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Abstract 

We develop and apply a simplified SIR model to current data for the 2019-2020 SARS-Cov-

2/Covid-19 pandemic for the United Kingdom (UK) and eight European countries: Norway, 

Sweden, Denmark, the Netherlands, France, Germany, Italy and Spain. The most important result 

of the model was the identification and segregation of pandemic characteristics into two distinct 

groups: those that are invariant across countries, and those that are highly variable. Amongst the 

former is the infective, asymptomatic period 𝑇𝐿, which was very similar for all countries, with an 

average value of 𝑇𝐿  = 15.5 +/- 0.6 days. The other invariants were  𝑇𝑅,  the average time between 

contacts and 𝑅 =  𝑁𝐶 , the average number of contacts while infective. We find   𝑇𝑅 = 3.5 +/- 0.2 

days and 𝑁𝐶 =  𝑅 =  4.46+/- 0.17. In contrast to these invariants, there was a highly variable time 

lag between the peak in the daily number of infected individuals and the peak in the daily number 

of deaths, ranging from a low of 4 days for Italy, Spain and Denmark, to a high of 17 for Norway. 

The mortality probability among identified cases was also highly variable, ranging from low values 

3.5%, 5% and 5% for Norway, Denmark and Germany respectively to high values of 18%, 18% 

and 20% for France, Sweden and the UK respectively. Our analysis predicts that the number of 

deaths per million population until the pandemic ends (defined as when the daily number of deaths 

is less than 5) will be lowest for Norway (45 deaths/million) and highest for the United Kingdom 

(628 deaths/million). Finally, we observe a small but detectable effect of average temperature on 

the probability 𝛼 of infection in each contact, with higher temperatures associated with lower 

infectivity.   
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Introduction 

 

Coronaviruses are large, enveloped, single-stranded RNA viruses which are widespread in animals 

and usually cause only mild respiratory illnesses in humans [1-4]. However, in 2003, a new 

coronavirus, SARS-CoV emerged which caused a life-threatening respiratory disease, with a 

fatality rate of almost 10% [5,6].  Unfortunately, after an initial burst of interest in development of 

treatment options, interest in this virus waned. The emergence of a novel coronavirus SARS-CoV-

2, identified in January 2020 as the likely causative agent of a cluster of pneumonia cases which 

first appeared in Wuhan, China in December 2019, has since caused a worldwide pandemic [7]. 

SARS-CoV-2, is the seventh known coronavirus to cause pathology in humans [1]. The associated 

respiratory illness, called COVID-19, ranges in severity from a symptomless infection [8], to 

common-cold like symptoms, to viral pneumonia, organ failure, neurological complications and 

death [9,10]. While the mortality in SARS-CoV-2 infections appears to be lower than in SARS-

CoV [1, 9,11], this new virus has more favorable transmission characteristics, such as a higher 

reproduction number [12], and possibly, a long latency period and asymptomatic infective phase. 

 The governments of several countries have taken significant measures to slow down the 

infection rate of Covid-19, such as social distancing, quarantine, identification, tracking and 

isolation. However, there is no uniform policy, some governments reacted later than others and 

some (e.g. Sweden) made a deliberate decision to keep the country open, leaving counter-measures 

up to individual residents. 

 A large amount of consistent public data is now available on the number of tests performed, 

the number of infected cases and the number of deaths from several countries. Although tests are 

never 100% reliable, when the number of tests exceeds the identified cases by factors of four or 

higher, the data are likely to be fairly reliable. This is true for several countries in Europe. 

 

 

The Model 

We model the Covid-19 pandemic by a simplified version of the SIR model [13], which partitions 

the population into three compartments, Susceptibles (S), Infectious (I) and Removed (R: 

Recovered or Dead, after being infected). This and other models to study the global spread of 

diseases have been used in a variety of contexts (For some recent reviews, see [14,15,16]).  

