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Abstract—The cases of COVID-19 have been reported in the United States since January 2020. We propose a COVINet by combining
the architecture of both Long Short-Term Memory and Gated Recurrent Unit. First, we use the 10-fold cross-validation to train and
assess different prediction models for which all counties serve alternatively as the training and test counties. Then, we focus on the
prediction for the 10 severest counties. We employ the Mean Relative Errors (MREs) to measure the performance of the COVINet in
predicting confirmed cases and deaths. Two COVINet models with 26 and 19 input variables, respectively, are trained. We estimate
their respective MREs in the last 30 days before January 23, 2021, by the 10-fold CV, which are 0.0898 and 0.1068 for the number of
confirmed cases, and 0.0694 and 0.0724 for the number of deaths. The MREs are also small for all predictions of the events in the last
7 or 30 days before January 23, 2021. The COVINet uses features including workforce driving alone to work, traffic volume, income
inequality, and longitude and latitude of infected counties to predict the trajectories of COVID-19 in counties of the United States. The
increasing awareness of how predictors affect the pandemic helps policymakers develop plans to mitigate the spread of COVID-19.

Index Terms—COVINet model, Deep learning, Geographical signals, Income inequality, Traffic volume, Transportation choices
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1 INTRODUCTION

A CCORDING to the New York Times [1], the early
confirmed cases of COVID-19 were reported on

January 21, 2020, in the United States. In March [2], the
outbreak of COVID-19 was proclaimed as a “pandemic”
by the World Health Organization. Since then, the United
States has had the largest number of confirmed cases and
deaths globally [3], where the confirmed cases and deaths
were 25,047,893 and 417,390, respectively, as of January
23, 2021. A vast majority of states in the United States
issued a “stay at home” order to reduce the transmission of
COVID-19 since March 2020 [4]. As the states are reopening
to achieve normalcy, it is essential to predict the trajectories
of COVID-19 based on the actionable factors to provide
the decision-makers with a quantitative and dynamic
assessment. Here, we define the actionable factors as those
that may be routinely surveilled and collected by the local
and national authorities, such as the level of air pollution
[5]. Among them, environmental factors affect the spread of
infectious diseases. For instance, the hospitalization rate of
H1N1 2009 had a disproportionate impact on high-poverty
areas in New York City [6] and on the small population
of racial/ethnic groups in Wisconsin [7]. Consequently, we
consider county health ranking and roadmaps programs
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[8]. The details about the database are available from
“https://www.countyhealthrankings.org/reports/county-
health-rankings-reports.” We focus on the adverse health
factors related to physical and social environments, as
summarized in Table 1.

There are many studies dedicated to forecasting the
spread of COVID-19. The epidemic models are prevalent
tools to predict the infection trajectories [9], [10], [11]. In-
stead of relying on disease resumption, some authors pro-
posed neural networks to precisely estimate the epidemic
[12], [13]. These data-driven approaches had superior per-
formance in predicting the dynamics of COVID-19. Yang et
al. [13] proposed a Long Short-Term Memory (LSTM) [14]
based model, and Bandyopadhyay and Dutta [15] compared
three models, including LSTM, Gated Recurrent Unit (GRU)
[16], and LSTM combined with GRU in predicting COVID-
19. The LSTM combined with GRU had been proven to gen-
erate a high accuracy rate [15]. However, a deep learning-
based model is generally complex and not useful in making
informed decisions. Therefore, our primary goal is to build
deep learning models that can help decision-making for the
epidemic. We include historical epidemic data and adverse
health factors from all infected counties in the United States
to build a county-wise prediction model combining LSTM
and GRU. Given the weights of the adverse health factors
in our proposed model, actionable interventions could be
implemented to slow the epidemic’s spread.
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TABLE 1
The list of 10 health adverse risks related to the physical and social environment and their sources.

