 119.56  39 1 0.2 9760 244 46.36 
19 21 0.5 4880 244 119.56  40 0 0.2 10000 240 45.60 
20 20 0.3 5124 244 70.76     Subtotal 10000 4950.00 

          𝜃Z�HI: 49.5% 
      	    𝜃Z��yx: 1.0% 
      	    𝜃Z	 50.5% 

Table 9 - Flat New Cases Example 

In this example, daily new infections are constant with the exception of the final day, where they are 
reduced from 244 to 240 to make the example equal exactly 10,000 for the period.  Note that the 
percentage infected detected by the test 𝜃Z is half the true infected rate.  
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𝑡 ∆𝑡 𝑝: 
g	𝐶𝑡+

:

:;<

 
	𝐶:Z 𝑇Z�HI:   𝑡 ∆𝑡 𝑝: 

g	𝐶𝑡+

:

:;<

 
	𝐶:Z 𝑇Z�HI: 

0 40 0.9 1809 1809 1610.01  21 19 0.3 9936 16 4.64 
1 39 0.9 3499 1690 1504.10  22 18 0.3 9950 14 4.06 
2 38 0.9 4840 1341 1193.49  23 17 0.3 9960 10 2.90 
3 37 0.9 5904 1064 946.96  24 16 0.3 9968 8 2.32 
4 36 0.9 6750 846 752.94  25 15 0.3 9975 7 2.03 
5 35 0.9 7420 670 596.30  26 14 0.3 9980 5 1.45 
6 34 0.9 7952 532 473.48  27 13 0.3 9984 4 1.16 
7 33 0.9 8375 423 376.47  28 12 0.3 9988 4 1.16 
8 32 0.9 8710 335 298.15  29 11 0.2 9990 2 0.38 
9 31 0.9 8976 266 236.74  30 10 0.2 9992 2 0.38 

10 30 0.9 9188 212 188.68  31 9 0.2 9994 2 0.38 
11 29 0.8 9355 167 131.93  32 8 0.2 9995 1 0.19 
12 28 0.8 9488 133 105.07  33 7 0.2 9996 1 0.19 
13 27 0.8 9594 106 83.74  34 6 0.2 9997 1 0.19 
14 26 0.8 9678 84 66.36  35 5 0.2 9998 1 0.19 
15 25 0.5 9744 66 32.34  36 4 0.2 9998 0 0.00 
16 24 0.5 9797 53 25.97  37 3 0.2 9999 1 0.19 
17 23 0.5 9839 42 20.58  38 2 0.2 9999 0 0.00 
18 22 0.5 9872 33 16.17  39 1 0.2 9999 0 0.00 
19 21 0.5 9899 27 13.23  40 0 0.2 10000 1 0.19 
20 20 0.3 9920 21 6.09     Subtotal 10000 8700.80 

          𝜃Z�HI: 87.0% 
      	    𝜃Z��yx: 1.0% 
      	    𝜃Z	 88.0% 

Table 10 - Infections Decreasing at 3 days Half-Life Example 

Even in an example where infections are decreasing at an exponential rate, with a 100% true infection 
rate, the antibody test only gets an 88% total tested positives.  However, the amount of underestimation is 
only 100-88=12% in this case, vs. 100-21=79% in the growing case or 100-50=50%% in the flat case. 
 
This stark difference in underestimation of the true infected percentage depending on the growth or 
decline of the true infected population time series demonstrates that calibration requires an estimation of 
the rate of growth or the decline in growth of the true infected time series. 
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