 

So far, the Covid-19 pandemic, at least in the developed countries in Europe where we will apply 

this model, seems to have the following dynamics: After being infected, an individual  remains 

asymptomatic but able to infect others for an average of 𝑇𝐿 days. After a time 𝑇𝐿, the infected 

individual becomes sick, gets tested, is identified as infected and is removed from the pool by 

quarantine or hospitalization. Thus, in our context, the SIR model dynamics can be defined as 

follows: At t=0, from a pool of 𝑁 interacting individuals, almost all are in the S compartment, 

except for a few; viz, those that are infected but asymptomatic, who are in the I compartment. The 

R compartment is empty at t=0. Over time, individuals move from S to I and from I to R. In R, 

they either recover or die.  Since the R compartment is populated only from the I compartment, on 

average, the number removed each day must equal  the number infected at a corresponding day in 

the past; i.e. the two are related by a fixed time displacement. We assume that the number dead 

and recovered each day are proportional to the number removed each day, by fixed probabilities 
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that remain invariant over the course of the epidemic. We’ll have more to say about that below. 

For the moment we note that the above implies that the number dead each day is proportional to 

the number infected on a previous day, as is the number recovered, though generally with a 

different time delay.   

 

We start with a well-mixed pool of 𝑁 interacting individuals and define,  

 

𝑋1 (𝑡)  = number of susceptible individuals at time t,    (1) 

𝑋2 (𝑡)  = number of Infectious individuals at time t,     (2) 

𝑋3 (𝑡)  = number of individuals that are removed at time t    (3) 

𝑋1 (𝑡) + 𝑋2 (𝑡) +  𝑋3 (𝑡) =   𝑁         (4) 

 

A fraction 𝛿 of the infected individuals will die after being identified as symptomatic. On average, 

there will be a time delay 𝑇𝐷 between when a person becomes symptomatic and when he/she dies 

of the disease. 𝑇𝐷 will depend on a variety of factors, such as quality of care, age, severity of 

disease, co-morbidities, immune status etc. 

 

Then the number of deaths at time 𝑡 will be: 

 

𝑋4(𝑡) =  𝛿 𝑋2(𝑡 − 𝑇𝐷) = number of individuals that died on day t   (5) 

 

Let, 

 

  be the transmission rate, the number of infections per day per contact,   (6) 

and  

  be the rate at which individuals leave the infected population = 
1

𝑇𝐿
.   (7) 

  

The equations governing the dynamics are then: 

 
𝑑𝑋1

𝑑𝑡
=  −𝛼𝑋1𝑋2         (8) 

 
𝑑𝑋2

𝑑𝑡
=  𝛼𝑋1𝑋2 − 𝛾𝑋2         (9) 

 

The initial conditions at 𝑡 = 0 are:  

 

𝑋1(0) = (𝑁 − 1) ~ 𝑁 and  𝑋2(0) = 1      (10) 

 

An equation relating the state variables 𝑋1 and 𝑋2 can be obtained by dividing (8) by (9) 

and integrating. This gives,          

 

𝑋2(𝑡) =  𝑁 + 
𝑁

𝑅
log (

𝑋1(𝑡)

𝑁
) − 𝑋1(𝑡)       (11) 

 

where 𝑅 
𝛼𝑁

𝛾
          (12) 
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Hence,  

 
𝑑𝑋1

𝑑𝑡
=  −𝛼𝑋1 [ 𝑁 + 

𝑁

𝑅
log (

𝑋1(𝑡)

𝑁
) − 𝑋1(𝑡)]      (13) 

 

From (9) the maximum in 𝑋2 is at 𝑋1 =   
𝛾

𝛼
=

𝑁

𝑅
     (14) 

 

Substituting this into (13) gives:  

 

Maximum value of 𝑋2  ≡ 𝑃 =   𝑁 −
𝑁

𝑅
[ 1 + log(𝑅)]    (15) 

 

At 𝑡 = ∞, 𝑋2 = 0.  Hence, from (12), we get:    

 

𝑅 = − 
log(𝑆1(∞))

[1−𝑆1(∞)]
,  where 𝑆1(∞) =

𝑋1(∞)

𝑁
      (16) 

is the fraction of susceptible individuals at  t = ∞.  

 

When 𝑆1(∞) → 1, log(𝑆1(∞)) ~ − (1 − 𝑆1(∞)) and 𝑅 → 1  
 

Thus, 𝑆1(∞) = 1, corresponds to R = 1, nobody is infected and there is no pandemic    

 

It is easy to show that if 𝑅 < 1, there are no solutions to (16) that satisfy  0 ≤ 𝑆1(∞) ≤ 1.  