Category Factors Meanings Sources

Physical

Driving alone to
work

Percentage of the workforce that drives alone to work American Community Survey, 5-year esti-
mates

Traffic volume Average traffic volume per meter of major roadways in the
county

Environmental Justice Screening and Map-
ping Tool

Air pollution particu-
late matter

Average daily density of fine particulate matter in micro-
grams per cubic meter (PM2.5)

Environmental Public Health Tracking Net-
work

Severe housing prob-
lems

Percentage of households with at least 1 of 4 housing prob-
lems: overcrowding, high housing costs, lack of kitchen
facilities, or lack of plumbing facilities

Comprehensive Housing Affordability
Strategy (CHAS) data

Long commute driv-
ing alone

Among works who commute in their car alone, the per-
centage that commute more than 30 minutes

American Community Survey, 5-year esti-
mates

Homeownership Percentage of occupied housing units that are owned American Community Survey, 5-year esti-
mates

Social

Income inequality Ratio of household income at the 80th percentile to income
at the 20th percentile

American Community Survey, 5-year esti-
mates

Some college Percentage of adults ages 25-44 with some post-secondary
education

American Community Survey, 5-year esti-
mates

Unemployment Percentage of population ages 16 and older unemployed
but seeking work

Bureau of Labor Statistics

Social associations Number of membership associations per 10,000 popula-
tion

County Business Patterns

To evaluate the performance of the proposed model, we
compare our model with four competing models: LSTM,
GRU, the method proposed by Yang et al. [13], and random
forest [17]. Moreover, we randomly split all counties into
training counties and test counties in the 10-fold cross-
validation (CV) to evaluate the performance of our model,
where the ratio of the training counties to the test counties is
9:1. Finally, after predicting the COVID-19 pandemic for all
counties, we present our predictive model for the 10 severest
counties in light of their greatest public health interest.
Our work is to obtain accurate predictions in the projected
trajectories of COVID-19 in the hot-spot areas and directly
provide measurable and actionable responses to reduce the
spread of COVID-19.

2 METHODS

2.1 Data Sources

We collect the daily numbers of cumulative confirmed cases
and deaths from January 21, 2020, to January 23, 2021, for
infected counties in the United States from the New York
Times [1]. The daily cumulative confirmed cases and deaths
are collected from health departments and U.S. Centers for
Disease Control and Prevention (CDC), where patients are
identified as “confirmed” based on the positive laboratory
tests and clinical symptoms and exposure [1]. All risk factors
are compiled from 2020 annual data on the County Health
Rankings and Roadmaps program’s official website [8]. In
addition, the longitude and latitude of each infected county
are collected from Census TIGER 2000 [18]. Data analysis
is conducted in version 3.7 Python with TensorFlow-GPU
1.140 and Keras 2.3.0.

2.2 The selection of the features

The input data are divided into two parts. The first part
consists of the cumulative confirmed cases and deaths in

the past 7 days:

X
(main)
··k =


x
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1,k · · · x
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7,k x
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1,k · · · x
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... · · · · · · · · · · · ·
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x
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N−7,k · · · x
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...
...

x
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N,k x
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
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, k = 1, 2, . . . ,K,

where N is the length of the training period, T = N − 7,
and K is the total number of counties. x(cases)

i,k are the cumu-

lative confirmed cases and x
(deaths)
i,k are the total deaths at the

corresponding date. For example, i = 1 corresponds to the
first day when the confirmed cases were officially reported.
These cumulative confirmed cases and total deaths give rise
to 14 historical epidemic variables as the first part of the
input data. The other part of the inputs includes J county
features, X(cov)

k = [x
(cov)
1k , ..., x

(cov)
Jk ]T . These features are 10

actionable factors (Table 1) in addition to the longitude
and latitude of infected counties. Thus, J is 12 for the
second part of our input data. Although the longitude and
latitude of infected counties are not actionable variables, we
incorporated them in our model because of their established
importance in prediction [19], [20]. Altogether, as presented
in Figure 1, the 26 input features are included in construct-
ing the initial proposed model. Note that the input data are
not predicted from the model.

Our next step is to find out whether there is a par-
simonious model with a smaller number of features and
comparable accuracy to the initial proposed model. To this
end, we used the random forest to screen the 10 actionable
features. In a random forest, a common practice is to select
the features with the largest variances [17]. This approach
selects the following three features: percentage of the work-
force who drive alone to work, average traffic volume per
meter of major roadways, and income inequality (the ratio
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Fig. 1. The structure of data usage in the models.

of household income at the 80th percentile to that at the 20th

percentile). Therefore, our smaller proposed model uses 19
features as the input data: 14 historical epidemic variables
and 5 county features (3 selected actionable features, lon-
gitude, and latitude). To compare the performance of all
competing models, these same 19 features are used.

2.3 COVINet

2.3.1 Model architecture

Our proposed model incorporates an LSTM layer, a GRU
layer [14], [15], [16], and a fully connected layer, formulated
as:

f
(
X

(main)
··k ,X

(cov)
k

)
= g(dense )

(
g(LSTM)

(
X

(main)
··k

)
,

g(GRU)
(
X

(main)
··k

)
,X

(cov)
k

)
,

(1)

where g(dense) is a fully connected layer, g(LSTM) is an LSTM
layer, and g(GRU) is a GRU layer. The time series of historical
epidemic data X

(main)
··k are the inputs of LSTM and GRU

layers, which are typically used in time series analysis for
the deep learning process. We then concatenate the outputs
of these two layers and the time-invariant county features
X

(cov)
k in a fully connected layer.

An LSTM layer (g(LSTM)) contains the input gate int, the
forget gate ft, the output gate ot , the cell state ct (i.e., the
hidden status), the candidate value c̃t, and the hidden state
vector/final output ht. X

(main)
t·k is a tth row of X(main)

··k used
as the input vector of the LSTM layer, then the iterative
formula for each item is shown as follows:

int = σ
(
WiX

(main)
t·k + Uih

(LSTM)
t−1 + bi

)
ft = σ

(
WfX

(main)
t·k + Ufh

(LSTM)
t−1 + bf

)
ot = σ

(
WoX

(main)
t·k + Uoh

(LSTM)
t−1 + bo

)
C̃t = tanh

(
WcX

(main)
t·k + Uch

(LSTM)
t−1 + bc

)
Ct = ft ⊗ Ct−1 ⊕ int⊗ C̃t

h
(LSTM)
t = ot ⊗ tanh (Ct)

Comparatively, a GRU layer (g(GRU)) streamlines the
operation. The layer removes the cell state Ct, the infor-
mation transmits in the hidden state (ht), input gate int and
forget gate ft emerge to form an updated gate zt, a reset
gate rt adds, and removes the final output gate. Thus, the
corresponding update functions are:

rt = σ
(
WrX

(main)
t·k + Urh

(GRU)
t−1 + br

)
zt = σ

(
WzX

(main)
t·k + Uzh

(GRU)
t−1 + bz

)
h̃t = tanh

(
WhX

(main)
t·k + Uh

(
rt ⊗ h

(GRU)
t−1

)
+ bh

)
h
(GRU)
t = (1− zt)⊗ h

(GRU)
t−1 ⊕ zt ⊗ h̃t

where matrices Wi,Wf ,Wo,Wc,Wz ,Wr ,Wh,Ui,Uf ,Uo,Uc,Ur,
Uh,Uh and vectors bi,bf ,bo,bc,bz ,br ,bh are model parameters.
σ is a sigmoid function,⊗ and ⊕ are pointwise multiplica-
tion, pointwise addition, respectively.

For a fully connected layer (g(dense)), we apply a dropout
step to limit the dimensions of the outputs, referred to as
nodes in the deep learning literature, generated from LSTM
and GRU layers and prevent overfitting. The outputs are
dropped randomly at a rate to be specified by the users,
which we discuss in Section 2.3.3. The number of nodes
and the dropout rates for LSTM and GRU layers are tuned
as the hyperparameters in the network configurations. The
activation function of the fully connected layer is set as
the ReLU function to generate the non-negative cumulative
confirmed cases and total deaths. Our proposed model, re-
ferred to as COVINet, conducts the deep learning process by
incorporating county features. The corresponding COVINet
is shown in Figure 2.