   

Fitting the Model to data: 

 

The data that is available is:  

 

(a) The cumulative number 𝐼(𝑡) and daily number  𝑋2(𝑡)  of infected individuals     (17) 

and  

(b) The cumulative number  𝐷(𝑡) and daily number  𝑋4(𝑡) number of deaths   (18) 

 

These are related by:  

 𝑋2(𝑡) =  𝐼(𝑡) − 𝐼(𝑡 − 1)         (19) 

and,  

𝑋4(𝑡) =  𝐷(𝑡) − 𝐷(𝑡 − 1) .         (20) 

 

It is worth noting that the dynamics of the number removed each day and the total number of 

removed do not enter our analysis explicitly. Some context with the full SIR model can, however, 

be provided by noting that the total number of removed individuals increases asymptotically at 

large times to  𝑁(1 − 𝑆1(∞)). 
 

The challenge is to determine 𝑁, 𝛼, 𝛾 = 1/𝑇𝐿, 𝑅, 𝛿, 𝑇𝐷 from these data, using (5), (8), (9) to do 

numerical fits.  𝛿, 𝑇𝐷 can be easily determined by scaling and shifting 𝑋2(𝑡) and  𝑋4(𝑡); 𝑖. 𝑒.   they 

are obtained directly from the data, and don’t require fitting the solutions to differential equations. 
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Of the four remaining parameters, 𝑁, 𝛼, 𝛾, 𝑅 , only 3 are independent. We choose these to be N, 

𝛾, and R. Consequently, we proceed as follows:  

1. Using (12), we define 𝛼 in terms of 𝑁, 𝛾, 𝑅. This eliminates 𝛼. 

2. Estimating 𝑃 = maximum value of 𝑋2(𝑡) from the data, we determine 𝑁 in terms of 𝑅 using 

(15). This eliminates 𝑁. 
3.  𝛾(𝑅 − 1)  is determined as the coefficient of 𝑡 in the exponential rise of 𝑋2(𝑡) for small t (see 

Appendix A). This eliminates 𝛾. 
4. Using a numerical solver, we vary 𝑅 to fit the observed data for 𝑋2(𝑡). 
 

Note that once 𝑁, 𝛼, 𝛾, 𝑅 are determined, (16) determines  𝑺𝟏(∞) =
𝑿𝟏(∞)

𝑵
, the fraction of the pool 

of interacting individuals who are NOT infected at the end of the pandemic. 

 

Some other useful parameters we can measure from the analysis are: 

 

The asymptomatic infective period: 𝑇𝐿 =
1

𝛾
      (21) 

The average time between contacts: 𝑇𝑅 =
1

𝑁𝛼
      (22) 

 

The average number of contacts while infective = 𝑁𝐶 =  
𝑇𝐿

𝑇𝑅
=

𝑁𝛼

𝛾
= 𝑅   (23) 

 

Data and Fitting Methodology: 

Data for the number of cases and deaths was obtained from 

https://ourworldindata.org/coronavirus-source-data, and data for the number of tests was obtained 

from https://ourworldindata.org/coronavirus-testing.  The data for each country was considered 

accurate only if the number of tests done per day per identified case was greater than three for each 

day.  The values of 𝑋2(𝑡) and  𝑋4(𝑡) were extracted from the data for the cumulative number of 

cases and the cumulative number of deaths   

 

The following procedure was used to obtain the parameters by fitting the solutions of 8 and 9 to 

the data. For each choice of  parameter values, starting at a value 𝑡0 of 𝑡 such that 𝑋2(𝑡0) = 𝑎 ≥
10,  the Matlab Solver myode2 was used to numerically determine [𝑋1(𝑡), 𝑋2(𝑡)] as a function of 

time using the initial condition, [𝑋1(𝑡0) = 𝑁 − 𝑎, 𝑋2(𝑡0) = 𝑎]. The solutions were then compared 

to the actual data. To determine an error on the fitted parameters, 𝑁 and 𝑅 were varied until a 

range of parameter values was found that fitted the data for 𝑋2(𝑡) including fluctuations. Using 

the average value of the fitted parameters,  𝛿 and 𝑇𝐷  (see (5)) were estimated by shifting and 

scaling the fitted values of 𝑋2(𝑡) from the solver and comparing them to the actual values of 𝑋4(𝑡) 

from the data. Using the mean values for the parameters, the solver fits for [𝑋1(𝑡), 𝑋2(𝑡)] were 

extended beyond the last date for which the data was available to estimate the date when the 

number of daily deaths would be less than 5. This day was declared to be the date when the 

pandemic would end. The fitted solutions [𝑋2(𝑡), 𝑋4(𝑡)] were also used to estimate the total 

number of cases and the total number of deaths. Finally, the values of  𝑇𝐿 and  𝑇𝑅 were determined 

from the fitted data using (21) and (22) respectively.  
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Results and Discussion:  