All data involved in the model are min-max normalized
before being used. This step is found to increase the accu-
racy of our model and training speed. For unknown data
containing the same variables, we use the scales from the
training data to transform future epidemic data and then
predict the future COVID-19. After obtaining the predicted
data, we proportionally restore the predicted cumulative
confirmed cases and deaths by reversing the scales.

2.3.2 Training

During the training process, the observed cumulative con-
firmed cases and deaths every 7 past days in each county
of the United States are used to predict the cumulative con-
firmed cases and deaths in the present day. Our analysis is
divided into two parts. The first part is to learn the observed
patterns of COVID-19 and then to validate the learned
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Fig. 2. The COVINet combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) using J (12) county features.

patterns, where the accuracy of the models is evaluated by
Mean Relative Errors (MREt) as validation loss:

MREt =
1

t

t∑
i=1

| Actuali − Predictedi |
Actuali

, t = 7, 30,

where Actuali are the actual cumulative confirmed cases or
total deaths at the ith day and Predictedi are the predicted
ones at the same corresponding date. The weights of an
entire network are estimated by backpropagation through
minimizing the loss function (MRE).

We assess the performance of all models through both
spatial and temporal domains. First, we use a 10-fold CV
to evaluate the prediction accuracy from one set of training
counties to a different set of test counties in an approxi-
mately 9:1 ratio. The trajectories of COVID-19 before Jan-
uary 23, 2021, are used in the 10-fold CV, although we report
only the MRE30 for the last 30 days before January 23, 2021.
Then, we evaluate the prediction accuracy in the last 7 or 30
days (MRE7 for the last 7 days and MRE30 for the last 30
days before January 23, 2021) for the 10 severest counties.
The following are two settings of the data: (a) t = 7: the
training data were from January 21, 2020, to January 16,
2021, and the validation data from January 17 to January

23, 2021. Here, i = 1 corresponded to January 17, 2021; (b)
t = 30: the training data were from January 21 to December
23, 2020, and the validation data from December 24, 2020 to
January 23, 2021, i = 1 corresponded to December 24, 2020;

2.3.3 Tuning the hyperparameters
While building models by LSTM and GRU, we need to tune
two hyperparameters to achieve high accuracy. The first one
is the number of nodes in LSTM and GRU. We consider 50,
100, and 150 as commonly done [15]. The second one is the
dropout rates. We set the range from 0 to 50% with an in-
crement of 5%. The choices of these tuning hyperparameters
with the lowest MRE are selected. Specifically, 50 nodes are
used for each network in both LSTM and GRU, and the
dropout rates are set at 20% and 5% for LSTM and GRU,
respectively. We use the Adam optimizer for model training,
and following Kingma and Ba [21], we set α = 0.001 (step
size or learning rate), β1 = 0.9, β2 = 0.999 (exponential
decay rates for the moment estimates), and ε = 10−7 for
the Adam optimizer. The batch size, i.e., the number of
training samples for each iteration, is set as 32. The COVINet
model is trained up to 100 epochs. For the learning rate,
if the MRE does not decrease for consecutive 10 epochs,
we reduce the learning rate to its 30% until MRE decreases
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or the minimum learning rate reaches 0.00001. The training
process is stopped if the MRE does not improve over 40
consecutive epochs.

3 RESULTS

3.1 Model validation through different counties
We conduct the 10-fold CV of all counties to evaluate the
performances of our proposed models. The averages of the
MREs for the COVINet with the initial 26 features and
the COVINet with the 19 features (3 of the 10 actionable
features) are 0.0898 and 0.1068 for the cumulative con-
firmed cases, and 0.0694 and 0.0724 for the total deaths,
respectively. The corresponding MREs for LSTM alone, GRU
alone, the method proposed by Yang et al. are over 0.45 for
the cumulative confirmed cases and deaths. The random for-
est is better than the two COVINet models for the validated
cumulative confirmed cases but worse for the validated total
deaths, although they are in a similar order of magnitudes.
Overall, the 10-fold CV-based MREs in all counties for two
COVINet models are either much better than or comparable
to those using the existing models.

Table 2 presents the MREs from these 6 models for
the subsequent (and last) 7 or 30 days for the cumulative
confirmed cases and total deaths in the severest counties.
For the COVINet model with the initial 26 features, the
MRE30 are 0.0261 for the cumulative confirmed cases and
0.0179 for the total deaths. The MRE30 for the cumulative
cases and total deaths are 0.0210 and 0.0386 for the smaller
COVINet model with 19 features. For the 4 competing
models, the MRE30 for LSTM alone, GRU alone, the method
proposed by Yang et al. and random forest for the cumula-
tive confirmed cases are 0.0844, close to 1, 0.0217, and 0.1574,
and for the total deaths are 0.1683, 1, 0.0746 and 0.1578,
respectively. Thus, the COVINet models have the lowest
values of MRE30 for the cumulative confirmed cases and
total deaths. The conclusion is similar for MRE7 . Finally, to
assess the importance of the 19 features that are included in
the smaller COVINet model, we build a COVINet without
them. The resulting MREs are close to 1.

3.2 Prediction of future trajectories of COVID-19 in the
10 severest counties
The MRE30 and MRE7 between the observed and projected
counts from the day after two training periods to January
23, 2021, are computed to assess the accuracy of the tem-
poral prediction for each of the 10 most severely infected
counties, because those hot-hit areas were of the severest
public health interest. Table 3 presents individual MRE30

and MRE7 for those 10 counties using the smaller COVINet
with 19 features. For example, Orange County, California,
has the smallest MRE30 for the confirmed cases and the
smallest MRE7 for total deaths. Dallas County, Texas, has
the smallest MRE30 for the total deaths. Riverside County,
California, has the smallest MRE7 for the confirmed cases.
Overall, the MRE30 and MRE7 are relatively small, assuring
the accuracy of our COVINet model in predicting future
trajectories of COVID-19 for the numbers of confirmed cases
and deaths for the severest counties.

The 30-day projected trajectories of the cumulative con-
firmed cases and deaths using the smaller COVINet from

December 24, 2020, to January 23, 2021, are presented in
Figure 3. From Figure 3, the predicted cumulative confirmed
cases from December 24, 2020, to January 23, 2021, are
remarkably close to the actual ones for the 10 severest coun-
ties. The situation is similar in predicting the death counts
except for San Bernardino County, California, for which the
predicted deaths are relatively higher than the actual ones,
with MRE30 being 0.0861 (Table 3). The projected values
of the confirmed cases for the 10 severest counties would
increase at a slow rate in the near future.

Fig. 3. The trajectories of COVID-19 for 10 severest counties until
January 23, 2021, are displayed. The blue curves indicate the observed
cumulative confirmed cases (a) and total deaths (b) as training data,
while the red curves indicate the projected ones from December 24,
2020 to January 23, 2021. The purple curves represent the actual
confirmed cases (a) and deaths (b) at the same period.

3.3 Covariate effect on COVID-19

Our smaller COVINet model incorporates 3 selected ad-
verse health factors, the longitudes and latitudes of the
counties. The weights of longitudes and latitudes are
learned from the training county data, where their values
are 0.0001 and 0.0002 for the confirmed cases and 0.0002
and 0.0002 for the total deaths, respectively. Accordingly,
the Northern and Eastern regions have relatively more
confirmed cases, and thus there are more deaths in the same
regions. The maps of the cumulative confirmed cases and
total deaths of COVID-19 on January 23, 2021, are presented
in Figure 4 and are consistent with our prediction. There are
more infected counties in the Northern and Eastern regions.

The weights of the 3 selected adverse health risk fac-
tors are positive for both confirmed cases and deaths. For
example, the largest values of weights for confirmed cases
are the percentage of workforce driving alone to work at
0.0005 and for deaths are the average traffic volume per
meter of major roadways at 0.0004 (Table 4). Specifically,
an increase in the percentage of workforce driving alone to
work, average traffic volume per meter of major roadways,
and income inequality ratio would increase in both the
cumulative confirmed cases and deaths.