 

In this paper, we focus on four North European (N-Eu) countries, Norway, Sweden, Denmark and 

the Netherlands, four South European (S-Eu) countries, France, Italy, Spain and Germany, and the 

United Kingdom (UK). The first date for which data was available was 12/31/2019, which we 

denote as day number 0 in the plots to follow. Among the countries considered here, the earliest 

cases were identified in France, on 1/25/2020, which corresponds to day 25. In the other countries, 

the earliest case was identified on the following days, counting from 12/31/2019: Netherlands: day 

59, Denmark: day 58, Sweden: day 32, Norway: day 58, UK: day 31, Spain: day 32, Germany: 

day 28, Italy: day 31.  

 

Adequate testing was done so that the data on the number of positive cases is reliable. 

Whereas deaths are unambiguous, the data for the number of cases is trustworthy only when a 

sufficient number of tests are performed. Figure 1a and 1b show the cumulative number of tests 

performed in the countries analyzed starting from 12/31/2019. We see that in the N-Eu countries, 

the ratio of the cumulative tests to cumulative cases always exceeded five, whereas in the S-Eu 

countries, this ratio always exceeded three. Consequently, we expect that the reported number of  

cases is reliable. 

 

The values of  𝑵, 𝜶, 𝜸, 𝑹, 𝜹, 𝑻𝑳, 𝑻𝑹, 𝑻𝑫  

Using the methodology described above, we computed 𝑁, 𝛼, 𝛾, 𝑅, 𝛿, 𝑇𝐿 , 𝑇𝑅, 𝑇𝐷. These results are 

summarized in Table I. Figures (2) and (3) show the data and fits of our model for  𝑋2,the number 

of daily cases for the N-Eu countries and UK and the S-Eu countries respectively. Similarly, 

Figures (4) and (5) show the data and fits for the number of daily deaths  𝑋4 for the N-Eu countries 

and the US and S-Eu countries respectively. We see that whereas for most countries, the fits of the 

model to the data for 𝑋2 (Figures 2,3) are quite good past the peak, for Sweden, Denmark and the 

UK, there is a plateau in the data after the peak, suggesting that sufficient social-

distancing/quarantine/containment measures were not successful or not implemented in these 

countries, especially before and after the peak, when the fraction of infected asymptomatic cases 

would be high. This means that our final estimates (Table I) for the number of cases and deaths 

and times for when the pandemic will end for these countries may be on the conservative side.  

For  𝑋4, there is only a hint of a plateau past the peak for Spain but not for the other countries.  

 

Predictions for the end of the pandemic, total cases and deaths. 

If we define the end of this particular pandemic as the date when the number of deaths in a single 

day will be less than 5, then the predicted dates from Table I and Figures 3, 5 are: Netherlands: 

6/11/2020, Denmark: 4/30/2020, Sweden: 6/12/2020, Norway: 4/15/2020, UK: 8/3/2020, Spain: 

6/19/2020, Germany: 6/6/2020, France: 6/23/2020, Italy: 7/17/2020.  

 

The projected number of cases per million population and the projected number of deaths per 

million population until the dates above are shown in Figure 6a and 6b. We expect that Norway 

will have the smallest number of cases per million population and Spain the highest. The number 

of deaths per million population will be smallest in Norway and highest in Italy and the UK.  

Among the three countries with the highest number of cases and deaths per million population 

(Spain, Italy and the UK),  Spain seems to have done well in containment; in spite of the highest 
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number of cases per million, Spain will have the fewest deaths per million among these three 

countries. On the other hand, the UK seems to have done rather poorly, with the lowest number of 

cases per million but the highest number of deaths per million.  

 

SARS-Cov-2 may transmit less effectively at higher temperatures. 

An interesting observation is a “Temperature Effect” on the value of the infectivity parameter 𝛼, 

as shown in Figure 6c. The scale on the x-axis is the average temperature in February 2020 for the 

principal cities. The higher the temperature, the lower is the value of 𝛼. This suggests that the 

SARS-Cov-2 may transmit less efficiently at higher temperatures.  