To offer insight into the prediction dynamics of the
smaller COVINet model, we vary the levels of the 3 actional
features and present the resulting trajectories of COVID-19
for Los Angeles County, California. Moreover, for better
visibility, we draw the projected trajectories of COVID-
19 from January 24, 2021, to February 2, 2021, where the
observed confirmed cases and total deaths on January 24,
2021, serve as the reference value set at 0 in Figure 5. For
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TABLE 2
The average 10-fold cross-validation (CV) results of the COVINet including the initial 26 features, the COVINet model with 3 selected features,

existing competing models for all counties and the values of MRE30 and MRE7 for 10 severest counties of COVID-19.

Models Average 10-fold CV MRE7 projection MRE30 projection
Confirmed cases Deaths Confirmed cases Deaths Confirmed cases Deaths

The COVINet model with the initial 26 features 0.0898 0.0694 0.0080 0.0203 0.0261 0.0179
The COVINet model with 3 selected features 0.1068 0.0724 0.0056 0.0138 0.0210 0.0386
LSTM alone 0.5129 0.5589 0.0330 0.1141 0.0844 0.1683
GRU alone 0.6345 0.5739 1.0000 1.0000 0.9999 1.0000
Deep learning based method of Yang et.al 0.4608 0.4679 0.0990 0.0626 0.0217 0.0746
Random forest 0.0461 0.1494 0.0447 0.0430 0.1574 0.1578

TABLE 3
MRE7 and MRE30 of cumulative confirmed cases and deaths using

COVINet model with 3 selected features for each of 10 severest
counties of COVID-19.

State, County MRE7 MRE30

Confirmed Deaths Confirmed Deathscases cases

California Los Angeles 0.0043 0.0067 0.0253 0.0067
New York New York 0.0063 0.0249 0.0110 0.0769
Arizona Maricopa 0.0021 0.0039 0.0179 0.0199
Illinois Cook 0.0129 0.0167 0.0337 0.0208
Florida Miami-Dade 0.0070 0.0171 0.0245 0.0415
Texas Harris 0.0026 0.0100 0.0226 0.0359
California San Bernardino 0.0039 0.0269 0.0108 0.0861
California Riverside 0.0060 0.0129 0.0188 0.0204
Texas Dallas 0.0048 0.0039 0.0248 0.0136
California Orange 0.0062 0.0150 0.0206 0.0645

(a)

(b)

Fig. 4. The map of all infected counties. The circle sizes indicate the
number of cumulative confirmed cases (a) and deaths (b) on January
23, 2021. The arrows indicate the trend of change in confirmed cases
and deaths over longitudes and latitudes.

example, if the average traffic volume per meter of major

TABLE 4
The weights of five county features

Factors Weights
Confirmed cases deaths

Driving alone to work 4.5506× 10−4 2.0113× 10−4

Traffic volume 1.1130× 10−4 4.1634× 10−4

Income inequality 2.5271× 10−4 2.1376× 10−4

Longitude 8.9214× 10−5 1.8581× 10−4

Latitude 1.9427× 10−4 2.0398× 10−4

roadways increases 4 times on January 24, 2021, the number
of cumulative confirmed cases will increase over 7500 on
February 2, 2021 (Figure 5). The impact of the 3 actional
features on COVID-19 in both the cumulative confirmed
cases and deaths is visible, depending on the weights of
the features (Table 4). Overall, the numbers of cumulative
confirmed cases and deaths are projected to rise slowly in
the following month in Los Angeles County, California.