 

The death probability 𝜹, the asymptomatic infective period 𝑻𝑳,and the time interval 𝑻𝑹 

between contacts while infective: 

The fraction 𝛿 of identified symptomatic cases who die after a time interval 𝑇𝐷 (Table I and Figure 

6d) also shows significant variation by country, with Norway, Germany and Denmark having the 

smallest values: 𝛿 = 0.035, 0.045 and 0.050 respectively, and UK, France and Sweden the 

highest: 𝛿 = 0.20, 0.19 and 0.18 respectively. Assuming that most of the deaths occurred in 

hospitals, the average time 𝑇𝐷 from to infection to death was highest (15 days) for Norway and 

lowest (4 days) for Denmark and Italy (Figure 6e, Table I).   

 

Although the time delay differs for each country, it is also true that for every country, the relation 

between the removed population and the infected population is time invariant. This is not required 

a priori. For example, pressure on resources during a peak period of infectivity could cause a 

transient increase in the number of deaths per day relative to the number of recovered per. In such 

a situation, a single probability 𝛿 need not suffice for the entire epidemic. The fact that there is 

little evidence of this to within the quality of the data suggests that the effectiveness of life saving 

measures appears to be relatively insensitive to changes in the infective burden.  

 

The time interval 𝑇𝐿 = 1/𝜆 during which an infected person is asymptomatic but able to infect 

others was quite uniform across all the countries with the average value: 𝐸(𝑇𝐿) = 15.5 +/- 0.6 days.  

 

The time interval, 𝑇𝑅 between contacts between a susceptible and infective individual was also 

remarkably uniform for all countries, with the average value: 𝐸(𝑇𝑅) = 3.5 +/- 0.2 days. 

 

Finally, the average number of contacts while infective or 𝑁𝐶 =  
𝑇𝐿

𝑇𝑅
, which is also the value of 𝑅, 

varied only in a narrow range for all countries, averaging: 𝐸(𝑁𝐶) = 𝐸(𝑅) = 4.46+/- 0.17.  

 

 

𝑺𝟏(∞), herd immunity and estimating the naive fraction.  

How do we interpret N? It is certainly not the total population, because the model assumes 

complete mixing and the entire population does not interact all at once. In a compartment model 

such as this one, N is most likely the compartment size. Indeed, if everyone infected is immediately 

quarantined, then N = 1. If people were to be isolated in groups of size 100, then N=100. Hence, a 

reasonable interpretation of N is that it is the effective size of the population of susceptible 

individuals who interacted to give rise to observed number that were infected. The “naive” or 

uninfected fraction of this population at the end of the pandemic is given by 𝑆1(∞). Because of 

the high value of R, 𝑆1(∞) is small for all countries (Figure 7a). This means that,  by the time the 
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pandemic ends, herd immunity will have been established among the subset of the population that 

interacted with those who were identified to be infected. The highest “naive” fractions among this 

group were 5%, 3%  in Norway and Denmark respectively and the lowest were  0.4%, 0.7% in 

Sweden and the UK, which would suggest that herd immunity will be highest in the latter two 

countries.  

 

The important question is whether or not the results in Figure 6f mean that herd immunity has been 

established in the larger population. Since the size of the asymptomatic unidentified infected pool 

is unknown, it is difficult to determine whether the small N values relative to the population size 

mean that a large fraction of the population will remain naive at the end of the pandemic. However, 

one possible explanation of the observation that in several countries (Sweden, UK, Denmark), the 

model results deviate past the peak from the observed data might be that it reflects exposure of a 

larger pool of susceptible individuals to those infected before the peak because of the lack of social 

distancing or early lifting of quarantine in these countries.  

 

The determination of the true naive fraction at the end of the pandemic can only be done by random 

testing post-hoc. However, we can use the results of Figure 7a to estimate how many people would 

need to be tested to achieve a given accuracy, if indeed the naive fraction in the whole population 

is as shown in this Figure. We note that the errors on 𝑆1(∞) in Figure7a are approximately 50% 

of each value. This means that to estimate the naive fraction to an accuracy of x% one would need 

to test a fraction 𝐹 = (
50

𝑥
)2 ∗

𝑁

𝑁𝑃
 of the population, where 𝑁𝑃 is the population size of the country 

and 𝑁 is the size of the susceptible pool in our model. Using the data in Table I for 𝑁, 𝑁𝑃, to test 

whether the population naive fraction is the same as in Figure 7a to an accuracy of 5% the random 

testing needed for each country ranges from a minimum of 61 thousand tests for Norway and a 

maximum of 1.61 Million tests for Spain. (Figure 7b). 
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Figure Legends 

 

Figure 1: Logarithm of the ratio of the total number of tests performed to the total number of 

identified Covid-19 positive cases as a function of time in (a) N-Eu countries and (b) the UK and 

S-Eu countries. The dashed lines in Figure 1a and Figure 1b  represent 5 and 3 tests/case  

respectively. 