Fig. 5. The projected relative trajectories of COVID-19 for Los Angeles
County, California, of cumulative confirmed cases and deaths from
January 24 to February 2, 2021. The levels of the 3 risk factors are
changed from 0.5 times to 4 times since January 24, 2021. The ob-
served cumulative confirmed cases and deaths are set at 0 on January
24, 2021.
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4 DISCUSSION

Our COVINet is built by deep learning and is shown to
effectively model, which elegantly predicts the cumulative
confirmed cases and deaths in the counties of the United
States. The risk factors that are used in the COVINet provide
visible evidence on actionable steps that influenced the tra-
jectories of COVID-19. Thus, COVINet takes advantage of
deep learning and the interpretability of risk factors. In our
study, we find that the higher the workforce driving alone
to work, the higher the risk of COVID-19 spread. Those
car-only commuters are associated with a higher body fat
percentage [22], increasing the risk of infections [23]. Stud-
ies indicate that pre-existing cardiovascular disease could
increase the severity of the COVID-19 [24], [25], so does
the air pollution [26], [27]. The residential proximity to high
vehicle traffic at a distance would increase exposure to air
pollution and risk of cardiovascular disease (CVD) [28], [29],
[30]. Therefore, it seems to be an indirect risk to COVID-
19 for people living near heavy traffic. In the end, income
inequality within a county accentuates the risk of poor
health [31]. Those people have relatively low health status,
making them more vulnerable to novel diseases [32] and
infected in hospitals. Overall, if the values of those adverse
health factors increase, the trajectories of COVID will be
increased accordingly. This might be consistent with the fact
that those adverse health factors result in poor health and
thus have a high likelihood of increasing the trajectories of
COVID-19. Therefore, adverse health factors are expected to
differ in the COVID-19 trajectories significantly. As a result,
of the COVID-19 pandemic, it is a public health matter and
an issue of social responsibility.

We also take into account the geographical information
of infected regions; there could be a link between geo-
graphical signals and COVID-19. Our results indicate that
higher latitudes have more cases, consistent with previous
studies [19], [20]. As the most severe county in the United
States, the Los Angeles County of California is located in the
southwest of the United States with the highest number of
cases of COVID-19 since 2021. However, for the overall hot-
spot areas of COVID-19, approaching north (higher values
in the latitude) and east (higher values in the longitude)
areas of the United States, the more severe counties with
higher numbers of cases have been. Accordingly, the same
situations apply to the deaths of COVID-19. The majority
of severely infected counties are located in the northeast
areas of the United States. There might be other factors that
we could consider in building the COVINet. However, we
chose to use the 3 actionable adverse health factors based on
a criterion in the random forest, and they may be control-
lable by local authorities relatively quickly. Moreover, the
smaller COVINet model performed comparably to the ini-
tial COVINet model. Thus, for model parsimony, we chose
the smaller model as our final model. LSTM combined with
GRU was shown to capture more temporal information,
consistent with the work proposed by Dutta et al. [15].
The potential structure of the data that can be captured by
using GRU or LSTM alone might be relatively simple. We
believe each method alone might not effectively capture the
information for accurate prediction. By using both network
structures, we can have a more prosperous prediction [15].

We also included the longitude and latitude because they
help predict COVID-19. For the 10 severest counties, the
overall prediction for the cumulative confirmed cases is
more accurate than that for the total deaths because there
are more observed confirmed cases than deaths, resulting in
a larger denominator for the MRE.

Our models produce accurate county-level short-term (7-
day) and long-term (30-day) predictions of cumulative con-
firmed cases and total deaths together. More significantly,
they are based on measurements routinely surveilled and
collected by the local and national authorities, providing
actionable information to reduce the spread of COVID-19.
Therefore, it is easy to understand and act by the decision-
makers. Also, with its relatively small MREs, the room for
further prediction improvement is expected to be too small
to make a practical difference. In addition, considering the
inputs and outputs in our model, we can have multimodal
predictors and multiple outcomes.

5 CONCLUSION

In summary, we built an interpretable and highly accurate
prediction model using deep learning for COVID-19. This
developed deep learning model can precisely predict the
different periods of cumulative confirmed cases and deaths
in infected regions. By incorporating the time-invariant fac-
tors in deep learning, the accuracy could improve remark-
ably to predict the trajectories of COVID-19. By analyzing
the spread of COVID-19 and adverse health risk factors
related to physical and social environments, we can improve
the healthcare system for COVID-19.
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