 

Figure 2: Parameter fits for N-Eu countries: Observed data (blue circles) for the number of 

cases per day (𝑋2(𝑡)) and fits (solid lines) obtained by solving (8) and (9) using the ODE solver 

ode45 in Matlab. The mean values of the parameters obtained (inset) are from the solid black line 

and the error bars are from the two red lines. The method used for the fits was to find  

𝛾(𝑅 − 1) from the exponential rise in 𝑋2  for small t (Appendix A), estimate the peak value 𝑃 of 

𝑋2 (which gives the value of 𝑁 using (15)) and then vary 𝑅  to obtain good fits to the data.  

 

Figure 3: N-Eu data and fits for 𝑿𝟒: 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐞𝐚𝐭𝐡𝐬 𝐩𝐞𝐫 𝐝𝐚𝐲. Observed data (red circles) 

for the number of deaths per day (𝑋4(𝑡)) for N-Eu countries and fits (solid lines). The fits were 

obtained by merely the fits from Figure 2 for 𝑋2(t) forward in time by an amount 𝑇𝐷 and scaling 

the results by the value  𝛿 (see (5)).  

 

 

Figure 4: Parameter fits for UK and S-Eu countries: Observed data (blue circles) for the 

number of cases per day (𝑋2(𝑡)) and fits (solid lines) obtained by solving (8) and (9) using the 

ODE solver ode45 in Matlab. The mean values of the parameters obtained (inset) are from the 

solid black line and the error bars are from the two red lines. The method used for the fits was to 

find  𝛾(𝑅 − 1) from the exponential rise in 𝑋2  for small t (Appendix A), estimate the peak value 

𝑃 of 𝑋2 (which gives the value of 𝑁 using (15)) and then vary 𝑅  to obtain good fits to the data.  

 

Figure 5: UK and S-Eu data and fits for 𝑿𝟒: 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐞𝐚𝐭𝐡𝐬 𝐩𝐞𝐫 𝐝𝐚𝐲. Observed data (red 

circles) for the number of deaths per day (𝑋4(𝑡)) for UK and S-Eu countries and fits (solid lines). 

The fits were obtained  by shifting the solver fits from Figure 4 for 𝑋2(t) forward in time by an 

amount 𝑇𝐷 and scaling the results by the value  𝛿 (see (5).  

 

Figure 6: Projected number of cases and deaths per million population.  We define the end of 

the pandemic as the day when the number of deaths is less than 5 per day. a) Projected number of 

cases per million population when the pandemic ends  and (b) Projected number of deaths per 

million population when the pandemic ends. (c) Demonstration of a possible temperature effect on 

the infectivity parameter 𝛼. The scale of the x-axis is temperature and the plotted values are the 

mean temperatures in February of the principal cities of the countries studied. The results suggest 

that the infectivity of SARS-CoV-2 decreases with increasing temperature. (d) The fraction of 

symptomatic infected who died and  (e) The average number of days from severe symptoms 

(presumably requiring hospitalization and ICU care) to death (see (5)). 

 

Figure 7: 𝑺𝟏(∞), herd immunity and estimating the naive fraction at the end of the pandemic.  

(a) The fraction 𝑺𝟏(∞)  of the 𝑁 susceptible individuals who are uninfected at the end of the 

pandemic. Note that the small values shown do not suggest that herd immunity was established for 
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the whole population. This is  because 𝑁 does not represent the whole population but rather the 

subset of individuals exposed to those who were infected. (b) An estimate of the number of people 

in each country who would need to be tested after the current pandemic ends to identify the naive 

population to an accuracy of 5%.  In making the estimate we have used the error bars shown in  

Figure 7a.   

 

 

Table I Legend: 

Table showing results from the fits for all 9 countries.  
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